Appendix B - ATtiny25/45/85 Automotive Specification at 1.8V

This document contains information specific to devices operating at voltage between 1.8V and 3.6V. Only deviations with standard operating characteristics are covered in this appendix, all other information can be found in the complete Automotive datasheet. The complete ATtiny25/45/85 automotive datasheet can be found on www.atmel.com

8-bit **AVR**[®] Microcontroller with 2/4/8K Bytes In-System Programmable Flash

ATtiny25 ATtiny45 ATtiny85

Appendix B

7669D-AVR-04/10

1. Electrical Characteristics

1.1 Absolute Maximum Ratings

Operating Temperature55°C to +150°C
Storage Temperature65°C to +175°C
Voltage on any Pin except $\overline{\text{RESET}}$ with respect to Ground0.5V to V $_{\text{CC}}$ +0.5V
Voltage on RESET with respect to Ground0.5V to +13.0V
Maximum Operating Voltage6.0V
DC Current per I/O Pin 30.0 mA
DC Current $V_{\rm CC}$ and GND Pins
C

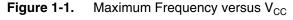
Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

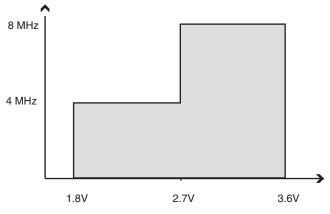
1.2 DC Characteristics

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 1.8V$ to 3.6V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
V _{IL}	Input Low Voltage, except XTAL1 and $\overrightarrow{\text{RESET}}$ pin $V_{CC} = 1.8V - 3.6V$		-0.5		0.2V _{CC} ⁽¹⁾	V	
V _{IH}	Input High Voltage, except XTAL1 and RESET pins	V _{CC} = 1.8V - 3.6V	0.7V _{CC} ⁽²⁾		V _{CC} + 0.5	v	
V_{IL1}	Input Low Voltage, XTAL1 pin	V _{CC} = 1.8V - 3.6V	-0.5		0.1V _{CC} ⁽¹⁾	v	
V _{IH1}	Input High Voltage, XTAL1 pin	V _{CC} = 1.8V - 3.6V	V - 3.6V 0.9V _{CC} ⁽²⁾		V _{CC} + 0.5	V	
V_{IL2}	Input Low Voltage, RESET pin	V _{CC} = 1.8V - 3.6V	-0.5		0.2V _{CC} ⁽¹⁾	V	
$V_{\rm IH2}$	Input High Voltage, RESET pin	V _{CC} = 1.8V - 3.6V	0.9V _{CC} ⁽²⁾		V _{CC} + 0.5	V	
V _{IL3}	Input Low Voltage, RESET pin as I/O	V _{CC} = 1.8V - 3.6V	-0.5		0.3V _{CC} ⁽¹⁾	V	
V _{IH3}	Input High Voltage, RESET pin as I/O	V _{CC} = 1.8V - 3.6V	6V 0.6V _{CC} ⁽²⁾		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage ⁽³⁾ , I/O pin except RESET	I _{OL} = 0.5 mA, V _{CC} = 1.8V	0.5 mA, V _{CC} = 1.8V		0.4	V	
V _{OH}	Output High Voltage ⁽⁴⁾ , I/O pin except RESET	$I_{OH} = -0.5 \text{ mA}, V_{CC} = 1.8 \text{V}$ 1.2				V	
I _{IL}	Input Leakage Current I/O Pin	V _{CC} = 3.6V, pin low (absolute value)			1	μA	
I _{IH}	Input Leakage Current I/O Pin	V _{CC} = 3.6V, pin high (absolute value)			1	μA	
R _{RST}	Reset Pull-up Resistor		30		60	kΩ	
R _{PU}	I/O Pin Pull-up Resistor		20		50	kΩ	

² ATtiny25/45/85


1.2 DC Characteristics (Continued)


Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Power Supply Current	Active 4 MHz, $V_{CC} = 1.8V$		0.8	1	mA
laa		Idle 4 MHz, V _{CC} = 1.8V		0.2	0.3	mA
ICC	Power-down mode	WDT disabled, $V_{CC} = 1.8V$ WDT enabled, $V_{CC} = 1.8V$		0.2 4	10 20	μA
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 2.7V$ $V_{in} = V_{CC}/2$		<10	40	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 2.7V$ $V_{in} = V_{CC}/2$	-50		50	nA
t _{ACPD}	Analog Comparator Propagation Delay	V _{CC} = 2.7V		500		ns

 $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 1.8V$ to 3.6V (unless otherwise noted)

1.3 Maximum Speed vs. V_{CC}

Maximum frequency is dependent on V_{CC.} As shown in Figure 1-1, the Maximum Frequency vs. V_{CC} curve is linear between 1.8V < V_{CC} < 3.6V.

1.4 ADC Characteristics

 $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 1.8V$ to 3.6V (unless otherwise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Units
	Resolution			8		Bits
	Absolute accuracy	$V_{REF} = 2.7V$, $V_{CC} = 2.7V$, ADC clock = 200 kHz		2	3.5	LSB
	(Including INL, DNL, quantization error, gain and offset error)	$V_{REF} = 2.7V, V_{CC} = 2.7V,$ ADC clock = 200 kHz Noise Reduction Mode		2	3.5	LSB
	Integral Non-Linearity (INL)	$V_{REF} = 2.7V$, $V_{CC} = 2.7V$, ADC clock = 200 kHz		0.6	2.5	LSB
	Differential Non-Linearity (DNL)	$\label{eq:V_REF} \begin{array}{l} V_{REF} = 2.7V, \ V_{CC} = 2.7V, \\ ADC \ clock = 200 \ kHz \end{array}$		0.30	1.0	LSB
	Gain Error	$V_{REF} = 2.7V$, $V_{CC} = 2.7V$, ADC clock = 200 kHz	-3.5	-1.3	+3.5	LSB
	Offset Error	$V_{REF} = 2.7V$, $V_{CC} = 2.7V$, ADC clock = 200 kHz		1.8	3.5	LSB
	Conversion Time	Free Running Conversion	13 cycles			μs
	Clock Frequency		50		200	kHz
AV_{CC}	Analog Supply Voltage		V _{CC} – 0.3		V _{CC} + 0.3	V
V_{REF}	Reference Voltage		1.0		AV _{CC}	V
V _{IN}	Input Voltage		GND		V _{REF} -50mV	V
	Input Bandwidth			38.5		kHz
V _{INT}	Internal Voltage Reference		1.0	1.1	1.2	V
R _{REF}	Reference Input Resistance		25.6	32	38.4	kΩ
R _{AIN}	Analog Input Resistance			100		MΩ

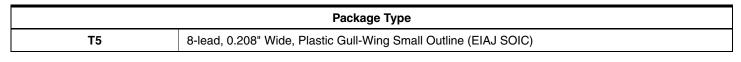
Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low

- 2. "Min" means the lowest value where the pin is guaranteed to be read as high
- 3. Although each I/O port can sink more than the test conditions (0.5 mA at V_{CC} = 1.8V) under steady state conditions (non-transient), the following must be observed:
 1] The sum of all IOL, for ports B0 B5, should not exceed 50 mA.
 If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
- Although each I/O port can source more than the test conditions (0.5 mA at Vcc = 1.8V) under steady state conditions (non-transient), the following must be observed:

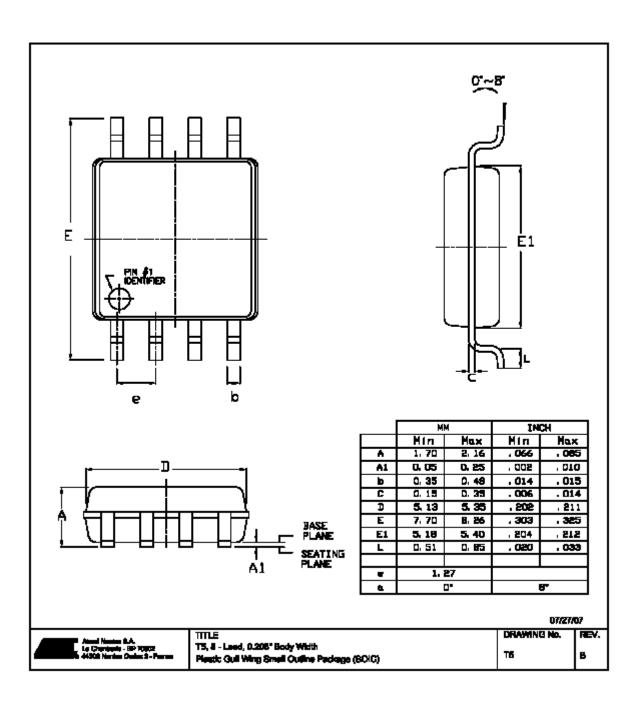
1] The sum of all IOH, for ports B0 - B5 should not exceed 50 mA.

If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

ATtiny25/45/85


2. Ordering Information

Power Supply	Speed (MHz)	ISP Flash	Ordering Code	Package	Operation Range
1.8 - 3.6V	4-8	2 KB	ATtiny25V-15ST	Τ5	Automotive (-40°C to +85°C)
1.8 - 3.6V	4-8	4 KB	ATtiny45V-15ST	T5	Automotive (-40°C to +85°C)
1.8 - 3.6V	4-8	8 KB	ATtiny85V-15ST	T5	Automotive (-40°C to +85°C)



2.1 Package Information

2.2 T5

6

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®], [®] logo, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.