

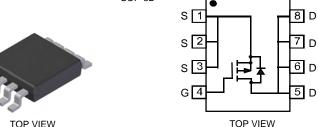
SINGLE P-CHANNEL ENHANCEMENT MODE MOSFET

Features

- Low On-Resistance
 - $11m\Omega$ @ $V_{GS} = -10V$
 - $17m\Omega$ @ $V_{GS} = -4.5V$
- Low Gate Threshold Voltage
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Lead Free By Design/RoHS Compliant (Note 2)
- "Green" Device (Note 4)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOP-8L
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals Connections: See Diagram
- Terminals: Finish Matte Tin annealed over Copper lead frame. Solderable per MIL-STD-202, Method 208


71 D

- Marking Information: See Page 4
- Ordering Information: See Page 4

Internal Schematic

Weight: 0.072g (approximate)

SOP-8L

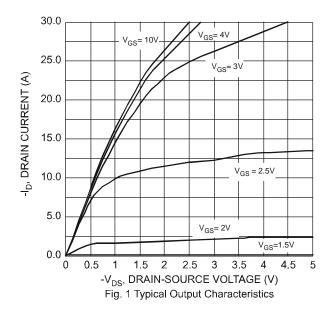
Maximum Ratings @T_A = 25°C unless otherwise specified

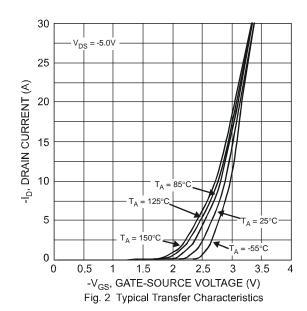
Characteristic			Symbol	Value	Units
Drain-Source Voltage			V _{DSS}	-30	V
Gate-Source Voltage			V_{GSS}	±20	V
Drain Current (Note 1)	Steady State	T _A = 25°C T _A = 70°C	I _D	-13 -9.75	А
Pulsed Drain Current (Note 3)			I _{DM}	-45	А

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Total Power Dissipation (Note 1)	P _D	2.5	W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	50	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Notes:


- 1. Device mounted on 2 oz. Copper pads on FR-4 PCB with $R_{\theta JA} = 50^{\circ}$ C/W.
- No purposefully added lead. 2.
- Pulse width ≤10μS, Duty Cycle ≤1%.
- 4. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.



Electrical Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 5)							
Drain-Source Breakdown Voltage	BV _{DSS}	-30		_	V	$V_{GS} = 0V, I_D = -250 \mu A$	
Zero Gate Voltage Drain Current	I _{DSS}	_		-1	μΑ	$V_{DS} = -30V, V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	_		±100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	$V_{GS(th)}$	-1		-2	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$	
Static Drain-Source On-Resistance	Pro (our	_	9	11	mΩ	$V_{GS} = -10V, I_D = -13A$	
Static Diain-Source On-Nesistance	R _{DS} (ON)		14	17	1115.2	$V_{GS} = -4.5V, I_{D} = -10A$	
Forward Transconductance	g fs	_	15	_	S	$V_{DS} = -15V, I_{D} = -8A$	
Diode Forward Voltage (Note 5)	V_{SD}	-0.5	_	-1.1	V	$V_{GS} = 0V, I_{S} = -2.1A$	
DYNAMIC CHARACTERISTICS							
Input Capacitance	C _{iss}	_	2748	_	pF	.,	
Output Capacitance	Coss	_	357	_	pF	$V_{DS} = -20V, V_{GS} = 0V$ f = 1.0MHz	
Reverse Transfer Capacitance	C _{rss}	_	356	l	pF	1 = 1.0101112	
Gate Resistance	R_{G}	_	2.0		Ω	$V_{DS} = 0V$, $V_{GS} = 0V$ f = 1.0MHz	
SWITCHING CHARACTERISTICS	SWITCHING CHARACTERISTICS						
Total Gate Charge	Qg	_	30.0 60.4		nC	$V_{DS} = -10V$, $V_{GS} = -4.5V$, $I_{D} = -13A$ $V_{DS} = -10V$, $V_{GS} = -10V$, $I_{D} = -13A$	
Gate-Source Charge	Q _{gs}	_	7.2	_		V _{DS} = -10V, V _{GS} = -10V, I _D = -13A	
Gate-Drain Charge	Q _{gd}	_	16.4	_		$V_{DS} = -10V, V_{GS} = -10V, I_{D} = -13A$	
Turn-On Delay Time	t _{d(on)}	_	11.2	_			
Rise Time	t _r	_	12.4	_		$V_{DS} = -15V, V_{GS} = -10V,$	
Turn-Off Delay Time	t _{d(off)}	_	104.9	_	ns	$I_D = -1A$, $R_G = 6.0\Omega$	
Fall Time	t _f	_	61.7	_			

Notes: 5. Short duration pulse test used to minimize self-heating effect.

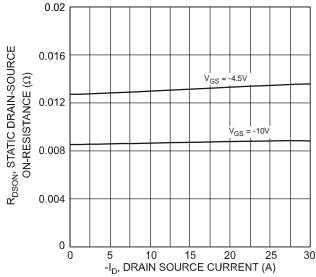


Fig. 3 On-Resistance vs. Drain Current & Gate Voltage

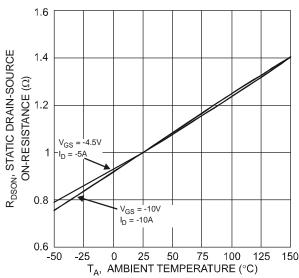


Fig. 5 Static Drain-Source On-Resistance vs. Ambient Temperature

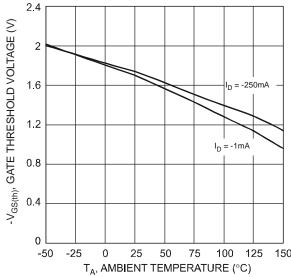


Fig. 7 Gate Threshold Variation vs. Ambient Temperature

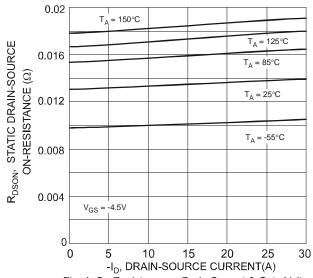
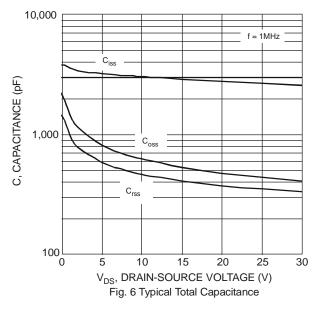



Fig. 4 On-Resistance vs.Drain Current & Gate Voltage

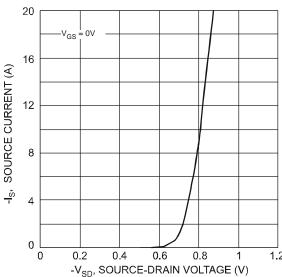
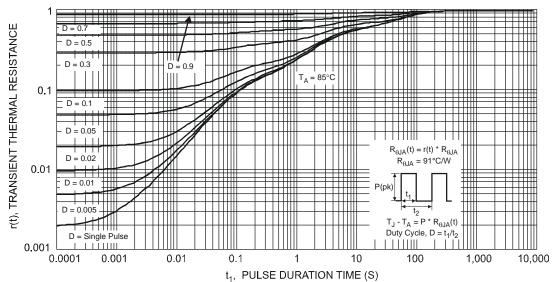
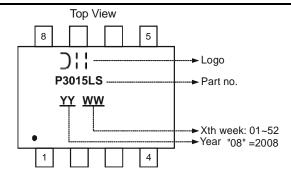
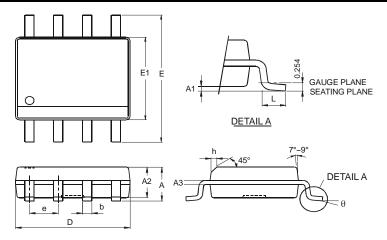


Fig. 8 Forward Drain Current vs. Source-Drain Voltage



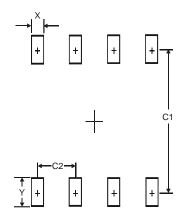

Fig. 9 Transient Thermal Resistance

Ordering Information (Note 6)


Part Number	Case	Packaging
DMP3015LSS-13	SOP-8L	2500/Tape & Reel

Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information


Package Outline Dimensions

SOP-8L				
Dim	Min	Max		
Α		1.75		
A1	0.08	0.25		
A2	1.30	1.50		
А3	0.20 Typ.			
b	0.3	0.5		
D	4.80	5.30		
E	5.79	6.20		
E1	3.70	4.10		
е	1.27 Typ.			
h	_	0.35		
L	0.38	1.27		
θ	0°	8°		
All Di	All Dimensions in mm			

Suggested Pad Layout

Dimensions	Value (in mm)
X	0.60
Υ	1.55
C1	5.4
C2	1.27

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.