BLF7G22LS-130

Power LDMOS transistor

Rev. 01 — 2 February 2010

Product data sheet

1. Product profile

1.1 General description

130 W LDMOS power transistor for base station applications at frequencies from 2000 MHz to 2200 MHz.

Table 1. Typical performance

Typical RF performance at $T_{case} = 25$ °C in a common source class-AB production test circuit.

Mode of operation	f	I_{Dq}	V_{DS}	$P_{L(AV)}$	G_p	$\eta_{\textbf{D}}$	ACPR
	(MHz)	(mA)	(V)	(W)	(dB)	(%)	(dBc)
2-carrier W-CDMA	2110 to 2170	950	28	30	18.5	32	-32 <mark>[1]</mark>
1-carrier W-CDMA	2110 to 2170	950	28	33	18.5	34	-39 <mark>[2]</mark>

^[1] Test signal: 3GPP; test model 1; 64 DPCH; PAR = 8.4 dB at 0.01 % probability on CCDF; carrier spacing 5 MHz.

1.2 Features and benefits

- Excellent ruggedness
- High efficiency
- Low R_{th} providing excellent thermal stability
- Designed for broadband operation (2000 MHz to 2200 MHz)
- Lower output capacitance for improved performance in Doherty applications
- Designed for low memory effects providing excellent digital pre-distortion capability
- Internally matched for ease of use
- Integrated ESD protection
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS)

1.3 Applications

RF power amplifiers for W-CDMA base stations and multi carrier applications in the 2000 MHz to 2200 MHz frequency range

^[2] Test signal: 3GPP; test model 1; 64 DPCH; PAR = 7.2 dB at 0.01 % probability on CCDF.

Power LDMOS transistor

2. Pinning information

Table 2. Pinning

Pin	Description		Simplified outline	Graphic symbol
1	drain			_
2	gate		1 1	نے
3	source	<u>[1]</u>	2	2 — — 3 sym112

^[1] Connected to flange.

3. Ordering information

Table 3. Ordering information

Type number	Packa	ge	
	Name	Description	Version
BLF7G22LS-130	-	earless flanged LDMOST ceramic package; 2 leads	SOT502B

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-0.5	+13	V
I _D	drain current		-	<tbd></tbd>	Α
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	200	°C

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-c)}$	thermal resistance from junction to case	T_{case} = 80 °C; P_L = 30 W	0.35	K/W

6. Characteristics

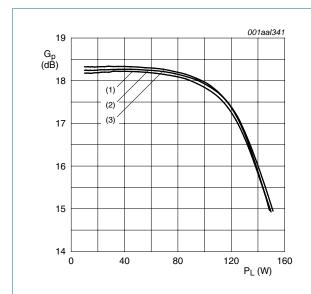
Table 6. Characteristics

 $T_i = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{(BR)DSS}$	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 1.5 \text{ mA}$	65	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$V_{DS} = 10 \text{ V}; I_D = 150 \text{ mA}$	1.3	1.8	2.3	V
I_{DSS}	drain leakage current	$V_{GS} = 0 \text{ V}; V_{DS} = 28 \text{ V}$	-	-	5	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$	25	29.5	-	Α
I _{GSS}	gate leakage current	$V_{GS} = 11 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	450	nΑ
9 _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; I_D = 7.5 \text{ A}$	-	10	11	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $I_D = 5.25 \text{ A}$	-	0.1	0.16	Ω

7. Test information

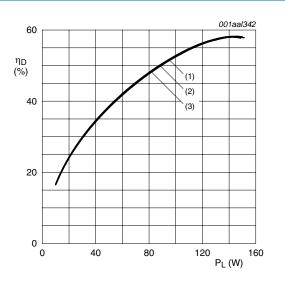
Table 7. Functional test information


Mode of operation: 2-carrier W-CDMA; PAR = 8.4 dB at 0.01 % probability on the CCDF; 3GPP test model 1; 1-64 PDPCH; f_1 = 2112.5 MHz; f_2 = 2117.5 MHz; f_3 = 2162.5 MHz; f_4 = 2167.5 MHz; RF performance at V_{DS} = 28 V; I_{Dq} = 950 mA; T_{case} = 25 °C; unless otherwise specified; in a class-AB production test circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$P_{L(AV)}$	average output power		-	30	-	W
Gp	power gain	$P_{L(AV)} = 30 \text{ W}$	17	18.5	-	dB
IRL	input return loss	$P_{L(AV)} = 30 \text{ W}$	9	15	-	dB
η_{D}	drain efficiency	$P_{L(AV)} = 30 \text{ W}$	29	32	-	%
ACPR	adjacent channel power ratio	$P_{L(AV)} = 30 \text{ W}$	-	-32	-30	dBc

7.1 Ruggedness in class-AB operation

The BLF7G22LS-130 is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 28 V; I_{Dq} = 950 mA; P_{L} = 130 W (CW); f = 2110 MHz.


7.2 1 Tone CW

 $V_{DS} = 28 \text{ V}; I_{Dq} = 950 \text{ mA}.$

- (1) f = 2110 MHz.
- (2) f = 2140 MHz.
- (3) f = 2170 MHz.

Fig 1. Power gain as a function of load power; typical values

 $V_{DS} = 28 \text{ V}; I_{Dq} = 950 \text{ mA}.$

- (1) f = 2110 MHz.
- (2) f = 2140 MHz.
- (3) f = 2170 MHz.

Fig 2. Drain efficiency as a function of load power; typical values

7.3 1-carrier W-CDMA

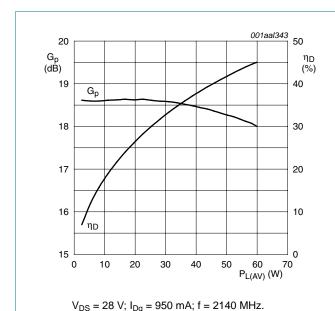
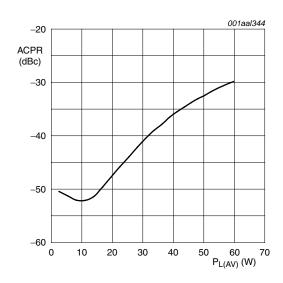



Fig 3. Power gain and drain efficiency as functions of average load power; typical values

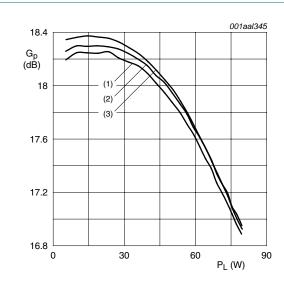
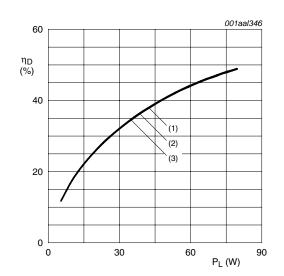

 V_{DS} = 28 V; I_{Dq} = 950 mA; f = 2140 MHz; channel bandwidth = 5 MHz.

Fig 4. Adjacent power channel ratio as function of average load power; typical values

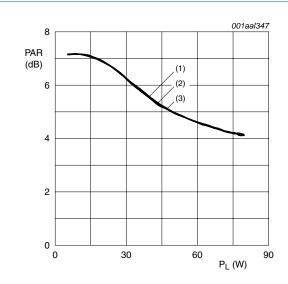
BLF7G22LS-130_1

All information provided in this document is subject to legal disclaimers.


© NXP B.V. 2010. All rights reserved.

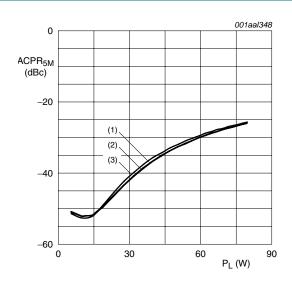
 $V_{DS} = 28 \text{ V}; I_{Dq} = 950 \text{ mA}.$

- (1) f = 2112.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2167.5 MHz.


Fig 5. Power gain as function of load power; typical values

 $V_{DS} = 28 \text{ V}; I_{Dq} = 950 \text{ mA}.$

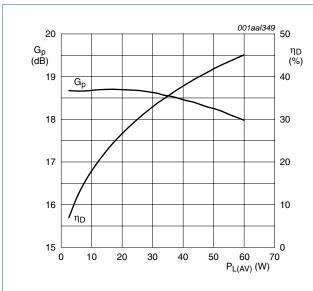
- (1) f = 2112.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2167.5 MHz.


Fig 6. Drain efficiency as function of load power; typical values

 $V_{DS} = 28 \text{ V}; I_{Dq} = 950 \text{ mA}.$

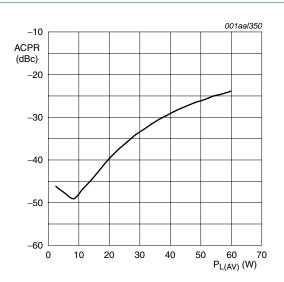
- (1) f = 2112.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2167.5 MHz.

Fig 7. Peak-to-average power ratio as function of load power; typical values



 $V_{DS} = 28 \text{ V}; I_{Dq} = 950 \text{ mA}.$

- (1) f = 2112.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2167.5 MHz.


Fig 8. Adjacent power channel ratio (5 MHz) as function of load power; typical values

7.4 2-carrier W-CDMA

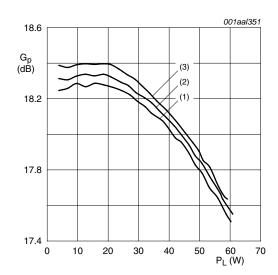
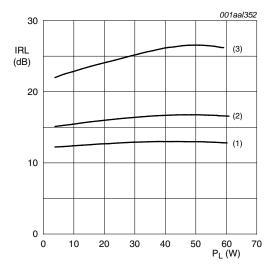

 $V_{DS}=28~V;~I_{Dq}=950~mA;~f_1=2137.5~MHz;~f_2=2142.5~MHz;~carrier~spacing 5~MHz.$

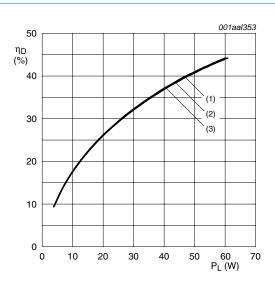
Fig 9. Power gain and drain efficiency as functions of average load power; typical values

 V_{DS} = 28 V; I_{Dq} = 950 mA; f_1 = 2137.5 MHz; f_2 = 2142.5 MHz; carrier spacing 5 MHz.


Fig 10. Adjacent power channel ratio as function of average load power; typical values

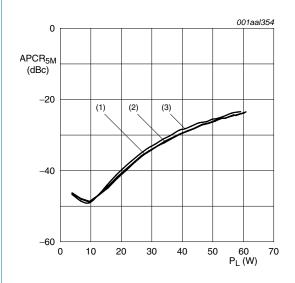
 $V_{DS} = 28 \text{ V}$; $I_{Dq} = 950 \text{ mA}$; carrier spacing 5 MHz.

- (1) f = 2115 MHz.
- (2) f = 2140 MHz.
- (3) f = 2165 MHz.


Fig 11. Power gain as function of load power; typical values

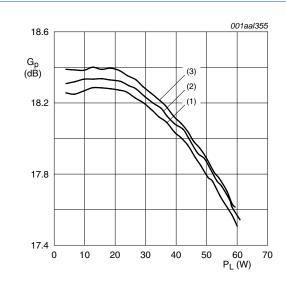
 V_{DS} = 28 V; I_{Dq} = 950 mA; carrier spacing 5 MHz.

- (1) f = 2115 MHz.
- (2) f = 2140 MHz.
- (3) f = 2165 MHz.


Fig 12. Input return loss as function of load power; typical values

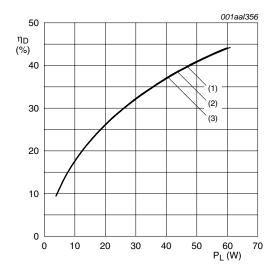
 V_{DS} = 28 V; I_{Dq} = 950 mA; carrier spacing 5 MHz.

- (1) f = 2115 MHz.
- (2) f = 2140 MHz.
- (3) f = 2165 MHz.


Fig 13. Drain efficiency as function of load power; typical values

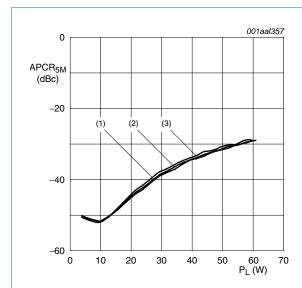
V_{DS} = 28 V; I_{Dq} = 950 mA; carrier spacing 5 MHz.

- (1) f = 2115 MHz.
- (2) f = 2140 MHz.
- (3) f = 2165 MHz.


Fig 14. Adjacent power channel ratio (5 MHz) as function of load power; typical values

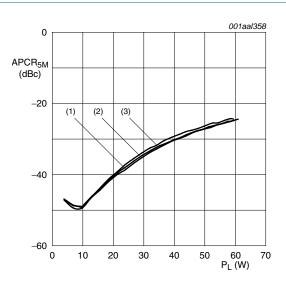
 V_{DS} = 28 V; I_{Dq} = 950 mA; carrier spacing 10 MHz.

- (1) f = 2117.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2162.5 MHz.


Fig 15. Power gain as function of load power; typical values

 V_{DS} = 28 V; I_{Dq} = 950 mA; carrier spacing 10 MHz.

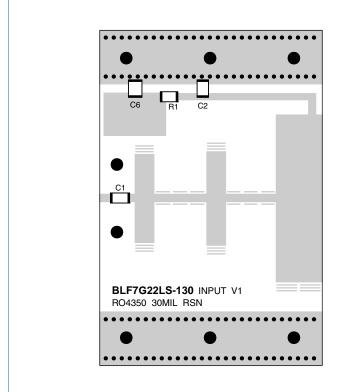
- (1) f = 2117.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2162.5 MHz.

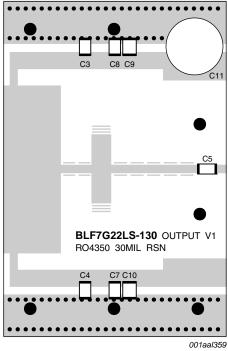

Fig 16. Drain efficiency as function of load power; typical values

 V_{DS} = 28 V; I_{Dq} = 950 mA; carrier spacing 10 MHz.

- (1) f = 2117.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2162.5 MHz.

Fig 17. Adjacent power channel ratio (5 MHz) as function of load power; typical values




 V_{DS} = 28 V; I_{Dq} = 950 mA; carrier spacing 10 MHz.

- (1) f = 2117.5 MHz.
- (2) f = 2140 MHz.
- (3) f = 2162.5 MHz.

Fig 18. Adjacent power channel ratio (10 MHz) as function of load power; typical values

7.5 Test circuit

See Table 8 for list of components. The drawing is not to scale.

Fig 19. Component layout

Table 8. List of components
See Figure 19 for component layout.

Component	Description	Value	Remarks
C1, C2, C3, C4, C5	multilayer ceramic chip capacitor	9.1 pF	ATC100B
C6, C7	multilayer ceramic chip capacitor	220 nF	AVX1206
C8, C9, C10	multilayer ceramic chip capacitor	4.7 μF; 50 V	Kemet
C11	electrolytic capacitor	220 μF; 63 V	BC
R1	SMD resistor	6.2 Ω	Philips 1206

8. Package outline

Earless flanged LDMOST ceramic package; 2 leads

SOT502B

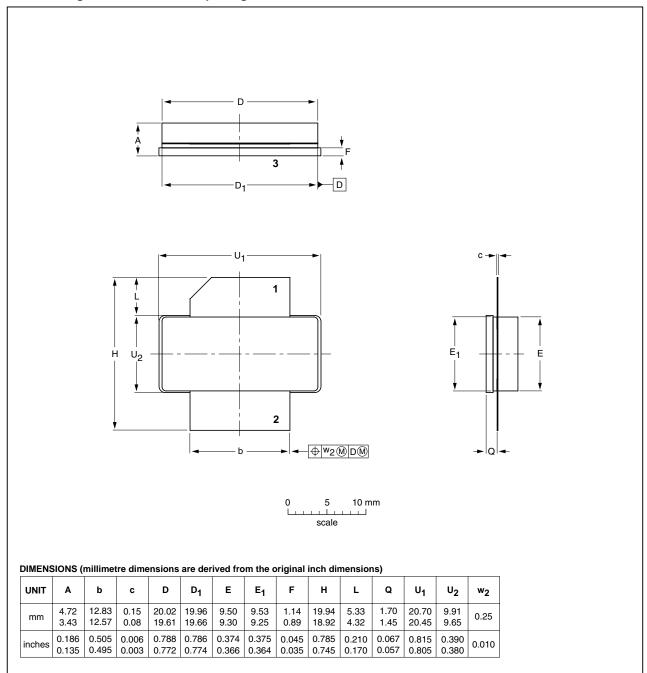


Fig 20. Package outline SOT502B

IEC

OUTLINE

VERSION

SOT502B

JEITA

REFERENCES

JEDEC

ISSUE DATE

03-01-10

07-05-09

EUROPEAN

PROJECTION

Power LDMOS transistor

9. Abbreviations

Table 9. Abbreviations

Acronym	Description
3GPP	Third Generation Partnership Project
CCDF	Complementary Cumulative Distribution Function
CW	Continuous Wave
DPCH	Dedicated Physical CHannel
ESD	ElectroStatic Discharge
LDMOS	Laterally Diffused Metal Oxide Semiconductor
LDMOST	Laterally Diffused Metal Oxide Semiconductor Transistor
PAR	Peak-to-Average power Ratio
PDPCH	transmission Power of the Dedicated Physical CHannel
RF	Radio Frequency
VSWR	Voltage Standing Wave Ratio
W-CDMA	Wideband Code Division Multiple Access

10. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLF7G22LS-130_1	20100202	Product data sheet	-	-

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

11.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless the data sheet of an NXP Semiconductors product expressly states that the product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

BLF7G22LS-130_1

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

BLF7G22LS-130

Power LDMOS transistor

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Power LDMOS transistor

13. Contents

1	Product profile
1.1	General description 1
1.2	Features and benefits
1.3	Applications
2	Pinning information 2
3	Ordering information
4	Limiting values
5	Thermal characteristics 2
6	Characteristics
7	Test information
7.1	Ruggedness in class-AB operation 3
7.2	1 Tone CW 4
7.3	1-carrier W-CDMA 4
7.4	2-carrier W-CDMA 6
7.5	Test circuit9
8	Package outline
9	Abbreviations
10	Revision history 11
11	Legal information 12
11.1	Data sheet status
11.2	Definitions
11.3	Disclaimers
11.4	Trademarks
12	Contact information 13
40	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.