PG001M Serial Signal Generator ICs for SLA7042M and SLA7044M

■Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	V_{DD}	-0.5 to 7	V
Input Voltage	V_{I}	-0.5 to $\mathrm{V}_{\mathrm{DD}+}+0.5$	V
Input Current	I	± 10	mA
Output Voltage	V_{\circ}	-0.5 to $\mathrm{V}_{\mathrm{DD}+}+0.5$	V
Output Current	l	± 15	mA
Power Dissipation	P_{D}	200	mW
Operating Temperature	Top°	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Parameter		Symbol	Conditions	Ratings			Unit	
		min.		typ.	max.			
	Supply Voltage		Vdo		4.5		5.5	V
	Supply Current	Iod	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		0.35	0.45	mA	
	Output Voltage	Voн	$V_{\text {do }}=5 \mathrm{~V}, \mathrm{lo}= \pm 3 \mathrm{~mA}$	4.5			V	
		VoL				0.4		
	Input Current	1	$\mathrm{V}_{\mathrm{D} D}=5 \mathrm{~V}, \mathrm{~V}_{1}=0$ or 5 V			± 1	$\mu \mathrm{A}$	
	Input Voltage	V_{H}	$V_{\text {d }}=5 \mathrm{~V}$	3.5		5	V	
		V_{IL}		-0.3		1.5		
	Input Hysteresis Voltage	V_{H}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		1		V	
	Input Capacity	Cl_{1}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		5	10	pF	
	Internal Oscillation Frequency	F	$V_{D D}=5 \mathrm{~V}$ See Fig. 1.		1.5		MHz	
	Propagation Delay Time	Tcs			50	100	ns	
		Tcc			430	550		
	Output Voltage Rise and Fall Time	Tr	$V_{D D}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ See Fig. 2.		20		ns	
		T ${ }_{\text {f }}$			20			
	CLOCK IN Terminal Input Clock Time	$\mathrm{V}_{\text {CIH }}$	H level time, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	4.5			$\mu \mathrm{s}$	
		$\mathrm{V}_{\text {cIL }}$	L level time, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	0.5				
	Reset Setting Time (A)	${ }_{\text {ts } R}$	From/To CLOCK_IN \uparrow See Fig. 3.	100			ns	
	Stabilization Time After Reset Input (B)	${ }_{\text {tps }} \mathrm{R}$						
	Signal Setting Time (C)	${ }_{1 s} \mathrm{~S}$	From/To CLOCK_IN \uparrow See Fig. 3.	100			ns	
	Stabilization Time After Signal Input (D)	tps S						

Fig. 3 Timing conditions

Typical Connection Diagram

■Internal Block Diagram

©Input and Output Function Correlation Table

Input				Output				
Mode	$\begin{array}{\|l\|l\|} \hline \text { CLOCK } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{CW} \\ & \stackrel{C D W}{ } \end{aligned}$	RESET	$\overline{\text { MO }}$	$\begin{aligned} & \text { CLOCK } \\ & \text { OUUT } \\ & \hline \end{aligned}$	Strobe	$\begin{aligned} & \hline \text { DATA } \\ & - \text { - } \end{aligned}$	${ }_{-B}^{\text {DATA }}$
cw	5	L	H	L	Л]ITI	$\sqrt{2}$	cw	cw
	\underline{L}	L	H	5	-	\square		
ccw	\checkmark	H	H	L	Л]ITI	,	ccw	cCw
	\underline{L}	H	H		-	L		
RESET	5	\times	L	\square		,	$\begin{array}{\|c\|} \hline \text { Output Mode } \\ 4 \text { or } 7 \end{array}$	$\begin{gathered} \text { Input Mode } \\ 4 \mathrm{or} 7 \end{gathered}$
	L	\times	L	-	-	L	Ouput Mode	Output Mode

x : Immaterial
: $\overline{\mathrm{MO}}$ outputs L level while CLOCK_IN is H level when output mode is $4: 4$ ($7: 7$), $\overline{4}: 4$ ($\overline{7}: 7$), $4: \overline{4}(7: \overline{7})$, or $\overline{4}: \overline{4}(\overline{7}: \overline{7})$.
Modes in brackets () are for 2-2 phase VC:H.

Excitation Selection Table

Excitation method	Input Excitation mode selection $v e$			Output current mode of SLA7042M/7044M								
				0	$\begin{array}{\|c\|} \hline 1 \\ \hline 20 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ \hline 40 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3 \\ \hline 55.5 \% \\ \hline \end{array}$	$\frac{4}{9 \% 71.4 \%}$	5	$\begin{array}{\|c\|} \hline 6 \\ \hline 91 \% \\ \hline \end{array}$	$\begin{array}{c\|} \hline 7 \\ \hline 100 \% \\ \hline \end{array}$	Torque vector
	vc	MS1	MS2	0\%								
$\begin{aligned} & \text { 2-2 Phase } \\ & \text { Full Step } \end{aligned}$	H	L	L	-	-	-	-	-	-	-	-	141\%
	L	L	L	-	-	-	-	-	-	-	-	100\%
1-2 Phase Half Step	\times	H	L	\bigcirc	-	-	-	-	-	-	\bigcirc	100\%
$\begin{gathered} \hline \text { W1-2 Phase } \\ \text { 1/4 Step } \\ \hline \end{gathered}$	\times	L	H	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	100\%
$\begin{gathered} \text { 2W1-2 Phase } \\ 1 / 8 \text { Step } \\ \hline \end{gathered}$	\times	H	H	\bigcirc	100\%							

©Output Mode Vs Output Pulse

■Output Mode Sequence

Excitation method	CW/CCW	CLOCK	$\stackrel{\text { RESET }}{\sim}$		23	34	45				91	1011	1112	1213	3141		1617											2829	2930		
		$\overline{\text { MO }}$	L		H H	H H	H	H	H	L	H H	H H	H H	H H	H H	H L	L H	H H	H H	H H	H H	H H	H H	HL	H	H	H H	H H	H H		HL
2-2 Phase Full Step (1) (VC:H)	cW	DATA_A	7		$==$	$=$ =	$==$	$=$	$=$	7	$==$	$=$	$==$	$=$ =	$==$	$=7$	$7=$	$=$	$=$	$=$	$=$ =	$=$	$=$	7	$=$	$=$	$=$	$=$ =	$==$		$=7$
		DATA_B	7	$=$	$=$	$=$ =	$=$ =	=	$=$	7	$=$	$=$	$=$ =	$=$ =	$==$		$\overline{7}=$	$=$	$=$	$=$	$=$	$=$	$=$	$\overline{7}$	=	$=$	$=$	$=$ =	=		
	ccw	DATA_A	7	$=$	$=$	$=$ =	$=$ =	=	$=$	7	$=$	$=$	$==$	$=$ =	$=$		$7=$	=	$=$	$=$	$=$			7	=	$=$	$=$	$=$ =	=		
		DATA_B	7	$=$	$=$	$=$ =	$=$ =	=	$=$	7	$=$	$=$	$=$	$=$ =	$==$		7 =	$=$	=	$=$	$=$			$=7$	$=$	$=$	$=$	=	$=$		
2-2 Phase Full Step (2) (VC:L)	cW	DATA_A	4	$=$	$=$	$=$ =	$=$ =	$=$	$=$	4	=	$=$	$=$ =	$=$ =	$==$	$=\overline{4}$	$\overline{4}=$	$=$	=	$=$	$=$	$=$		$=4$	=	$=$	$=$	=	$=$		$=4$
		DATA_B	4	$=$	$=$	$==$	$==$	=	$=$	4	=	$=$	$==$	$=$ =	$==$		$\overline{4}=$	$=$	$=$	$=$	$=$			$\overline{4}$	$=$	$=$	=	$=$	$=$ =		
	CCW	DATA_A	4	$=$	$=$	$==$	$==$	=	$=$	4	=	$=$	$==$	$=$ =	$==$	$=\overline{4}$	$\overline{4}=$	$=$	$=$	$=$	$=$	$=$ =	$=$	$\overline{4}$	=	=	$=$	=	$=$		$=4$
		DATA_B	4	$=$	$=$	$=$ =	$==$	$=$	$=$	4	$=$	$=$	$==$	$=$ =	$==$	$=\overline{4}$	$\overline{4}=$	$=$	$=$	=	$=$	$=$	$=$	4	=	$=$	$=$	=	$=$		4
1-2 Phase Half Step	CW	DATA_A	4	$=$	$=$	$=\overline{0}$	$\overline{\mathrm{o}}=$	=	=	$\overline{4}$	=	$=$	$=\overline{7}$	$\overline{7}=$	$==$	$=\overline{4}$	$\overline{4}=$	$=$	$=$	0	0	$=$	$=$	4	=	$=$	7	$7=$	$=$		$=4$
		DATA_B	4	$=$	$=-$	$=7$	$7=$	=	$=$	4	=	=	$=\overline{0}$	$\overline{0}=$	$=$	$=\overline{4}$	$\overline{4}$	$=$	$=$	$\overline{7}$	7	$=$		$=\overline{4}$	=	$=$	0	$0=$	$=$		4
	CCW	DATA_A	4	$=$	$=$	$=7$	$7=$	$=$	$=$	4	$=$	$=$	$=0$	$0=$	$==$	$=\overline{4}$	$\overline{4}=$	$=$	$=$	$=7$	7 =	$=$		4	=	$=$	$=\overline{0}$	$\overline{0}=$	$=$		
		DATA_B	4	=	$=$	$=0$	$0=$	$=$	=	4	=	$=$	$=7$	$7=$	$==$	$=4$	4	$=$	=	$=\overline{0}$	$\overline{0}=$	=	$=$	$=4$	=	=	$=7$	7 =	$==$		
$\begin{aligned} & \text { W1-2 Phase } \\ & \text { 1/4 Step } \end{aligned}$	cW	DATA_A	4	$=$	$2=$	$=\overline{0}$	$\overline{0}=$	$\overline{2}$	=	$\overline{4}$	$\overline{=}=\overline{6}$	$\overline{6}=$	$=\overline{7}$	$\overline{7}=$	$=\overline{6}$	$=\overline{4}$	$\overline{4}=$	$=\overline{2}$	$\overline{2}=$	$=0$	$0=$	$=2$	2	$=4$	=	6	$=7$	7 =	$=6$		$=4$
		DATA_B	4	$=$	$6=$	$=7$	$7=$	6	=	4	= 2	$2=$	$=\overline{0}$	$\overline{0}=$	$=\overline{2}$	$=\overline{4}$	$\overline{4}=$	$=\overline{6}$	$\overline{6}$	7	7 =	$=\overline{6}$	$\overline{6}$	$\overline{4}$	=	$\overline{2}$	$=0$	$0=$	$=2$		$=4$
	CCW	DATA_A	4	$=$	$6=$	$=7$	$7=$	6	=	4	= 2	$2=$	= 0	$0=$	$=\overline{2}=$	$=\overline{4}$	$\overline{4}=$	$=\overline{6}$	$\overline{6}$	7	7 =	$=\overline{6}$	$\overline{6}$	$=\overline{4}$	=	$\overline{2}$	$=\overline{0}$	$\overline{0}=$	$=2$		$=4$
		DATA_B	4	$=$	$2=$	$=0$	$0=$	2	=	4	= 6	6 $=$	$=7$	$7=$	$=\overline{6}$	$=4$	$4=$	$=2$	$2=$	б	$\bar{\sigma}=$	$=2$	2	$=4$	=	6	7	$7=$	$=6$		
$\begin{aligned} & \text { 2W1-2 Phase } \\ & 1 / 8 \text { Step } \end{aligned}$	CW	DATA_A	4	3	21	$1 \overline{0}$	$\overline{\mathrm{o}} \overline{\mathrm{T}}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$5 \overline{6}$	$\overline{6} 7$	$\overline{7} \overline{7}$	$\overline{7}$	$\overline{7} \overline{6}$	$5 \overline{4}$	$\overline{4} \overline{3}$	$\overline{3} \overline{2}$	$\overline{2}$	10	01	12	23	34	5	6	77	77	76		
		DATA_B	4	5	67	77	77	6	5	4	32	21	$1 \overline{0}$	$\overline{\mathrm{O}} \overline{1}$	$\overline{1} \overline{2}$	$\overline{3} \overline{4}$	$\overline{4} 5$	$\overline{5} \overline{6}$	$\overline{6} \overline{7}$	$\overline{7}$	$\overline{7}$	$\overline{7} \overline{6}$	$\overline{6} 5$	$5 \overline{4}$	$\overline{3}$	$\overline{2}$	T 0	01	12		34
	ccw	DATA_A	4		67	7 7	77	6	5	4	32	21	10	0 1	$\bigcirc \overline{2}$	$\overline{3} \overline{4}$	$\overline{4} 5$			77	$\overline{7}$	$\overline{7} \overline{6}$	$\overline{6} 5$	$5 \overline{4}$	$\overline{3}$	$\overline{2}$	T $\overline{0}$	- $\quad 1$	12		34
		DATA_B	4	3	21	10	${ }^{1} \mathrm{~T}$		$\overline{3}$		56	б 7	77	77	7 ¢	54	4 3	$3 \overline{2}$	2 T	T 0	$\bigcirc 1$	12	23	34	5	6	77	77	76		

