INTEGRATING LIGHT-VOLTAGE CONVERTER

Rev D1, Page 1/9

FEATURES

- Two photosensors with integrating amplifiers
- Integration time can be set externally
- Internal shift register for chain connection
- Detection of low supply voltage
- TTL/CMOS-compatible logic inputs and outputs
- 5 V supply voltage
- Low power consumption
- Photosensors with 1 mm pitch;
active area ca. $0.97 \mathrm{~mm} \times 0.47 \mathrm{~mm}\left(0.44 \mathrm{~mm}^{2}\right)$

CHIP

$1.7 \mathrm{~mm} \times 1.2 \mathrm{~mm}$

BLOCK DIAGRAM

Rev D1, Page 2/9

DESCRIPTION

iC-OC is an optical sensor with two photodiodes, two integrating amplifiers and a control logic which enables several iC-OCs to be connected in a chain.

Furthermore, the control logic, consisting of a twostage shift register, determines when the integration time starts and ends and switches the integrators in sequence to the analogue output. The analogue output is a source follower and in its deactivated state has a high impedance and can thus be used in buses.

The control logic output supplies a CMOS compatible signal and in chain connection it can be directly linked to the digital input of the next device. Logic inputs are configured as Schmitt triggers and are TTL/CMOScompatible.

All the registers in the device are reset with low voltage (power-down reset). All pins are protected against ESD.

CHIP LAYOUT

PIN CONFIGURATION Chip

PIN FUNCTIONS

No. Name Function
DIN Input
CLK Clock Input
DOUT Data Output
VDD +5 V Supply Voltage
AOUT Analogue Output
GND Ground

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item No.	Symbol	Parameter	Conditions		Mnit
G001	VDD	Supply Voltage			Max.
G002	Ic ()	Clamping Current in DIN, CLK, DOUT, AOUT		-0.3	6.5
G003	I()	Current in DOUT		-20	20
G004	llu()	Pulse Current in all Pins (Latch-up strength $)$	Pulse width $\leq 10 \mu \mathrm{~s}$	mA	
G005	Vd()	ESD Susceptibility, at all Pins	HBM, 100 pF discharged through $1.5 \mathrm{k} \Omega$	-10	10
G006	Tj	Junction Temperature		-100	100
G007	Ts	Storage Temperature	See package specification	mA	

THERMAL DATA

Operating Conditions: VDD $=5 \mathrm{~V} \pm 10 \%$

Item No.	Symbol	Parameter	Conditions	Unit
T01	Ta	Operating Ambient Temperature Range	See package specification	Min.

iC-OC

INTEGRATING LIGHT-VOLTAGE CONVERTER

Rev D1, Page 4/9

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD $=5 \mathrm{~V} \pm 10 \%, R L(V D D / A O U T)=1 \mathrm{k} \Omega, T j=0 \ldots 85^{\circ} \mathrm{C}$ unless otherwise noted

$\begin{array}{\|l\|} \hline \text { Item } \\ \text { No. } \end{array}$	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Total Device							
001	VDD	Permissible Supply Voltage Range		4.5		5.5	V
002	I(VDD)	Supply Current in VDD		100		700	$\mu \mathrm{A}$
003	Vc() hi	Clamp Voltage hi at DIN, CLK, DOUT, AOUT	Vc() $\mathrm{hi}=\mathrm{V}()-\mathrm{VDD}, \mathrm{I}()=10 \mathrm{~mA}$, other pins open	0.3		1.5	V
004	Vc()lo	Clamp Voltage lo at DIN, CLK, DOUT, AOUT	1()$=-10 \mathrm{~mA}$, other pins open	-1.5		-0.3	V
005	Aph()	Radiant Sensitive Area			$0.97 \times$		mm^{2}
006	$\lambda \mathrm{ar}$	Spectral Application Range	$\mathrm{S}(\lambda \mathrm{ar})=0.25 \times \mathrm{S}(\lambda) \mathrm{max}$	300		950	nm
Analogue Output AOUT							
201	V0()	Output Voltage at no illuminance	$\mathrm{V} 0()=\mathrm{VDD}-\mathrm{V}(\mathrm{AOUT}) \mathrm{max},$ AOUT active (* see below)	0.7		1.4	V
202	$\Delta \mathrm{Vd}()$	Variation of Output Voltage at no illuminance	$\begin{aligned} & \Delta \mathrm{Vd}()=\mathrm{V}(\text { AOUT }) \mathrm{t} 1-\mathrm{V}(\text { AOUT }) \mathrm{t} 2, \\ & \Delta \mathrm{t}=\mathrm{t} 2-\mathrm{t} 1=1 \mathrm{~ms} \end{aligned}$	-10		10	mV
203	Vs ()	Saturation Voltage	$\begin{aligned} & \text { Tenfold illuminance } \\ & \text { VDD }=4.5 \mathrm{~V} \\ & \text { VDD }=5 \mathrm{~V} \\ & \text { VDD }=5.5 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 1.4 \\ 1.45 \\ 1.5 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
204	$\Delta \mathrm{V}()$	Repeatability (standard deviation at repeated measurement)	20 measurements at constant LED illuminance, $\operatorname{Vav}(\mathrm{AOUT}) \approx 2.91 \mathrm{~V}, \Delta \mathrm{t}=25 \mu \mathrm{~s}$			15	mV
205	Vlin()	Output Voltage Linearity Range	Vlin()$=\mathrm{VDD}$ - V0() - V(AOUT)	1.7			V
206	K	Transfer Factor output voltage vs. light power	BMST assembly incl. sealing; $\lambda_{\text {LED }}=628 \mathrm{~nm}, \Delta \lambda= \pm 23 \mathrm{~nm}$ $\lambda_{\text {LED }}=880 \mathrm{~nm}, \Delta \lambda= \pm 40 \mathrm{~nm}$	$\begin{aligned} & 0.22 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.19 \end{aligned}$	V/pWs V/pWS
207	Δ klin	Transfer Factor Deviation within linearity range		-5		5	\%
208	1()	Leakage Current	$\begin{aligned} & \text { V(AOUT) = 0...VDD, } \\ & \text { AOUT high impedance (}{ }^{*} \text { see below) } \end{aligned}$	-2		2	$\mu \mathrm{A}$
Shift-Register DIN, CLK, DOUT							
301	Vt()hi	Threshold Voltage hi at DIN, CLK				2.2	V
302	Vt()lo	Threshold Voltage lo at DIN, CLK		0.8			V
303	Vt ()hys	Hysteresis at DIN, CLK	Vt()hys $=\mathrm{Vt}($) hi $-\mathrm{Vt}($ ()o	250		1300	mV
304	li()	Input Current in DIN, CLK	$\mathrm{V}(\mathrm{)}=0 \ldots \mathrm{~V}$ VD	-1		1	$\mu \mathrm{A}$
305	f ()	Permissible Frequency at CLK				10	MHz
306	tw()hi	Permis. Pulse Width hi at CLK		20			ns
307	tw()lo	Permis. Pulse Width lo at CLK		20			ns
308	tplh	Propagation Delay: CLK hi \rightarrow lo until DOUT lo \rightarrow hi	$\mathrm{CL}(\mathrm{DOUT})=50 \mathrm{pF}$ (see Fig. 2)			40	ns
309	tphl	Propagation Delay: CLK hi \rightarrow lo until DOUT hi \rightarrow lo	$\mathrm{CL}(\mathrm{DOUT})=50 \mathrm{pF}$ (see Fig. 2)			40	ns
310	tpon	Propagation Delay: CLK lo $\rightarrow \mathrm{hi}$ until AOUT active	$\mathrm{CL}(\mathrm{VDD} /$ AOUT $)=1 \mathrm{nF}$ (see Fig. 2)			800	ns
311	tpoff	Propagation Delay: CLK lo \rightarrow hi until AOUT high impedance	$\mathrm{CL}(\mathrm{VDD} / \mathrm{AOUT})=1 \mathrm{nF}$ (see Fig. 2)			100	ns
312	Vs () hi	Saturation Voltage hi at DOUT	Vs()hi = VDD - V(), $\mathrm{l}($) $=-1 \mathrm{~mA}$			0.4	V
313	Vs ()lo	Saturation Voltage lo at DOUT	1()$=1 \mathrm{~mA}$			0.4	V
Low Voltage Detection							
401	VDDon	Turn-on Threshold VDD	Increasing voltage at VDD	2.1		3.8	V
402	VDDoff	Undervoltage Threshold VDD	Decreasing voltage at VDD	1.0		2.1	V
403	VDDhys	Hysteresis	VDDhys = VDDon - VDDoff	0.5		2	V

[^0]Rev D1, Page 5/9

ELECTRICAL CHARACTERISTICS: Diagrams

Figure 1: Relative Spectral Sensitivity

Figure 2: Relative Spectral Sensitivity with BMST assembly

OPERATING REQUIREMENTS: Logic

Operating Conditions: VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=0 \ldots 85^{\circ} \mathrm{C}$,
input levels lo $=0 \ldots 0.45 \mathrm{~V}$, hi $=2.4 \mathrm{~V} . . . \mathrm{VDD}$, see Fig. 3 for reference levels

Item No.	Symbol	Parameter	Conditions	Fig.	Min.	Max.
I001	tset	Setup time: DIN stable before CLK lo \rightarrow hi		3	10	
I002	thold	Hold time: DIN stable after CLK lo \rightarrow hi		3	5	

Figure 3: Reference levels

Rev D1, Page 6/9

Figure 4: Timing characteristics after power on (assumption: V 0() $1=\mathrm{V} 0() 2=\mathrm{V} 0(), \mathrm{VDD}=5 \mathrm{~V}$)

iC-OC

INTEGRATING LIGHT-VOLTAGE CONVERTER

Rev D1, Page 7/9

DESCRIPTION OF FUNCTIONS

iC-OC is an integrating light-voltage converter with two separate photodiodes and two integrators. The integration time starts when the supply voltage is applied. To obtain a specified integration time a hi pulse must first be available at the digital input DIN and clocked by the device. This process sequentially resets the integrators to their initial value and restarts the integration time with the next clock pulse.

Flip-flops Q1 to Q3 sequentially accept the signal at DIN with the positive CLK edge. Flip-flop Q4, which controls the DOUT output signal, reacts to the negative CLK edge. The switching states in the IC always remain for the duration of a clock cycle. The process depicted in Fig. 2 is initiated when a hi pulse is applied to DIN.

During the first clock cycle integrator 1 is switched to the analogue output AOUT (switch SOUT1 closes). AOUT initially supplies a voltage value which cannot be reproduced as the integration time is unknown. The
second clock cycle switches the analogue output from integrator 1 to integrator 2 (SOUT1 opens, SOUT2 closes). A non-reproducible voltage value is again present at AOUT (see above). At the same time the integration capacity of integrator 1 is short-circuited by switch SC1 (reset).

Flip-flop Q4 is set in the second clock cycle with the negative clock edge (DOUT1) and thus the DIN signal for the next device in the chain is produced.

During the third clock cycle integrator 2 is disconnected from AOUT (SOUT2 opens) and reset (SC2 closes). Simultaneously, the integration time for integrator 1 starts anew (SC1 opens). If several iC-OCs are connected in a chain, then the hi signal from DOUT is shifted into the first flip-flop of the next device with the third clock cycle. During the fourth clock cycle switch SC2 opens and starts the integration time for integrator 2.

APPLICATIONS INFORMATION

Only when the DOUT2 output has a hi level can the next hi signal be applied to DIN1. The first hi signal clocked by the device implements a sequential reset of the integrators, followed by the integration time starting in sequence. The second hi signal shifted through the register determines the end of the integration time and restarts the integration time after a reset. The integrators can be read out with the aid of a sample and hold circuit, as the device itself has no hold mode. Besides the clock a periodic signal at DIN is also necessary for the continuous operation of the device.

With operation of the device at low level illumination the output voltage $\mathrm{V}(\mathrm{AOUT}$) decreases by V 0 (AOUT). When calibrating, this drop in voltage must be determined for each of the photosensors.

Figure 5: Example of a chain connection for two devices

Rev D1, Page 8/9

Figure 6: Time sequence for the chain connection in Fig. 5 after the device has been switched on

[^1]
ORDERING INFORMATION

Type	Package	Order Designation
iC-OC samples iC-OC	CDIP16	iC-OC CDIP16
iC-OC chip		

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH
Am Kuemmerling 18
D-55294 Bodenheim GERMANY

Tel.: +49 (61 35) 9292-0
Fax: +49 (61 35) 92 92-192
Web: http://www.ichaus.com
E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners

[^0]: ${ }^{(*)}$ AOUT active: SOUT1 or SOUT2 closed; AOUT high impedance: SOUT1 and SOUT2 open.

[^1]: iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.
 Copying - even as an excerpt - is only permitted with iC-Haus approval in writing and precise reference to source.
 iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
 iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.
 As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).
 We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

