

PCF8532

Universal LCD driver for low multiplex rates

Rev. 2 — 10 February 2011

Product data sheet

1. General description

The PCF8532 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD)¹ with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 160 segments and can easily be cascaded for larger LCD applications. The PCF8532 is compatible with most microprocessors or microcontrollers and communicates via a two-line bidirectional I²C-bus. Communication overheads are minimized by a display RAM with auto-incremental addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

2. Features and benefits

- Single-chip LCD controller and driver for up to 640 elements
- Selectable backplane drive configuration: static or 2, 3 or 4 backplane multiplexing
- 160 segment drives:
 - ◆ Up to 80 7-segment numeric characters
 - ◆ Up to 42 14-segment alphanumeric characters
 - Any graphics of up to 640 elements
- May be cascaded for large LCD applications (up to 2560 elements possible)
- 160 × 4-bit RAM for display data storage
- Software programmable frame frequency in steps of 5 Hz in the range of 60 Hz to 90 Hz
- Wide LCD supply range: from 1.8 V for low threshold LCDs and up to 8.0 V for guest-host LCDs and high threshold (automobile) twisted nematic LCDs
- Internal LCD bias generation with voltage-follower buffers
- Selectable display bias configuration: static, ½ or ½
- Wide power supply range: from 1.8 V to 5.5 V
- LCD and logic supplies may be separated
- Low power consumption, typically: $I_{DD} = 4 \mu A$, $I_{DD(LCD)} = 40 \mu A$
- 400 kHz I²C-bus interface
- Auto-incremental display data loading across device subaddress boundaries
- Versatile blinking modes
- Compatible with Chip-On-Glass (COG) technology
- Two sets of backplane outputs for optimal COG configurations of the application
- Display memory bank switching in static and duplex drive modes
- No external components required

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in Section 15.

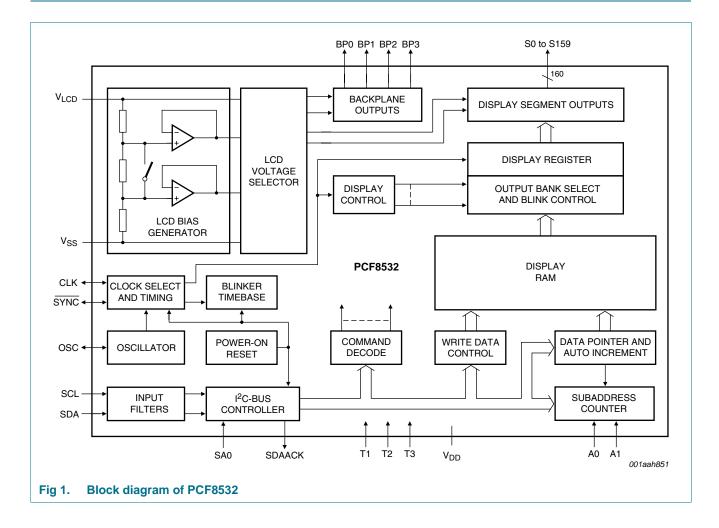
Universal LCD driver for low multiplex rates

Manufactured in silicon gate CMOS process

3. Ordering information

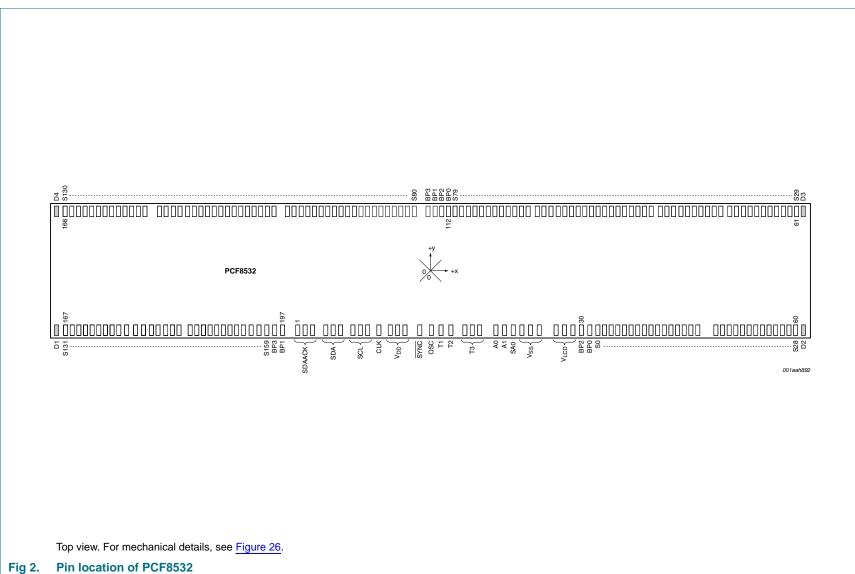
Table 1. Ordering information

Type number	Package		
	Name	Description	Version
PCF8532U/2DA/1	PCF8532U	bare die; 197 bumps; $6.5 \times 1.16 \times 0.38 \text{ mm}^{[1]}$	PCF8532U


^[1] Chip with bumps in tray.

4. Marking

Table 2. Marking codes


Type number	Marking code
PCF8532U/2DA/1	PC8532-1

5. Block diagram

Pinning information

6.1 Pinning

10 February 2011

Product data sheet

Universal LCD driver for low multiplex rates

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
SDAACK	1 to 3 ^[1]	I ² C-bus acknowledge output
SDA	4 to 6 ^[1]	I ² C-bus serial data input
SCL	7 to 9	I ² C-bus serial clock input
CLK	10	clock input/output
V _{DD}	11 to 13	supply voltage
SYNC	14	cascade synchronization input/output
OSC	15	selection of internal or external clock
T1, T2 and T3	16, 17 and 18 to 20	dedicated testing pins; to be tied to V _{SS} in application mode
A0 and A1	21, 22	subaddress inputs
SA0	23	I ² C-bus slave address input
V _{SS}	24 to 26 ^[2]	logic ground
V _{LCD}	27 to 29	LCD supply voltage
BP2 and BP0	30, 31	LCD backplane outputs
S0 to S79	32 to 111	LCD segment outputs
BP0, BP2, BP1 and BP3	112 to 115	LCD backplane outputs
S80 to S159	116 to 195	LCD segment outputs
BP3 and BP1	196, 197	LCD backplane outputs

^[1] In most applications SDA and SDAACK can be tied together.

^[2] The substrate (rear side of the die) is wired to V_{SS} but should not be electrically contacted.

Universal LCD driver for low multiplex rates

7. Functional description

The PCF8532 is a versatile peripheral device designed to interface between any microprocessor or microcontroller to a wide variety of LCD segment or dot matrix displays (see <u>Figure 3</u>). It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 160 segments.

The display configurations possible with the PCF8532 depend on the required number of active backplane outputs. A selection of display configurations is given in Table 4.

All of the display configurations given in <u>Table 4</u> can be implemented in a typical system as shown in Figure 4.

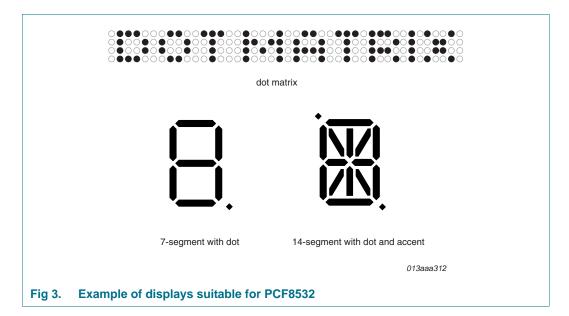
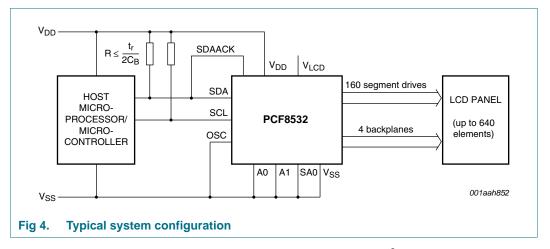



Table 4. Selection of possible display configurations

Number of					
Backplanes	Icons	Digits/Charact	Digits/Characters		
		7-segment	14-segment	Elements	
4	640	80	40	640 dots (4 × 160)	
3	480	60	30	480 dots (3 × 160)	
2	320	40	20	320 dots (2 × 160)	
1	160	20	10	160 dots (1 × 160)	

Universal LCD driver for low multiplex rates

The host microprocessor or microcontroller maintains the 2-line I²C-bus communication channel with the PCF8532.

Biasing voltages for the multiplexed LCD waveforms are generated internally, removing the need for an external bias generator. The internal oscillator is selected by connecting pin OSC to V_{SS} . The only other connections required to complete the system are the power supplies (V_{DD} , V_{SS} and V_{LCD}) and the LCD panel selected for the application.

7.1 Power-on reset

At power-on the PCF8532 resets to a default starting condition:

- All backplane and segment outputs are set to V_{LCD}
- The selected drive mode is 1:4 multiplex with ½ bias
- · Blinking is switched off
- Input and output bank selectors are reset
- The I²C-bus interface is initialized
- The data pointer and the subaddress counter are cleared (set to logic 0)
- The display is disabled
- If internal oscillator is selected (OSC pin connected to V_{SS}), then there is no clock signal on pin CLK

Remark: Do not transfer data on the I^2C -bus for at least 1 ms after a power-on to allow the reset action to complete.

7.2 LCD bias generator

Fractional LCD biasing voltages are obtained from an internal voltage divider of three series resistors connected between V_{LCD} and V_{SS} . The center resistor can be switched out of the circuit to provide a $\frac{1}{2}$ bias voltage level for the 1:2 multiplex configuration.

Universal LCD driver for low multiplex rates

7.3 LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by the mode-set command (see $\underline{\text{Table 9}}$) from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of V_{LCD} and the resulting discrimination ratios (D), are given in $\underline{\text{Table 5}}$.

Table 5. Biasing characteristics

LCD drive	Number of:		LCD bias	$V_{off(RMS)}$	$V_{on(RMS)}$	$D = \frac{V_{on(RMS)}}{}$
mode	Backplanes	Levels	configuration	V _{LCD}	V_{LCD}	$V_{off(RMS)}$
static	1	2	static	0	1	∞
1:2 multiplex	2	3	1/2	0.354	0.791	2.236
1:2 multiplex	2	4	1/3	0.333	0.745	2.236
1:3 multiplex	3	4	1/3	0.333	0.638	1.915
1:4 multiplex	4	4	1/3	0.333	0.577	1.732

A practical value for V_{LCD} is determined by equating $V_{off(RMS)}$ with a defined LCD threshold voltage (V_{th}), typically when the LCD exhibits approximately 10 % contrast. In the static drive mode a suitable choice is $V_{LCD} > 3V_{th}$.

Multiplex drive modes of 1:3 and 1:4 with $\frac{1}{2}$ bias are possible but the discrimination and hence the contrast ratios are smaller.

Bias is calculated by $\frac{1}{1+a}$, where the values for a are

a = 1 for $\frac{1}{2}$ bias

a = 2 for $\frac{1}{3}$ bias

The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1

$$V_{on(RMS)} = v_{LCD} \sqrt{\frac{a^2 + 2a + n}{n \times (1 + a)^2}}$$
 (1)

where the values for n are

n = 1 for static mode

n = 2 for 1:2 multiplex

n = 3 for 1:3 multiplex

n = 4 for 1:4 multiplex

The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 2:

$$V_{off(RMS)} = V_{LCD} \sqrt{\frac{a^2 - 2a + n}{n \times (1 + a)^2}}$$
 (2)

Universal LCD driver for low multiplex rates

Discrimination is the ratio of $V_{on(RMS)}$ to $V_{off(RMS)}$ and is determined from Equation 3:

$$D = \frac{V_{on(RMS)}}{V_{off(RMS)}} = \sqrt{\frac{(a+1)^2 + (n-1)}{(a-1)^2 + (n-1)}}$$
(3)

Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with $\frac{1}{2}$ bias is $\sqrt{3} = 1.732$ and the discrimination for an LCD drive mode of 1:4 multiplex with $\frac{1}{2}$ bias is $\frac{\sqrt{21}}{3} = 1.528$.

The advantage of these LCD drive modes is a reduction of the LCD full scale voltage V_{LCD} as follows:

- 1:3 multiplex ($\frac{1}{2}$ bias): $V_{LCD} = \sqrt{6} \times V_{off(RMS)} = 2.449 V_{off(RMS)}$
- 1:4 multiplex ($\frac{1}{2}$ bias): $V_{LCD} = \left\lceil \frac{(4 \times \sqrt{3})}{3} \right\rceil = 2.309 V_{off(RMS)}$

These compare with $V_{LCD} = 3V_{off(RMS)}$ when $\frac{1}{3}$ bias is used.

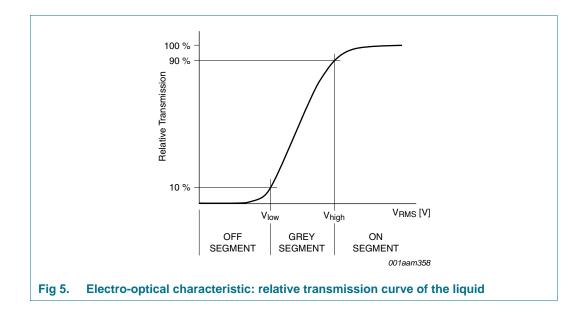
It should be noted that V_{LCD} is sometimes referred as the LCD operating voltage.

7.3.1 Electro-optical performance

Suitable values for $V_{\text{on}(RMS)}$ and $V_{\text{off}(RMS)}$ are dependant on the LCD liquid used. The RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of the pixel.

For any given liquid, there are two threshold values defined. One point is at 10 % relative transmission (at V_{low}) and the other at 90% relative transmission (at V_{high}), see <u>Figure 5</u>. For a good contrast performance, the following rules should be followed:

$$V_{on(RMS)} \ge V_{high} \tag{4}$$

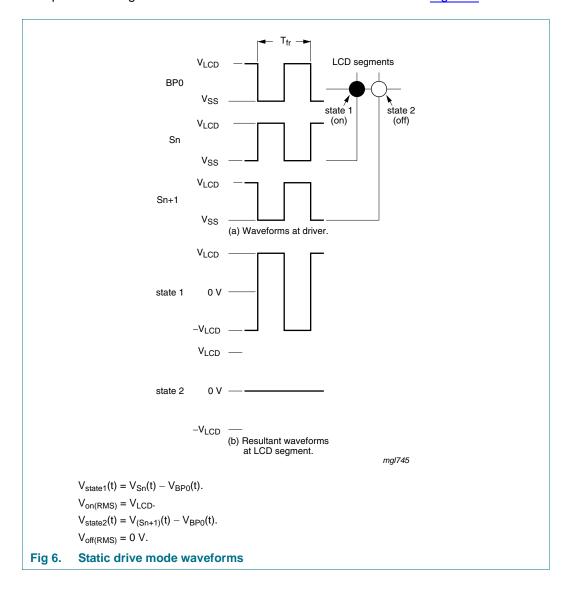

$$V_{off(RMS)} \le V_{low} \tag{5}$$

 $V_{on(RMS)}$ and $V_{off(RMS)}$ are properties of the display driver and are affected by the selection of a, n (see <u>Equation 1</u> to <u>Equation 3</u>) and the V_{LCD} voltage.

 V_{low} and V_{high} are properties of the LCD liquid and can be provided by the module manufacturer.

It is important to match the module properties to those of the driver in order to achieve optimum performance.

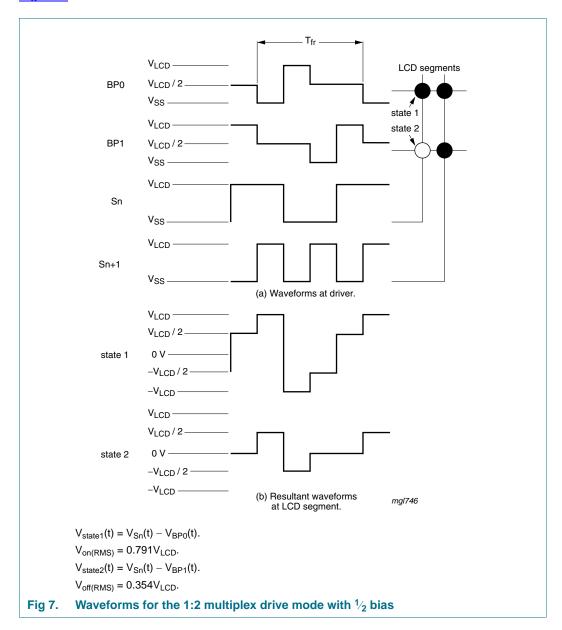
Universal LCD driver for low multiplex rates

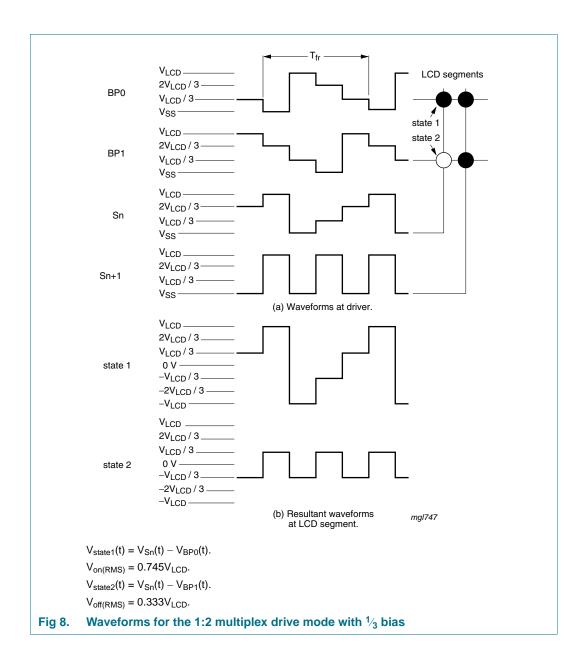


Universal LCD driver for low multiplex rates

7.4 LCD drive mode waveforms

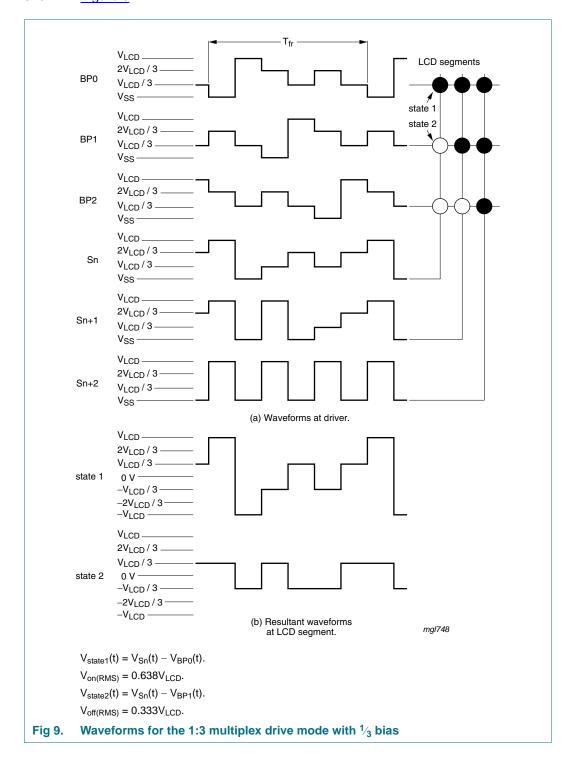
7.4.1 Static drive mode


The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive waveforms for this mode are shown in Figure 6.


Universal LCD driver for low multiplex rates

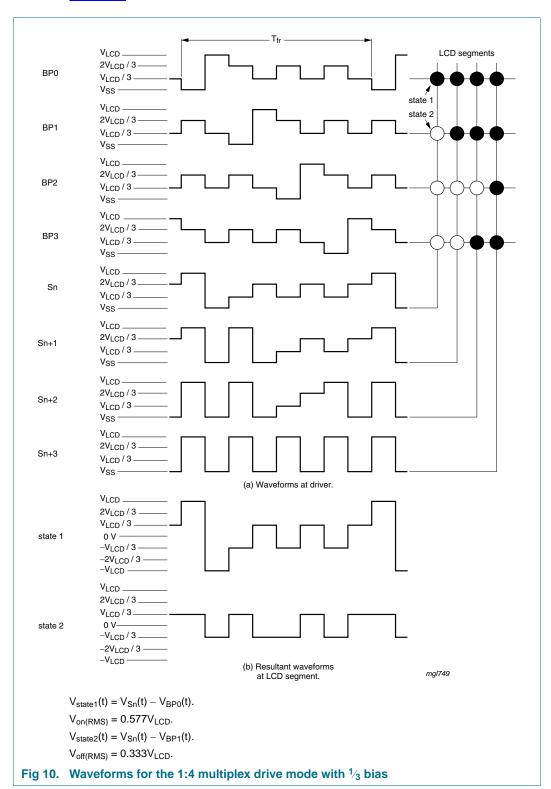
7.4.2 1:2 multiplex drive mode

When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The PCF8532 allows the use of $\frac{1}{2}$ bias or $\frac{1}{3}$ bias in this mode as shown in Figure 7 and Figure 8.


Universal LCD driver for low multiplex rates

Universal LCD driver for low multiplex rates

7.4.3 1:3 multiplex drive mode


When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies as shown in Figure 9.

Universal LCD driver for low multiplex rates

7.4.4 1:4 multiplex drive mode

When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies as shown in Figure 10.

Universal LCD driver for low multiplex rates

7.5 Oscillator

The internal logic and the LCD drive signals of the PCF8532 are timed by a frequency f_{clk} which either is derived from the built-in oscillator frequency f_{osc} :

$$f_{clk} = \frac{f_{osc}}{64} \tag{6}$$

or equals an external clock frequency f_{clk(ext)}:

$$f_{clk} = f_{clk(ext)} \tag{7}$$

The clock frequency f_{clk} determines the LCD frame frequency f_{fr} (see <u>Table 15</u>).

7.5.1 Internal clock

The internal logic and the LCD drive signals of the PCF8532 are timed either by the built-in oscillator or by an external clock.

The internal oscillator is enabled by connecting pin OSC to pin V_{SS} . In this case the output from pin CLK provides the clock signal for cascaded PCF8532 in the system. However, the clock signal is only available at the pin CLK, if the display is enabled. The display is enabled using the display enable bit (see <u>Table 9</u>).

The nominal output clock frequency is like specified in Table 18 with parameter f_{clk}.

7.5.2 External clock

Connecting pin OSC to V_{DD} enables an external clock source. Pin CLK then becomes the external clock input.

Remark: A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state, which is not suitable for the liquid crystal.

7.6 Timing and frame frequency

The timing of the PCF8532 organizes the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the synchronization signal (SYNC) maintains the correct timing relationship between all the PCF8532 in the system.

The clock frequency can be programmed by software such that the nominal frame frequency can be chosen in steps of 5 Hz in the range of 60 Hz to 90 Hz (see Table 15).

7.7 Display register

The display register holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display register, the LCD segment outputs and one column of the display RAM.

Universal LCD driver for low multiplex rates

7.8 Segment outputs

The LCD drive section includes 160 segment outputs (S0 to S159) which must be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with data residing in the display register. When less than 160 segment outputs are required the unused segment outputs must be left open-circuit.

7.9 Backplane outputs

The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane output signals are generated in accordance with the selected LCD drive mode.

• In the 1:4 multiplex drive mode BP0 to BP3 must be connected directly to the LCD.

If less than four backplane outputs are required the unused outputs can be left open-circuit.

- In 1:3 multiplex drive mode BP3 carries the same signal as BP1, therefore these two
 adjacent outputs can be tied together to give enhanced drive capabilities.
- In 1:2 multiplex drive mode BP0 and BP2, BP1 and BP3 respectively carry the same signals and may also be paired to increase the drive capabilities.
- In static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

The pins for the four backplanes BP0 to BP3 are available on both pin bars of the chip. In applications it is possible to use either the pins for the backplanes

- on the top pin bar
- on the bottom pin bar
- or both of them to increase the driving strength of the device.

When using all backplanes available they may be connected to the respective sibling (BP0 on the top pin bar with BP0 on the bottom pin bar and so on).

7.10 Display RAM

The display RAM is a static 160×4 bit RAM which stores LCD data. There is a one-to-one correspondence between

- the bits in the RAM bitmap and the LCD elements
- · the RAM columns and the segment outputs
- the RAM rows and the backplane outputs.

A logic 1 in the RAM bitmap indicates the on-state of the corresponding LCD element; similarly, a logic 0 indicates the off-state.

The display RAM bit map, <u>Figure 11</u>, shows the rows 0 to 3 which correspond with the backplane outputs BP0 to BP3, and the columns 0 to 159 which correspond with the segment outputs S0 to S159. In multiplexed LCD applications the segment data of the first, second, third, and fourth row of the display RAM are time-multiplexed with BP0, BP1, BP2, and BP3 respectively.

Universal LCD driver for low multiplex rates

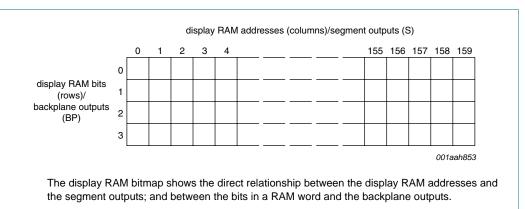


Fig 11. Display RAM bitmap

When display data is transmitted to the PCF8532 the received display bytes are stored in the display RAM in accordance with the selected LCD drive mode. The data is stored as it arrives and does not wait for the acknowledge cycle as with the commands. Depending on the current multiplex drive mode, data is stored singularly, in pairs, triples, or quadruples. To illustrate the filling order, an example of a 7-segment numeric display showing all drive modes is given in Figure 12; the RAM filling organization depicted applies equally to other LCD types.

The following applies to Figure 12:

- In static drive mode the eight transmitted data bits are placed in row 0 as one byte.
- In 1:2 multiplex drive mode the eight transmitted data bits are placed in pairs into row 0 and 1 as two successive 4-bit RAM words.
- In 1:3 multiplex drive mode the eight bits are placed in triples into row 0, 1, and 2 as
 three successive 3-bit RAM words, with bit 3 of the third address left unchanged. It is
 not recommended to use this bit in a display because of the difficult addressing. This
 last bit may, if necessary, be controlled by an additional transfer to this address but
 care should be taken to avoid overwriting adjacent data because always full bytes are
 transmitted.
- In 1:4 multiplex drive mode, the eight transmitted data bits are placed in quadruples into row 0, 1, 2, and 3 as two successive 4-bit RAM words.

drive mode	LCD segments	LCD backplanes	display RAM filling order	transmitted display byte
static	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	вро	Columns Colu	MSB LSB
1:2 multiplex	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BP0 BP1	Columns display RAM address/segment outputs (s) byte1 byte2	MSB LSB
1:3 multiplex	S _{n+1} — a b S _n S _{n+2} — f DP	BP0 BP1 BP2	Columns display RAM address/segment outputs (s) byte1 byte2 byte3	MSB LSB
1:4 multiplex	S _n a b g g c DP	BP0 BP2 BP1 BP3	Columns Colu	MSB LSB a c b DP f e g d

x = data bit unchanged

Fig 12. Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the I²C-bus

© NXP B.V. 2011. All rights reserved.

18 of 49

Universal LCD driver for low multiplex rates

7.11 Data pointer

The addressing mechanism for the display RAM is realized using a data pointer.

This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the load-data-pointer-MSB and load-data-pointer-LSB commands.

Following this two commands, an arriving data byte is stored at the display RAM address indicated by the data pointer. The filling order is shown in Figure 12.

After each byte is stored, the content of the data pointer is automatically incremented by a value dependent on the selected LCD drive mode:

- In static drive mode by eight
- In 1:2 multiplex drive mode by four
- In 1:3 multiplex drive mode by three
- In 1:4 multiplex drive mode by two

If the data pointer reaches 159 it is automatically wrapped around to address 0, consequently the subaddress counter is incremented.

If an I²C-bus data access is terminated early, then the state of the data pointer is unknown. The data pointer must be re-written prior to further RAM accesses.

7.12 Subaddress counter

The storage of display data is conditioned by the contents of the subaddress counter. Storage is allowed only when the content of the subaddress counter match with the hardware subaddress applied to A0 and A1. The subaddress counter value is defined by the device-select command (see <u>Table 12</u>). If the content of the subaddress counter and the hardware subaddress do not match then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are sent to the display RAM, automatic wrap-over to the next PCF8532 occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character (such as during the 54th display data byte transmitted in 1:3 multiplex mode).

The hardware subaddress must not be changed whilst the device is being accessed on the I²C-bus interface.

7.13 Output bank selector

The output bank selector selects one of the four rows per display RAM address for transfer to the display register. The actual row selected depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence.

 In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by the contents of row 1, row 2 and then row 3

Universal LCD driver for low multiplex rates

- In 1:3 multiplex mode, rows 0, 1 and 2 are selected sequentially
- In 1:2 multiplex mode, rows 0 and 1 are selected
- In the static mode, row 0 is selected.

The PCF8532 includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the bank-select command may request the contents of row 2 to be selected for display instead of the contents of bit 0. In the 1:2 multiplex drive mode, the contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

7.14 Input bank selector

The input bank selector loads display data into the display RAM in accordance with the selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command. The input bank selector functions independently to the output bank selector.

7.15 Blinker

The display blinking capabilities of the PCF8532 are very versatile. The whole display can blink at frequencies selected by the blink-select command (see <u>Table 14</u>). The blink frequencies are fractions of the clock frequency. The ratios between the clock and blink frequencies depend on the blink mode in which the device is operating (see <u>Table 6</u>).

Table 6. Blink frequencies Assuming that $f_{clk} = 1.800 \text{ kHz}$.

Blink mode	Operating mode ratio	Blink frequency
off	-	blinking off
1	$f_{blink} = \frac{f_{clk}}{768}$	~2.34 Hz
2	$f_{blink} = \frac{f_{clk}}{1536}$	~1.17 Hz
3	$f_{blink} = \frac{f_{clk}}{3072}$	~0.59 Hz

An additional feature is for an arbitrary selection of LCD segments to blink. This applies to the static and 1:2 multiplex drive modes and can be implemented without any communication overheads. By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blink frequency. This mode can also be specified by the blink-select command.

In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of LCD segments can blink selectively by changing the display RAM data at fixed time intervals.

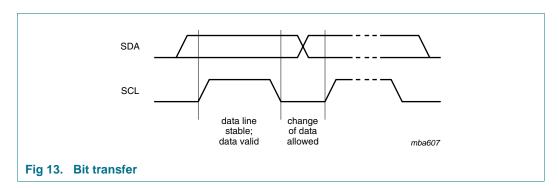
If the entire display can blink at a frequency other than the nominal blink frequency. This can be effectively performed by resetting and setting the display enable bit E at the required rate using the mode-set command (see Table 6).

Universal LCD driver for low multiplex rates

7.16 Characteristics of the I²C-bus

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

In Chip-On-Glass (COG) applications, where the track resistance between the SDA output pin to the system SDA input line can be significant, the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance may generate a voltage divider. As a consequence it may be possible that the acknowledge cycle, generated by the LCD driver, cannot be interpreted as logic 0 by the master. Therefore it is an advantage for COG applications to have the acknowledge output separated from the data line. For that reason, the SDA line of the PCF8532 is split into SDA and SDAACK.


In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDAACK pin to the system SDA line to guarantee a valid LOW level.

By splitting the SDA line into SDA and SDAACK (having the SDAACK open circuit), the device could be used in a mode that ignores the acknowledge cycle. Separating the acknowledge output from the serial data line can avoid design efforts to generate a valid acknowledge level. However, in that case the I²C-bus master has to be set up in such a way that it ignores the acknowledge cycle.²

By connecting pin SDAACK to pin SDA the SDA line becomes fully I²C-bus compatible. The following definition assumes SDA and SDAACK are connected and refers to the pair as SDA.

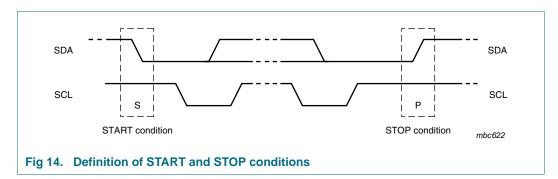
7.16.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal. Bit transfer is shown in Figure 13.

7.16.2 START and STOP conditions

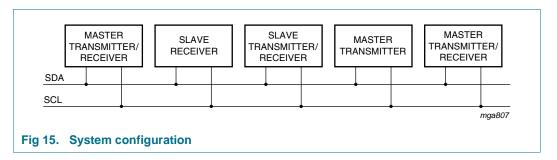
Both data and clock lines remain HIGH when the bus is not busy.

A HIGH-to-LOW change of the data line, while the clock is HIGH is defined as the START condition (S).


PCF8532

^{2.} For further information, please consider the NXP application note: Ref. 1 "AN10170".

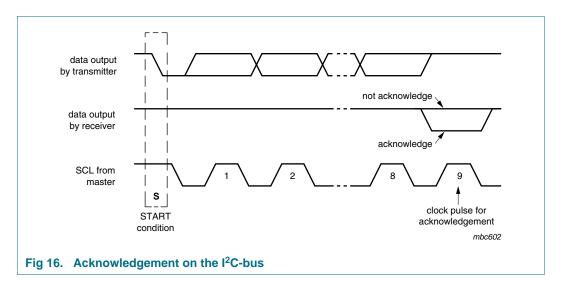
Universal LCD driver for low multiplex rates


A LOW-to-HIGH change of the data line while the clock is HIGH is defined as the STOP condition (P).

The START and STOP conditions are shown in Figure 14.

7.16.3 System configuration

A device generating a message is a transmitter, a device receiving a message is the receiver. The device that controls the message is the master and the devices which are controlled by the master are the slaves. The system configuration is shown in Figure 15.


7.16.4 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge cycle.

- A slave receiver which is addressed must generate an acknowledge after the reception of each byte.
- Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
- The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration).
- A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

Acknowledgement on the I²C-bus is shown in Figure 16.

Universal LCD driver for low multiplex rates

7.16.5 I²C-bus controller

The PCF8532 acts as an I²C-bus slave receiver. It does not initiate I²C-bus transfers or transmit data to an I²C-bus master receiver. The only data output from the PCF8532 are the acknowledge signals of the selected devices. Device selection depends on the I²C-bus slave address, on the transferred command data and on the hardware subaddress.

In single device application, the hardware subaddress inputs A0 and A1 are normally tied to V_{SS} which defines the hardware subaddress 0. In multiple device applications A0 and A1 are tied to V_{SS} or V_{DD} in accordance with a binary coding scheme such that no two devices with a common I^2C -bus slave address have the same hardware subaddress.

7.16.6 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

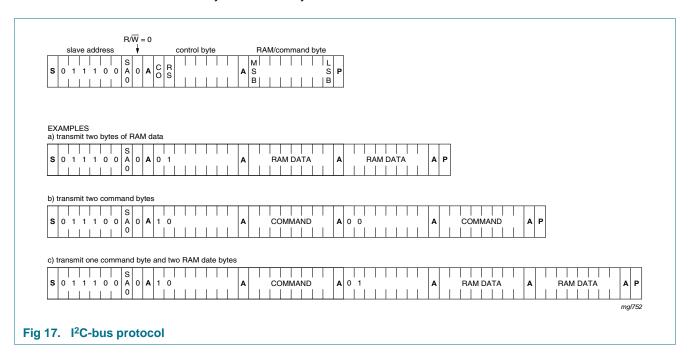
7.16.7 I²C-bus protocol

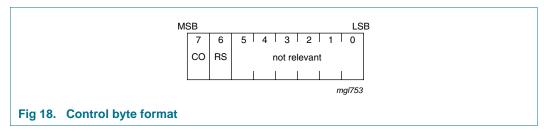
Two I²C-bus slave addresses (0111 000 and 0111 001) are reserved for the PCF8532. The least significant bit of the slave address that a PCF8532 responds to is defined by the level tied at its input SA0. The PCF8532 is a write only device and does not respond to a read access. Two types of PCF8532 can be distinguished on the same I²C-bus which allows:

- Up to 8 PCF8532 on the same I²C-bus for very large LCD applications
- The use of two types of LCD multiplex on the same I²C-bus.

The I^2C -bus protocol is shown in Figure 17. The sequence is initiated with a START condition (S) from the I^2C -bus master which is followed by one of the two PCF8532 slave addresses available. All PCF8532 with the corresponding SA0 level acknowledge in parallel to the slave address, but all PCF8532 with the alternative SA0 level ignore the whole I^2C -bus transfer.

Universal LCD driver for low multiplex rates


After acknowledgement, a control byte follows which defines if the next byte is RAM or command information. The control byte also defines if the next following byte is a control byte or further RAM/command data.


In this way it is possible to configure the device then fill the display RAM with little overhead.

The command bytes and control bytes are also acknowledged by all addressed PCF8532 connected to the bus.

The display bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter. Both data pointer and subaddress counter are automatically updated and the data is directed to the intended PCF8532 device.

The acknowledgement after each byte is made only by the (A0 and A1) addressed PCF8532. After the last (display) byte, the I²C-bus master issues a STOP condition (P). Alternatively a START may be issued to RESTART an I²C-bus access.

Universal LCD driver for low multiplex rates

Table 7. Control byte description

Bit	Symbol	Value	Description
7	CO		continue bit
		0	last control byte
		1	control bytes continue
6	RS		register selection
		0	command register
		1	data register
5 to 0	-		not relevant

7.17 Command decoder

The command decoder identifies command bytes that arrive on the I^2C -bus. The commands available to the PCF8532 are defined in <u>Table 8</u>.

Table 8. Definition of PCF8532 commands

Command	Ope	Operation code							Reference
Bit	7	6	5	4	3	2	1	0	
mode-set	1	1	0	0	Е	В	M1	MO	Table 9
load-data-pointer-MSB	0	0	0	0	P7	P6	P5	P4	Table 10
load-data-pointer-LSB	0	1	0	0	P3	P2	P1	P0	Table 11
device-select	1	1	1	0	0	0	A1	A0	Table 12
bank-select	1	1	1	1	1	0	I	0	Table 13
blink-select	1	1	1	1	0	Α	BF1	BF0	Table 14
frequency-prescaler	1	1	1	0	1	F2	F1	F0	Table 15

Table 9. Mode-set command bits description

Bit	Symbol	Value	Description
7 to 4	-	1100	fixed value
3	Е		display status
		0[1]	disabled (blank)[2]
		1	enabled
2	В		LCD bias configuration ^[3]
		0[1]	$\frac{1}{3}$ bias
		1	$\frac{1}{2}$ bias
1 to 0	M[1:0]		LCD drive mode selection
		01	static; BP0
		10	1:2 multiplex; BP0, BP1
		11	1:3 multiplex; BP0, BP1, BP2
		00[1]	1:4 multiplex; BP0, BP1, BP2, BP3
	· · · · · · · · · · · · · · · · · · ·		

^[1] Power-on and reset value.

^[2] The possibility to disable the display allows implementation of blinking under external control; the enable bit determines also whether the internal clock signal is available at the CLK pin (see Section 7.5.1).

^[3] Not applicable for static drive mode.

Universal LCD driver for low multiplex rates

Table 10. Load-data-pointer-MSB command bits description

Bit	Symbol	Value	Description
7 to 4	-	0000	fixed value
3 to 0	P[7:4]	0000 ^[1] to 1001	P7 to P4 defines the first 4 (most significant) bits of the data pointer that indicates one of the 160 display RAM addresses

^[1] Power-on and reset value.

Table 11. Load-data-pointer-LSB command bits description

Bit	Symbol	Value	Description
7 to 4	-	0100	fixed value
3 to 0	P[3:0]	0000 ^[1] to 1111	P3 to P0 defines the last 4 (least significant) bits of the data pointer that indicates one of the 160 display RAM addresses

^[1] Power-on and reset value.

Table 12. Device-select command bits description

Bit	Symbol	Value	Description
7 to 2	-	111000	fixed value
1 to 0	A[1:0]	00[1] to 11	two bits of immediate data, bits A0 to A1, are transferred to the subaddress counter to define one of four hardware subaddresses

^[1] Power-on and reset value.

Table 13. Bank-select command bits description

Bit	Symbol	Value	Description				
			Static	1:2 multiplex[1]			
7 to 2	-	111110	fixed value				
1	l		input bank selection; storage of arriving display data				
		0[2]	RAM bit 0	RAM bits 0 and 1			
		1	RAM bit 2	RAM bits 2 and 3			
0 O			output bank selection; re	trieval of LCD display data			
		0[2]	RAM bit 0	RAM bits 0 and 1			
		1	RAM bit 2	RAM bits 2 and 3			

^[1] The bank-select command has no effect in 1:3 and 1:4 multiplex drive modes.

^[2] Power-on and reset value.

Universal LCD driver for low multiplex rates

Table 14. Blink-select command bits description

Bit	Symbol	Value	Description
7 to 3	-	11110	fixed value
2	Α		blink mode selection
		0[1]	normal blinking ^[2]
		1	alternate RAM bank blinking[3]
1 to 0	BF[1:0]		blink frequency selection
		00[1]	off
		01	1
		10	2
		11	3

^[1] Power-on and reset value.

Table 15. Frame-frequency prescaler

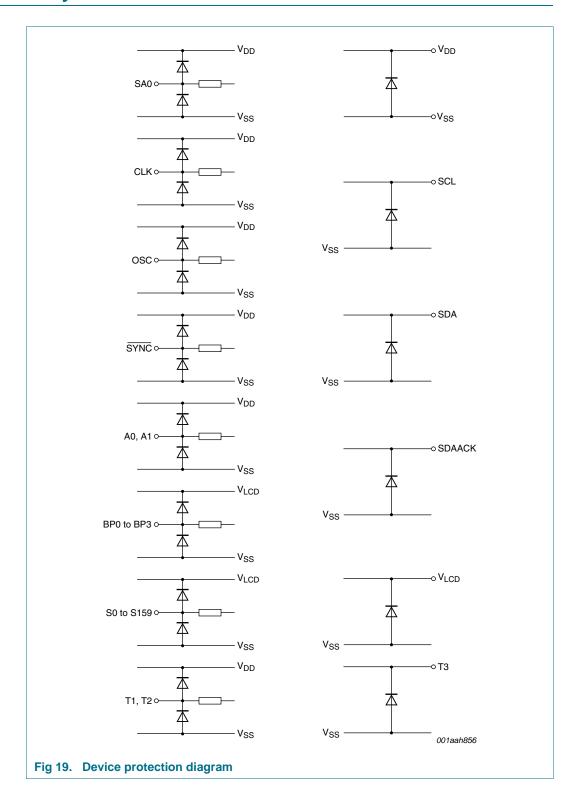
Bit	Symbol	Value	Description					
			Nominal frame frequency[1]	Equation				
7 to 4	-	11101	fixed value					
3 to 0	F[2:0]	division factor definition for the frame frequency						
		000	60 Hz	$f_{fr} = \frac{64}{80} \times \frac{f_{clk}}{24}$				
		001	65 Hz	$f_{fr} = \frac{64}{74} \times \frac{f_{clk}}{24}$				
		010	70 Hz	$f_{fr} = \frac{64}{68} \times \frac{f_{clk}}{24}$				
		011[2]	75 Hz	$f_{fr} = \frac{f_{clk}}{24}$				
		100	80 Hz	$f_{fr} = \frac{64}{60} \times \frac{f_{clk}}{24}$				
		101	85 Hz	$f_{fr} = \frac{64}{56} \times \frac{f_{clk}}{24}$				
		110	90 Hz	$f_{fr} = \frac{64}{53} \times \frac{f_{clk}}{24}$				
		111	75 Hz	$f_{fr} = \frac{f_{clk}}{24}$				

^[1] Nominal frame frequency calculated for an internal operating frequency of 1.800 kHz.

^[2] Normal blinking is assumed when the LCD multiplex drive modes 1:3 or 1:4 are selected.

^[3] Alternate RAM bank blinking does not apply in 1:3 and 1:4 multiplex drive modes.

^[2] Power-on and reset value.


Universal LCD driver for low multiplex rates

7.18 Display controller

The display controller executes the commands identified by the command decoder. It contains the status registers of the PCF8532 and co-ordinates their effects. The display controller is also responsible for loading display data into the display RAM as required by the filling order.

Universal LCD driver for low multiplex rates

8. Internal circuitry

Universal LCD driver for low multiplex rates

9. Limiting values

CAUTION

Static voltages across the liquid crystal display can build up when the LCD supply voltage (V_{LCD}) is on while the IC supply voltage (V_{DD}) is off, or vice versa. This may cause unwanted display artifacts. To avoid such artifacts, V_{LCD} and V_{DD} must be applied or removed together.

Table 16. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+6.5	V
I_{DD}	supply current		-50	+50	mA
V_{LCD}	LCD supply voltage		-0.5	+9.0	V
$I_{\text{DD(LCD)}}$	LCD supply current		-50	+50	mA
VI	input voltage	on pins CLK, SYNC, SA0, OSC, SDA, SCL and A0, A1, T1, T2, T3	-0.5	+6.5	V
I	input current		-10	+10	mA
Vo	output voltage	on pins S0 to S159 and BP0 to BP3	-0.5	+7.5	V
		on pins SDAACK, CLK, SYNC	-0.5	+6.5	V
Io	output current		-10	+10	mA
I _{SS}	ground supply current		-50	+50	mA
P_{tot}	total power dissipation		-	400	mW
P/out	power dissipation per output		-	100	mW
V_{ESD}	electrostatic discharge voltage	HBM [2	2] -	±4500	V
		MM	<u>B</u> -	±250	V
I _{lu}	latch-up current	<u>[</u> 4	<u>1]</u> _	200	mA
T_{stg}	storage temperature	<u>[</u>	<u>-65</u>	+150	°C

^[1] Stresses above these values listed may cause permanent damage to the device.

^[2] Pass level; Human Body Model (HBM) according to Ref. 6 "JESD22-A114".

^[3] Pass level; Machine Model (MM), according to Ref. 7 "JESD22-A115".

^[4] Pass level; latch-up testing according to Ref. 8 "JESD78" at maximum ambient temperature (T_{amb(max)}).

^[5] According to the NXP store and transport requirements (see Ref. 10 "NX3-00092") the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long-term storage products, divergent conditions are described in that document.

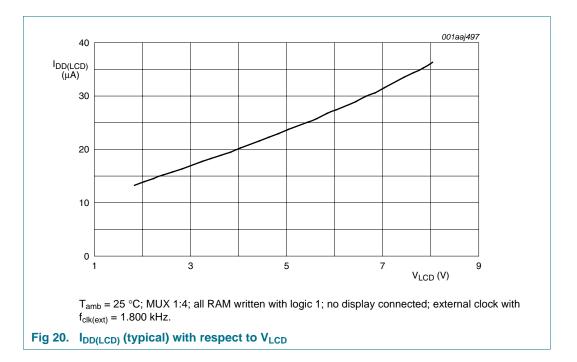
Universal LCD driver for low multiplex rates

10. Static characteristics

Table 17. Static characteristics

 V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; V_{LCD} = 1.8 V to 8.0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supplies	S						
V_{DD}	supply voltage			1.8	-	5.5	V
V_{LCD}	LCD supply voltage			1.8	-	8.0	V
I _{DD}	supply current	$f_{clk(ext)} = 1.800 \text{ kHz}$	[1][2]	-	4	20	μΑ
		with internal oscillator running	[1]	-	18	60	μΑ
I _{DD(LCD)}	LCD supply current	$f_{clk(ext)} = 1.800 \text{ kHz}$	[1][2]	-	30	70	μΑ
		with internal oscillator running	[1]	-	30	70	μΑ
Logic							
VI	input voltage	on pins SDA, SDAACK and SCL		-0.5	-	5.5	V
		all other input pins		-0.5	-	$V_{DD} + 0.5$	V
V_{IH}	HIGH-level input voltage	on pins CLK, SYNC, OSC, A0, A1, SA0, SCL and SDA		$0.7V_{DD}$	-	-	V
V_{IL}	LOW-level input voltage	on pins CLK, SYNC, OSC, A0, A1, SA0, SCL and SDA		-	-	$0.3V_{DD}$	V
Vo	output voltage	on pins SCL and SYNC		-0.5	-	V _{DD} + 0.5	V
	pin SDAACK		-0.5	-	5.5	V	
I _{OH}	HIGH-level output current	$V_{OH} = 4.6 \text{ V}; V_{DD} = 5 \text{ V}; \text{ on pin }$ CLK		-	-	-1.5	mA
I _{OL} LO	OW-level output current	$V_{OL} = 0.4 \text{ V}; V_{DD} = 5 \text{ V};$					
		on pins CLK and SYNC		1.5	-	-	mA
		on pin SDAACK					
		$V_{DD} \le 2 \text{ V}; V_{OL} = 0.2 V_{DD}$		3	-	-	mA
		$2 \text{ V} < \text{V}_{DD} < 3 \text{ V}; \text{V}_{OL} = 0.4 \text{ V}$		3	-	-	mA
		$V_{DD} \ge 3 \text{ V}; V_{OL} = 0.4 \text{ V}$		6	-	-	mA
V_{POR}	power-on reset voltage			1.0	1.3	1.6	V
lL	leakage current	$V_{I} = V_{DD}$ or V_{SS} ; on pin OSC, CLK, A0, A1, SA0, SDA, SDAACK and SCL		-1	-	+1	μΑ
LCD out	puts						
ΔV_{O}	output voltage variation	on pins BP0 to BP3 and S0 to S159	[3][4]	-30	-	+30	mV
R _O	output resistance	V _{LCD} = 5 V; on pins BP0 to BP3		-	1.5	5	kΩ
		V _{LCD} = 5 V; on pins S0 to S159		-	2.0	5	kΩ


^[1] LCD outputs are open-circuit; inputs at V_{SS} or V_{DD} ; I^2C -bus inactive; V_{LCD} = 8.0 V, V_{DD} = 5.0 V and RAM written with all logic 1.

^[2] External clock with 50 % duty factor.

^[3] Variation between any 2 backplanes on a given voltage level; static measured.

^[4] Variation between any 2 segments on a given voltage level; static measured.

Universal LCD driver for low multiplex rates

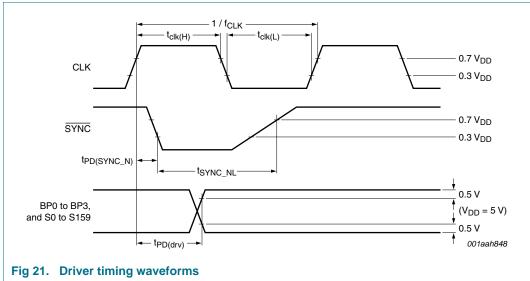
Universal LCD driver for low multiplex rates

11. Dynamic characteristics

Table 18. Dynamic characteristics

 V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; V_{LCD} = 1.8 V to 8.0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{clk}	clock frequency	on pin CLK; see Table 15	<u>[1]</u>	900	1800	3000	Hz
f _{clk(ext)}	external clock frequency		[2]	700	-	5000	Hz
t _{clk(H)}	HIGH-level clock time	external clock source used		100	-	-	μS
t _{clk(L)}	LOW-level clock time	external clock source used		100	-	-	μS
t _{PD(SYNC_N)}	SYNC propagation delay			-	30	-	ns
t _{SYNC_NL}	SYNC LOW time			100	-	-	μS
t _{PD(drv)}	driver propagation delay	$V_{LCD} = 5 V$		-	10	-	μS
Timing chara	acteristics: I ² C-bus		[3]				
f _{SCL}	SCL clock frequency			-	-	400	kHz
t _{BUF}	bus free time between a STOP and START condition			1.3	-	-	μS
t _{HD;STA}	hold time (repeated) START condition			0.6	-	-	μS
t _{SU;STA}	set-up time for a repeated START condition			0.6	-	-	μS
t _{VD;ACK}	data valid acknowledge time			-	-	1.2	μS
t _{HIGH}	HIGH period of the SCL clock			0.6	-	-	μS
t _{LOW}	LOW period of the SCL clock			1.3	-	-	μS
t _f	fall time	of both SDA and SCL signals		-	-	0.3	μS
t _r	rise time	of both SDA and SCL signals		-	-	0.3	μS
C _b	capacitive load for each bus line			-	-	400	pF
t _{SU;DAT}	data set-up time			200	-	-	ns
t _{HD;DAT}	data hold time			0	-	-	ns
t _{SU;STO}	set-up time for STOP condition			0.6	-	-	μS
	spike pulse width			-	-	50	ns


^[1] Typical output duty factor: 50 % measured at the CLK output pin.

^[2] For $f_{clk(ext)} > 4$ kHz it is recommended to use an external pull-up resistor between pin $\overline{\text{SYNC}}$ and pin V_{DD} . The value of the resistor should be between 100 k Ω and 1 M Ω . This resistor should be present even when no cascading configuration is used!


^[3] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .

PCF8532 NXP Semiconductors

Universal LCD driver for low multiplex rates

Universal LCD driver for low multiplex rates

12. Application information

12.1 Cascaded operation

In large display configurations, up to 8 PCF8532 can be distinguished on the same I²C-bus by using the 2-bit hardware subaddress (A0 and A1) and the programmable I²C-bus slave address (SA0). When cascaded PCF8532 are synchronized, they can share the backplane signals from one of the devices in the cascade. Such an arrangement is cost-effective in large LCD applications since the backplane outputs of only one device need to be through-plated to the backplane electrodes of the display. The other PCF8532 of the cascade contribute additional segment outputs but their backplane outputs are left open-circuit (see Figure 23).

For display sizes that are not multiple of 640 elements, a mixed cascaded system can be considered containing only devices like PCF8532 and PCF8533. Depending on the application, one must take care of the software commands compatibility and pin connection compatibility.

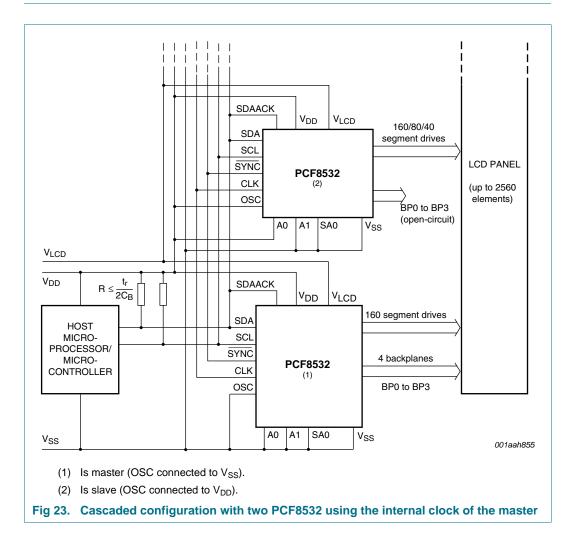
The SYNC line is provided to maintain the correct synchronization between all cascaded PCF8532. This synchronization is guaranteed after the power-on reset. The only time that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in adverse electrical environments, or by the definition of a multiplex mode when PCF8532 with different SA0 levels are cascaded). SYNC is organized as an input/output pin; the output selection being realized as an open-drain driver with an internal pull-up resistor. A PCF8532 asserts the SYNC line at the onset of its last active backplane signal and monitors the SYNC line at all other times. Should synchronization in the cascade be lost, it will be restored by the first PCF8532 to assert SYNC. The timing relationship between the backplane waveforms and the SYNC signal for the various drive modes of the PCF8532 are shown in Figure 25.

When using an external clock signal with high frequencies ($f_{clk(ext)} > 4$ kHz) it is recommended to have an external pull-up resistor between pin SYNC and pin V_{DD} (see Table 18). This resistor should be present even when no cascading configuration is used! When using it in a cascaded configuration, care must be taken not to route the SYNC signal to close to noisy signals.

The contact resistance between the SYNC pads of cascaded devices must be controlled. If the resistance is too high, the device will not be able to synchronize properly. This is particularly applicable to COG applications. Table 19 shows the limiting values for contact resistance.

In the cascaded applications, the OSC pin of the PCF8532 with subaddress 0 is connected to V_{SS} so that this device uses its internal clock to generate a clock signal at the CLK pin. The other PCF8532 devices are having the OSC pin connected to V_{DD} , meaning that this devices are ready to receive external clock, the signal being provided by the device with subaddress 0.

In the case that the master is providing the clock signal to the slave devices, care must be taken that the sending of display enable or disable will be received by both, the master and the slaves at the same time. When the display is disabled the output from pin CLK is disabled too. The disconnection of the clock may result in a DC component for the display.


Universal LCD driver for low multiplex rates

Alternatively the schematic can be also constructed such that all the devices have OSC pin connected to V_{DD} and thus an external CLK being provided for the system (all devices connected to the same external CLK).

A configuration where $\overline{\text{SYNC}}$ is connected but all PCF8532 are using the internal clock (OSC pin tied to V_{SS}) is not recommended and may lead to display artefacts!

Table 19. SYNC contact resistance

Number of devices	Maximum contact resistance
2	6000 Ω
3 to 5	2200 Ω
6 to 8	1200 Ω

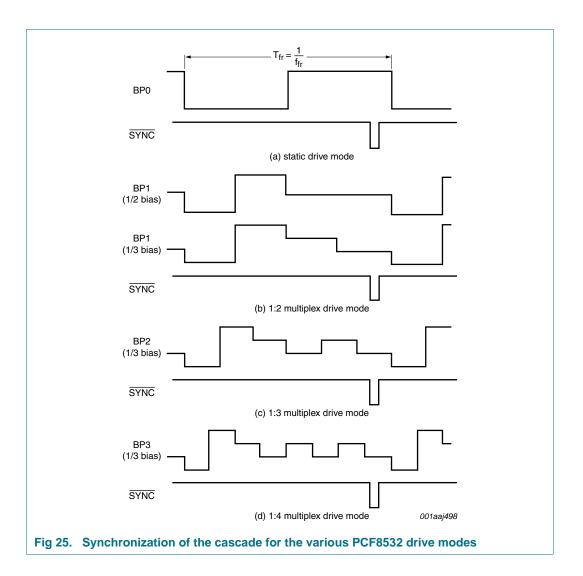



Fig 24. Cascaded configuration with one PCF8532 and one PCF8533 using the internal clock of the master

PCF8532 **NXP Semiconductors**

Universal LCD driver for low multiplex rates

13. Bare die outline

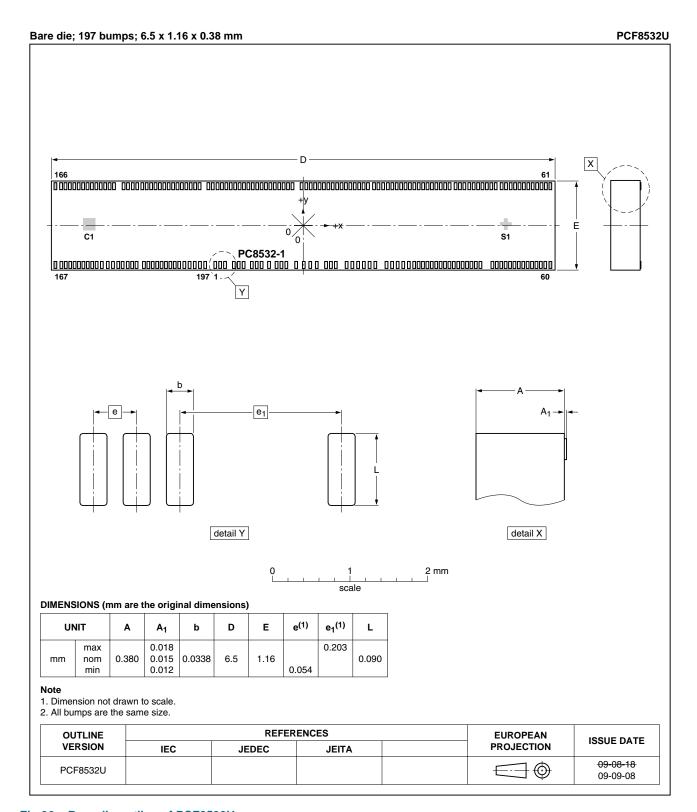


Fig 26. Bare die outline of PCF8532U

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

Table 20. Bump locations
All x/y coordinates represent the position of the center of each bump with respect to the center (x/y = 0) of the chip; see <u>Figure 26</u>.

Symbol	Bump	Χ (μm)	Υ (μm)	Symbol	Bump	Χ (μm)	Υ (μm)
SDAACK	1	-1165.3	-481.5	S68	100	750.2	481.5
SDAACK	2	-1111.3	-481.5	S69	101	696.2	481.5
SDAACK	3	-1057.3	-481.5	S70	102	642.2	481.5
SDA	4	-854.8	-481.5	S71	103	588.2	481.5
SDA	5	-800.8	-481.5	S72	104	534.2	481.5
SDA	6	-746.8	-481.5	S73	105	480.2	481.5
SCL	7	-575.8	-481.5	S74	106	426.2	481.5
SCL	8	-521.8	-481.5	S75	107	372.2	481.5
SCL	9	-467.8	-481.5	S76	108	318.2	481.5
CLK	10	-316.2	-481.5	S77	109	264.2	481.5
V_{DD}	11	-204.1	− 481.5	S78	110	210.2	481.5
V_{DD}	12	-150.1	− 481.5	S79	111	156.2	481.5
V_{DD}	13	-96.1	− 481.5	BP0	112	86.8	481.5
SYNC	14	6.9	− 481.5	BP2	113	32.8	481.5
OSC	15	119.4	− 481.5	BP1	114	-21.2	481.5
T1	16	203.1	− 481.5	BP3	115	-75.2	481.5
T2	17	286.8	− 481.5	S80	116	-190.7	481.5
T3	18	389.9	− 481.5	S81	117	-244.7	481.5
T3	19	443.9	− 481.5	S82	118	-298.7	481.5
T3	20	497.9	− 481.5	S83	119	-352.7	481.5
A0	21	640.5	− 481.5	S84	120	-406.7	481.5
A1	22	724.2	− 481.5	S85	121	-460.7	481.5
SA0	23	807.9	-481.5	S86	122	-514.7	481.5
V_{SS}	24	893.0	-481.5	S87	123	-568.7	481.5
V_{SS}	25	947.0	-481.5	S88	124	-622.7	481.5
V_{SS}	26	1001.0	-481.5	S89	125	-676.7	481.5
V_{LCD}	27	1107.2	-481.5	S90	126	-730.7	481.5
V_{LCD}	28	1161.2	-481.5	S91	127	-784.7	481.5
V_{LCD}	29	1215.2	-481.5	S92	128	-838.7	481.5
BP2	30	1303.4	-481.5	S93	129	-892.7	481.5
BP0	31	1357.4	− 481.5	S94	130	-946.7	481.5
S0	32	1411.4	− 481.5	S95	131	-1000.7	481.5
S1	33	1465.4	-481.5	S96	132	-1054.7	481.5
S2	34	1519.4	-481.5	S97	133	-1108.7	481.5
S3	35	1573.4	-481.5	S98	134	-1224.2	481.5
S4	36	1627.4	-481.5	S99	135	-1278.2	481.5
S5	37	1681.4	− 481.5	S100	136	-1332.2	481.5
S6	38	1735.4	− 481.5	S101	137	-1386.2	481.5
S7	39	1789.4	-481.5	S102	138	-1440.2	481.5

Table 20. Bump locations ...continued All x/y coordinates represent the position of the center of each bump with respect to the center (x/y = 0) of the chip; see Figure 26.

S8 40 1843.4 -481.5 S103 139 -1494.2 4 S9 41 1897.4 -481.5 S104 140 -1548.2 4 S10 42 1951.4 -481.5 S105 141 -1602.2 4 S11 43 2005.4 -481.5 S106 142 -1656.2 4 S12 44 2059.4 -481.5 S106 142 -1656.2 4 S13 45 2113.4 -481.5 S108 144 -1764.2 4 S14 46 2167.4 -481.5 S110 146 -1872.2 4 S15 47 2221.4 -481.5 S111 147 -1926.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S111 147 -1926.2 4 S18 50 2471.9 -481.5 <th>Ny = 0/ 01 111</th> <th>5 5/1/p, 500</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Ny = 0/ 01 111	5 5/1/p, 500						
S9 41 1897.4 -481.5 S104 140 -1548.2 4 S10 42 1951.4 -481.5 S105 141 -1602.2 4 S11 43 2005.4 -481.5 S106 142 -1656.2 4 S12 44 2059.4 -481.5 S107 143 -1710.2 4 S13 45 2113.4 -481.5 S108 144 -1764.2 4 S14 46 2167.4 -481.5 S109 145 -1818.2 4 S15 47 2221.4 -481.5 S110 146 -1872.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S112 148 -1980.2 4 S17 49 2417.9 -481.5 <th>Symbol</th> <th>Bump</th> <th>Χ (μm)</th> <th>Υ (μm)</th> <th>Symbol</th> <th>Bump</th> <th>Χ (μm)</th> <th>Υ (μm)</th>	Symbol	Bump	Χ (μm)	Υ (μm)	Symbol	Bump	Χ (μm)	Υ (μm)
S10 42 1951.4 -481.5 S105 141 -1602.2 4 S11 43 2005.4 -481.5 S106 142 -1656.2 4 S12 44 2059.4 -481.5 S107 143 -1710.2 4 S13 45 2113.4 -481.5 S108 144 -1764.2 4 S14 46 2167.4 -481.5 S109 145 -1818.2 4 S15 47 2221.4 -481.5 S110 146 -1872.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S1112 148 -1980.2 4 S18 50 2471.9 -481.5 S1112 148 -1980.2 4 S19 51 2525.9 -481.5 S114 150 -2034.2 4 S20 52 2579.9 -481.5	S8	40	1843.4	-481.5	S103	139	-1494.2	481.5
S11 43 2005.4 -481.5 S106 142 -1656.2 4 S12 44 2059.4 -481.5 S107 143 -1710.2 4 S13 45 2113.4 -481.5 S108 144 -1764.2 4 S14 46 2167.4 -481.5 S109 145 -1818.2 4 S15 47 2221.4 -481.5 S110 146 -1872.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S111 147 -1926.2 4 S18 50 2471.9 -481.5 S113 149 -2034.2 4 S18 50 2471.9 -481.5 S114 150 -2088.2 4 S19 51 2525.9 -481.5 S114 150 -2082.2 4 S20 52 2579.9 -481.5 </td <td>S9</td> <td>41</td> <td>1897.4</td> <td>-481.5</td> <td>S104</td> <td>140</td> <td>-1548.2</td> <td>481.5</td>	S9	41	1897.4	-481.5	S104	140	-1548.2	481.5
S12 44 2059.4 -481.5 S107 143 -1710.2 4 S13 45 2113.4 -481.5 S108 144 -1764.2 4 S14 46 2167.4 -481.5 S109 145 -1818.2 4 S15 47 2221.4 -481.5 S110 146 -1872.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S111 147 -1926.2 4 S18 50 2471.9 -481.5 S113 149 -2034.2 4 S18 50 2471.9 -481.5 S113 149 -2034.2 4 S18 50 2471.9 -481.5 S1114 150 -2088.2 4 S19 51 2525.9 -481.5 S115 151 -2142.2 4 S20 52 2579.9 -481.5<	S10	42	1951.4	-481.5	S105	141	-1602.2	481.5
S13 45 2113.4 -481.5 S108 144 -1764.2 4 S14 46 2167.4 -481.5 S109 145 -1818.2 4 S15 47 2221.4 -481.5 S110 146 -1872.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S111 147 -1926.2 4 S18 50 2471.9 -481.5 S113 149 -2034.2 4 S19 51 2525.9 -481.5 S114 150 -2088.2 4 S20 52 2579.9 -481.5 S115 151 -2142.2 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S117 153 -2338.7 4 S22 57 2849.9 -481.5 </td <td>S11</td> <td>43</td> <td>2005.4</td> <td>-481.5</td> <td>S106</td> <td>142</td> <td>-1656.2</td> <td>481.5</td>	S11	43	2005.4	-481.5	S106	142	-1656.2	481.5
S14 46 2167.4 -481.5 S109 145 -1818.2 4 S15 47 2221.4 -481.5 S110 146 -1872.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S1112 148 -1980.2 4 S18 50 2471.9 -481.5 S1113 149 -2034.2 4 S19 51 2525.9 -481.5 S114 150 -2088.2 4 S20 52 2579.9 -481.5 S116 152 -2284.7 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S117 153 -2338.7 4 S22 54 2687.9 -481.5 S118 154 -2392.7 4 S24 56 2795.9 -481.5	S12	44	2059.4	-481.5	S107	143	-1710.2	481.5
S15 47 2221.4 -481.5 S110 146 -1872.2 4 S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S112 148 -1980.2 4 S18 50 2471.9 -481.5 S113 149 -2034.2 4 S19 51 2525.9 -481.5 S113 149 -2034.2 4 S20 52 2579.9 -481.5 S116 150 -2088.2 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S118 154 -2392.7 4 S22 54 2687.9 -481.5 S119 155 -2446.7 4 S25 57 2849.9 -481.5 </td <td>S13</td> <td>45</td> <td>2113.4</td> <td>-481.5</td> <td>S108</td> <td>144</td> <td>-1764.2</td> <td>481.5</td>	S13	45	2113.4	-481.5	S108	144	-1764.2	481.5
S16 48 2363.9 -481.5 S111 147 -1926.2 4 S17 49 2417.9 -481.5 S112 148 -1980.2 4 S18 50 2471.9 -481.5 S113 149 -2034.2 4 S19 51 2525.9 -481.5 S114 150 -2088.2 4 S20 52 2579.9 -481.5 S115 151 -2142.2 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S118 154 -2392.7 4 S22 54 2687.9 -481.5 S119 155 -2446.7 4 S24 56 2795.9 -481.5 </td <td>S14</td> <td>46</td> <td>2167.4</td> <td>-481.5</td> <td>S109</td> <td>145</td> <td>-1818.2</td> <td>481.5</td>	S14	46	2167.4	-481.5	S109	145	-1818.2	481.5
S17 49 2417.9 -481.5 S112 148 -1980.2 4 S18 50 2471.9 -481.5 S113 149 -2034.2 4 S19 51 2525.9 -481.5 S114 150 -2088.2 4 S20 52 2579.9 -481.5 S115 151 -2142.2 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S117 153 -2338.7 4 S23 55 2741.9 -481.5 S118 154 -2392.7 4 S24 56 2795.9 -481.5 S119 155 -2446.7 4 S25 57 2849.9 -481.5 S120 156 -2500.7 4 S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 </td <td>S15</td> <td>47</td> <td>2221.4</td> <td>-481.5</td> <td>S110</td> <td>146</td> <td>-1872.2</td> <td>481.5</td>	S15	47	2221.4	-481.5	S110	146	-1872.2	481.5
S18 50 2471.9 -481.5 S113 149 -2034.2 4 S19 51 2525.9 -481.5 S114 150 -2088.2 4 S20 52 2579.9 -481.5 S115 151 -2142.2 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S117 153 -2338.7 4 S23 55 2741.9 -481.5 S118 154 -2392.7 4 S24 56 2795.9 -481.5 S119 155 -2446.7 4 S25 57 2849.9 -481.5 S120 156 -2500.7 4 S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 S122 158 -2608.7 4 S28 60 3011.9 -481.5 </td <td>S16</td> <td>48</td> <td>2363.9</td> <td>-481.5</td> <td>S111</td> <td>147</td> <td>-1926.2</td> <td>481.5</td>	S16	48	2363.9	-481.5	S111	147	-1926.2	481.5
S19 51 2525.9 -481.5 S114 150 -2088.2 4 S20 52 2579.9 -481.5 S115 151 -2142.2 4 S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S117 153 -2338.7 4 S22 54 2687.9 -481.5 S117 153 -2338.7 4 S22 54 2687.9 -481.5 S118 154 -2392.7 4 S23 55 2741.9 -481.5 S118 154 -2392.7 4 S24 56 2795.9 -481.5 S119 155 -2446.7 4 S25 57 2849.9 -481.5 S120 156 -2500.7 4 S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 </td <td>S17</td> <td>49</td> <td>2417.9</td> <td>-481.5</td> <td>S112</td> <td>148</td> <td>-1980.2</td> <td>481.5</td>	S17	49	2417.9	-481.5	S112	148	-1980.2	481.5
\$20 52 2579.9 -481.5 \$115 151 -2142.2 4 \$21 53 2633.9 -481.5 \$116 152 -2284.7 4 \$22 54 2687.9 -481.5 \$117 153 -2338.7 4 \$22 54 2687.9 -481.5 \$117 153 -2338.7 4 \$23 55 2741.9 -481.5 \$118 154 -2392.7 4 \$24 56 2795.9 -481.5 \$119 155 -2446.7 4 \$25 57 2849.9 -481.5 \$120 156 -2500.7 4 \$26 58 2903.9 -481.5 \$121 157 -2554.7 4 \$27 59 2957.9 -481.5 \$122 158 -2608.7 4 \$28 60 3011.9 -481.5 \$123 159 -2662.7 4 \$30 62 3013.7 481.5 <td>S18</td> <td>50</td> <td>2471.9</td> <td>-481.5</td> <td>S113</td> <td>149</td> <td>-2034.2</td> <td>481.5</td>	S18	50	2471.9	-481.5	S113	149	-2034.2	481.5
S21 53 2633.9 -481.5 S116 152 -2284.7 4 S22 54 2687.9 -481.5 S117 153 -2338.7 4 S23 55 2741.9 -481.5 S118 154 -2392.7 4 S24 56 2795.9 -481.5 S119 155 -2446.7 4 S25 57 2849.9 -481.5 S120 156 -2500.7 4 S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 S122 158 -2608.7 4 S28 60 3011.9 -481.5 S123 159 -2662.7 4 S29 61 3067.7 481.5 S124 160 -2716.7 4 S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5	S19	51	2525.9	-481.5	S114	150	-2088.2	481.5
S22 54 2687.9 -481.5 S117 153 -2338.7 4 S23 55 2741.9 -481.5 S118 154 -2392.7 4 S24 56 2795.9 -481.5 S119 155 -2446.7 4 S25 57 2849.9 -481.5 S120 156 -2500.7 4 S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 S122 158 -2608.7 4 S28 60 3011.9 -481.5 S123 159 -2662.7 4 S29 61 3067.7 481.5 S124 160 -2716.7 4 S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5	S20	52	2579.9	-481.5	S115	151	-2142.2	481.5
\$23 55 \$2741.9 \$-481.5 \$118 \$154 \$-2392.7 4 \$24 56 \$2795.9 \$-481.5 \$119 \$155 \$-2446.7 4 \$25 57 \$2849.9 \$-481.5 \$120 \$156 \$-2500.7 4 \$26 58 \$2903.9 \$-481.5 \$121 \$157 \$-2554.7 4 \$27 \$9 \$2957.9 \$-481.5 \$122 \$158 \$-2608.7 4 \$28 \$60 \$3011.9 \$-481.5 \$123 \$159 \$-2662.7 4 \$28 \$60 \$3011.9 \$-481.5 \$\$123 \$159 \$-2662.7 4 \$28 \$60 \$3013.7 \$481.5 \$\$123 \$159 \$-2662.7 4 \$30 \$62 \$3013.7 \$481.5 \$\$125 \$161 \$-2770.7 4 \$31 \$63 \$2959.7 \$481.5 \$\$126 \$162 \$-2824.7 4 \$32 \$64 <td>S21</td> <td>53</td> <td>2633.9</td> <td>-481.5</td> <td>S116</td> <td>152</td> <td>-2284.7</td> <td>481.5</td>	S21	53	2633.9	-481.5	S116	152	-2284.7	481.5
S24 56 2795.9 -481.5 S119 155 -2446.7 4 S25 57 2849.9 -481.5 S120 156 -2500.7 4 S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 S122 158 -2608.7 4 S28 60 3011.9 -481.5 S123 159 -2662.7 4 S29 61 3067.7 481.5 S124 160 -2716.7 4 S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5 S127 163 -2878.7 4 S33 65 2851.7 481.5 S128 164 -2932.7 4 S34 66 2797.7 481.5	S22	54	2687.9	-481.5	S117	153	-2338.7	481.5
S25 57 2849.9 -481.5 S120 156 -2500.7 4 S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 S122 158 -2608.7 4 S28 60 3011.9 -481.5 S123 159 -2662.7 4 S29 61 3067.7 481.5 S124 160 -2716.7 4 S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5 S127 163 -2878.7 4 S33 65 2851.7 481.5 S128 164 -2932.7 4 S34 66 2797.7 481.5 S130 166 -3040.7 4 S35 67 2743.7 481.5	S23	55	2741.9	-481.5	S118	154	-2392.7	481.5
S26 58 2903.9 -481.5 S121 157 -2554.7 4 S27 59 2957.9 -481.5 S122 158 -2608.7 4 S28 60 3011.9 -481.5 S123 159 -2662.7 4 S29 61 3067.7 481.5 S124 160 -2716.7 4 S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5 S127 163 -2878.7 4 S33 65 2851.7 481.5 S128 164 -2932.7 4 S34 66 2797.7 481.5 S129 165 -2986.7 4 S35 67 2743.7 481.5 S130 166 -3040.7 4 S36 68 2689.7 481.5	S24	56	2795.9	-481.5	S119	155	-2446.7	481.5
\$27 59 2957.9 -481.5 \$122 158 -2608.7 4 \$28 60 3011.9 -481.5 \$123 159 -2662.7 4 \$29 61 3067.7 481.5 \$124 160 -2716.7 4 \$30 62 3013.7 481.5 \$125 161 -2770.7 4 \$31 63 2959.7 481.5 \$126 162 -2824.7 4 \$32 64 2905.7 481.5 \$127 163 -2878.7 4 \$33 65 2851.7 481.5 \$128 164 -2932.7 4 \$34 66 2797.7 481.5 \$129 165 -2986.7 4 \$35 67 2743.7 481.5 \$130 166 -3040.7 4 \$36 68 2689.7 481.5 \$131 167 -3025.2 - \$37 69 2635.7 481.5	S25	57	2849.9	-481.5	S120	156	-2500.7	481.5
S28 60 3011.9 -481.5 S123 159 -2662.7 4 S29 61 3067.7 481.5 S124 160 -2716.7 4 S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5 S127 163 -2878.7 4 S33 65 2851.7 481.5 S128 164 -2932.7 4 S34 66 2797.7 481.5 S129 165 -2986.7 4 S35 67 2743.7 481.5 S130 166 -3040.7 4 S36 68 2689.7 481.5 S131 167 -3025.2 - S37 69 2635.7 481.5 S132 168 -2971.2 - S38 70 2520.2 481.5	S26	58	2903.9	-481.5	S121	157	-2554.7	481.5
S29 61 3067.7 481.5 S124 160 -2716.7 4 S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5 S127 163 -2878.7 4 S33 65 2851.7 481.5 S128 164 -2932.7 4 S34 66 2797.7 481.5 S129 165 -2986.7 4 S35 67 2743.7 481.5 S130 166 -3040.7 4 S36 68 2689.7 481.5 S131 167 -3025.2 - S37 69 2635.7 481.5 S132 168 -2971.2 - S38 70 2520.2 481.5 S133 169 -2917.2 - S39 71 2466.2 481.5 S134 170 -2863.2 - S41 73 2358.2 <t< td=""><td>S27</td><td>59</td><td>2957.9</td><td>-481.5</td><td>S122</td><td>158</td><td>-2608.7</td><td>481.5</td></t<>	S27	59	2957.9	-481.5	S122	158	-2608.7	481.5
S30 62 3013.7 481.5 S125 161 -2770.7 4 S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5 S127 163 -2878.7 4 S33 65 2851.7 481.5 S128 164 -2932.7 4 S34 66 2797.7 481.5 S129 165 -2986.7 4 S35 67 2743.7 481.5 S130 166 -3040.7 4 S36 68 2689.7 481.5 S131 167 -3025.2 - S37 69 2635.7 481.5 S132 168 -2971.2 - S38 70 2520.2 481.5 S133 169 -2917.2 - S39 71 2466.2 481.5 S134 170 -2863.2 - S40 72 2412.2 481.5 S135 171 -2809.2 - S41 73 2358.2 <t< td=""><td>S28</td><td>60</td><td>3011.9</td><td>-481.5</td><td>S123</td><td>159</td><td>-2662.7</td><td>481.5</td></t<>	S28	60	3011.9	-481.5	S123	159	-2662.7	481.5
S31 63 2959.7 481.5 S126 162 -2824.7 4 S32 64 2905.7 481.5 S127 163 -2878.7 4 S33 65 2851.7 481.5 S128 164 -2932.7 4 S34 66 2797.7 481.5 S129 165 -2986.7 4 S35 67 2743.7 481.5 S130 166 -3040.7 4 S36 68 2689.7 481.5 S131 167 -3025.2 - S37 69 2635.7 481.5 S132 168 -2971.2 - S38 70 2520.2 481.5 S133 169 -2917.2 - S39 71 2466.2 481.5 S134 170 -2863.2 - S40 72 2412.2 481.5 S135 171 -2809.2 - S41 73 2358.2 481.5 S136 172 -2755.2 - S42 74 2304.2 <t< td=""><td>S29</td><td>61</td><td>3067.7</td><td>481.5</td><td>S124</td><td>160</td><td>-2716.7</td><td>481.5</td></t<>	S29	61	3067.7	481.5	S124	160	-2716.7	481.5
\$32 64 2905.7 481.5 \$127 163 -2878.7 4 \$33 65 2851.7 481.5 \$128 164 -2932.7 4 \$34 66 2797.7 481.5 \$129 165 -2986.7 4 \$35 67 2743.7 481.5 \$130 166 -3040.7 4 \$36 68 2689.7 481.5 \$131 167 -3025.2 - \$37 69 2635.7 481.5 \$132 168 -2971.2 - \$38 70 2520.2 481.5 \$133 169 -2917.2 - \$39 71 2466.2 481.5 \$134 170 -2863.2 - \$40 72 2412.2 481.5 \$135 171 -2809.2 - \$41 73 2358.2 481.5 \$136 172 -2755.2 - \$42 74 2304.2 481.5 \$137 173 -2701.2 - \$43 75 2250.2 <t< td=""><td>S30</td><td>62</td><td>3013.7</td><td>481.5</td><td>S125</td><td>161</td><td>-2770.7</td><td>481.5</td></t<>	S30	62	3013.7	481.5	S125	161	-2770.7	481.5
\$33 65 2851.7 481.5 \$128 164 -2932.7 4 \$34 66 2797.7 481.5 \$129 165 -2986.7 4 \$35 67 2743.7 481.5 \$130 166 -3040.7 4 \$36 68 2689.7 481.5 \$131 167 -3025.2 - \$37 69 2635.7 481.5 \$132 168 -2971.2 - \$38 70 2520.2 481.5 \$133 169 -2917.2 - \$39 71 2466.2 481.5 \$134 170 -2863.2 - \$40 72 2412.2 481.5 \$135 171 -2809.2 - \$41 73 2358.2 481.5 \$136 172 -2755.2 - \$42 74 2304.2 481.5 \$137 173 -2701.2 - \$43 75 2250.2 481.5 \$138 174 -2647.2 - \$44 76 2196.2 <t< td=""><td>S31</td><td>63</td><td>2959.7</td><td>481.5</td><td>S126</td><td>162</td><td>-2824.7</td><td>481.5</td></t<>	S31	63	2959.7	481.5	S126	162	-2824.7	481.5
\$34 66 2797.7 481.5 \$129 165 -2986.7 4 \$35 67 2743.7 481.5 \$130 166 -3040.7 4 \$36 68 2689.7 481.5 \$131 167 -3025.2 - \$37 69 2635.7 481.5 \$132 168 -2971.2 - \$38 70 2520.2 481.5 \$133 169 -2917.2 - \$39 71 2466.2 481.5 \$134 170 -2863.2 - \$40 72 2412.2 481.5 \$135 171 -2809.2 - \$41 73 2358.2 481.5 \$136 172 -2755.2 - \$42 74 2304.2 481.5 \$137 173 -2701.2 - \$43 75 2250.2 481.5 \$138 174 -2647.2 - \$44 76 2196.2 481.5 \$139 175 -2593.2 -	S32	64	2905.7	481.5	S127	163	-2878.7	481.5
S35 67 2743.7 481.5 S130 166 -3040.7 4 S36 68 2689.7 481.5 S131 167 -3025.2 - S37 69 2635.7 481.5 S132 168 -2971.2 - S38 70 2520.2 481.5 S133 169 -2917.2 - S39 71 2466.2 481.5 S134 170 -2863.2 - S40 72 2412.2 481.5 S135 171 -2809.2 - S41 73 2358.2 481.5 S136 172 -2755.2 - S42 74 2304.2 481.5 S137 173 -2701.2 - S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S33	65	2851.7	481.5	S128	164	-2932.7	481.5
S36 68 2689.7 481.5 S131 167 -3025.2 - S37 69 2635.7 481.5 S132 168 -2971.2 - S38 70 2520.2 481.5 S133 169 -2917.2 - S39 71 2466.2 481.5 S134 170 -2863.2 - S40 72 2412.2 481.5 S135 171 -2809.2 - S41 73 2358.2 481.5 S136 172 -2755.2 - S42 74 2304.2 481.5 S137 173 -2701.2 - S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S34	66	2797.7	481.5	S129	165	-2986.7	481.5
S37 69 2635.7 481.5 S132 168 -2971.2 - S38 70 2520.2 481.5 S133 169 -2917.2 - S39 71 2466.2 481.5 S134 170 -2863.2 - S40 72 2412.2 481.5 S135 171 -2809.2 - S41 73 2358.2 481.5 S136 172 -2755.2 - S42 74 2304.2 481.5 S137 173 -2701.2 - S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S35	67	2743.7	481.5	S130	166	-3040.7	481.5
\$38\$ 70 2520.2 481.5 \$\$133\$ 169 -2917.2 - \$39\$ 71 2466.2 481.5 \$\$134\$ 170 -2863.2 - \$40 72 2412.2 481.5 \$\$135\$ 171 -2809.2 - \$41 73 2358.2 481.5 \$\$136\$ 172 -2755.2 - \$42 74 2304.2 481.5 \$\$137\$ 173 -2701.2 - \$43 75 2250.2 481.5 \$\$138\$ 174 -2647.2 - \$44 76 2196.2 481.5 \$\$139\$ 175 -2593.2 -	S36	68	2689.7	481.5	S131	167	-3025.2	-481.5
S39 71 2466.2 481.5 S134 170 -2863.2 - S40 72 2412.2 481.5 S135 171 -2809.2 - S41 73 2358.2 481.5 S136 172 -2755.2 - S42 74 2304.2 481.5 S137 173 -2701.2 - S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S37	69	2635.7	481.5	S132	168	-2971.2	-481.5
S40 72 2412.2 481.5 S135 171 -2809.2 - S41 73 2358.2 481.5 S136 172 -2755.2 - S42 74 2304.2 481.5 S137 173 -2701.2 - S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S38	70	2520.2	481.5	S133	169	-2917.2	-481.5
S41 73 2358.2 481.5 S136 172 -2755.2 - S42 74 2304.2 481.5 S137 173 -2701.2 - S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S39	71	2466.2	481.5	S134	170	-2863.2	-481.5
S42 74 2304.2 481.5 S137 173 -2701.2 - S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S40	72	2412.2	481.5	S135	171	-2809.2	-481.5
S43 75 2250.2 481.5 S138 174 -2647.2 - S44 76 2196.2 481.5 S139 175 -2593.2 -	S41	73	2358.2	481.5	S136	172	-2755.2	-481.5
S44 76 2196.2 481.5 S139 175 -2593.2 -	S42	74	2304.2	481.5	S137	173	-2701.2	-481.5
	S43	75	2250.2	481.5	S138	174	-2647.2	-481.5
\$45 77 2142.2 481.5 \$140 176 2520.2	S44	76	2196.2	481.5	S139	175	-2593.2	-481.5
0-0 11 21-2.2 -01.0 01-0 110 -2009.2 -	S45	77	2142.2	481.5	S140	176	-2539.2	-481.5
S46 78 2088.2 481.5 S141 177 -2485.2 -	S46	78	2088.2	481.5	S141	177	-2485.2	-481.5

Universal LCD driver for low multiplex rates

Table 20. Bump locations ...continued

All x/y coordinates represent the position of the center of each bump with respect to the center (x/y = 0) of the chip; see Figure 26.

S47 79 2034.2 481.5 S142 178 -2431.2 -481.5 S48 80 1891.7 481.5 S143 179 -2377.2 -481.5 S49 81 1837.7 481.5 S144 180 -2234.7 -481.5 S50 82 1783.7 481.5 S145 181 -2180.7 -481.5 S51 83 1729.7 481.5 S146 182 -2126.7 -481.5 S52 84 1675.7 481.5 S147 183 -2072.7 -481.5 S53 85 1621.7 481.5 S148 184 -2018.7 -481.5 S54 86 1567.7 481.5 S149 185 -1964.7 -481.5 S55 87 1513.7 481.5 S150 186 -1910.7 -481.5 S56 88 1459.7 481.5 S151 187 -1856.7 -481.5 S57 89	•	=						
S48 80 1891.7 481.5 S143 179 -2377.2 -481.5 S49 81 1837.7 481.5 S144 180 -2234.7 -481.5 S50 82 1783.7 481.5 S145 181 -2180.7 -481.5 S51 83 1729.7 481.5 S146 182 -2126.7 -481.5 S52 84 1675.7 481.5 S147 183 -2072.7 -481.5 S53 85 1621.7 481.5 S148 184 -2018.7 -481.5 S54 86 1567.7 481.5 S149 185 -1964.7 -481.5 S55 87 1513.7 481.5 S150 186 -1910.7 -481.5 S56 88 1459.7 481.5 S151 187 -1856.7 -481.5 S57 89 1405.7 481.5 S152 188 -1802.7 -481.5 S58 90	Symbol	Bump	Χ (μm)	Υ (μm)	Symbol	Bump	Χ (μm)	Υ (μm)
S49 81 1837.7 481.5 S144 180 -2234.7 -481.5 S50 82 1783.7 481.5 S145 181 -2180.7 -481.5 S51 83 1729.7 481.5 S146 182 -2126.7 -481.5 S52 84 1675.7 481.5 S147 183 -2072.7 -481.5 S53 85 1621.7 481.5 S148 184 -2018.7 -481.5 S54 86 1567.7 481.5 S149 185 -1964.7 -481.5 S55 87 1513.7 481.5 S150 186 -1910.7 -481.5 S56 88 1459.7 481.5 S151 187 -1856.7 -481.5 S57 89 1405.7 481.5 S152 188 -1802.7 -481.5 S58 90 1351.7 481.5 S153 189 -1748.7 -481.5 S59 91	S47	79	2034.2	481.5	S142	178	-2431.2	-481.5
\$50 \$82 \$1783.7 \$481.5 \$\$145 \$181 \$\$-2180.7 \$\$-481.5 \$51 \$83 \$1729.7 \$481.5 \$\$146 \$182 \$\$-2126.7 \$\$-481.5 \$52 \$84 \$1675.7 \$481.5 \$\$147 \$183 \$\$-2072.7 \$\$-481.5 \$53 \$85 \$1621.7 \$481.5 \$\$148 \$184 \$\$-2018.7 \$\$-481.5 \$54 \$86 \$1567.7 \$481.5 \$\$149 \$185 \$\$-1964.7 \$\$-481.5 \$55 \$87 \$\$1513.7 \$481.5 \$\$150 \$\$186 \$\$-1910.7 \$\$481.5 \$56 \$88 \$\$1459.7 \$\$481.5 \$\$\$\$151 \$\$187 \$\$-1856.7 \$\$-481.5 \$57 \$89 \$\$1405.7 \$\$481.5 \$\$\$\$152 \$\$188 \$\$-1802.7 \$\$-481.5 \$58 90 \$\$1351.7 \$\$481.5 \$\$\$\$153 \$\$189 \$\$-1748.7 \$\$-481.5 \$59 91 \$\$1297.7 \$\$481.5 \$\$154 \$\$190 <t< td=""><td>S48</td><td>80</td><td>1891.7</td><td>481.5</td><td>S143</td><td>179</td><td>-2377.2</td><td>-481.5</td></t<>	S48	80	1891.7	481.5	S143	179	-2377.2	-481.5
S51 83 1729.7 481.5 S146 182 -2126.7 -481.8 S52 84 1675.7 481.5 S147 183 -2072.7 -481.8 S53 85 1621.7 481.5 S148 184 -2018.7 -481.8 S54 86 1567.7 481.5 S149 185 -1964.7 -481.8 S55 87 1513.7 481.5 S150 186 -1910.7 -481.8 S56 88 1459.7 481.5 S151 187 -1856.7 -481.8 S57 89 1405.7 481.5 S152 188 -1802.7 -481.8 S58 90 1351.7 481.5 S153 189 -1748.7 -481.8 S59 91 1297.7 481.5 S154 190 -1694.7 -481.8 S60 92 1243.7 481.5 S155 191 -1640.7 -481.8 S61 93	S49	81	1837.7	481.5	S144	180	-2234.7	-481.5
S52 84 1675.7 481.5 S147 183 -2072.7 -481.5 S53 85 1621.7 481.5 S148 184 -2018.7 -481.5 S54 86 1567.7 481.5 S149 185 -1964.7 -481.5 S55 87 1513.7 481.5 S150 186 -1910.7 -481.5 S56 88 1459.7 481.5 S151 187 -1856.7 -481.5 S57 89 1405.7 481.5 S152 188 -1802.7 -481.5 S58 90 1351.7 481.5 S153 189 -1748.7 -481.5 S59 91 1297.7 481.5 S154 190 -1694.7 -481.5 S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S6	S50	82	1783.7	481.5	S145	181	-2180.7	-481.5
S53 85 1621.7 481.5 S148 184 -2018.7 -481.3 S54 86 1567.7 481.5 S149 185 -1964.7 -481.3 S55 87 1513.7 481.5 S150 186 -1910.7 -481.3 S56 88 1459.7 481.5 S151 187 -1856.7 -481.3 S57 89 1405.7 481.5 S152 188 -1802.7 -481.3 S58 90 1351.7 481.5 S153 189 -1748.7 -481.3 S59 91 1297.7 481.5 S154 190 -1694.7 -481.3 S60 92 1243.7 481.5 S155 191 -1640.7 -481.3 S61 93 1189.7 481.5 S156 192 -1586.7 -481.3 S62 94 1135.7 481.5 S157 193 -1532.7 -481.3 S63 95 1081.7 481.5 S158 194 -1478.7 -481.3 S6	S51	83	1729.7	481.5	S146	182	-2126.7	-481.5
S54 86 1567.7 481.5 S149 185 -1964.7 -481.5 S55 87 1513.7 481.5 S150 186 -1910.7 -481.5 S56 88 1459.7 481.5 S151 187 -1856.7 -481.5 S57 89 1405.7 481.5 S152 188 -1802.7 -481.5 S58 90 1351.7 481.5 S153 189 -1748.7 -481.5 S59 91 1297.7 481.5 S154 190 -1694.7 -481.5 S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 BP3 196 -1370.7 -481.5 S65	S52	84	1675.7	481.5	S147	183	-2072.7	-481.5
S55 87 1513.7 481.5 S150 186 -1910.7 -481.5 S56 88 1459.7 481.5 S151 187 -1856.7 -481.5 S57 89 1405.7 481.5 S152 188 -1802.7 -481.5 S58 90 1351.7 481.5 S153 189 -1748.7 -481.5 S59 91 1297.7 481.5 S154 190 -1694.7 -481.5 S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66<	S53	85	1621.7	481.5	S148	184	-2018.7	-481.5
S56 88 1459.7 481.5 S151 187 -1856.7 -481.5 S57 89 1405.7 481.5 S152 188 -1802.7 -481.5 S58 90 1351.7 481.5 S153 189 -1748.7 -481.5 S59 91 1297.7 481.5 S154 190 -1694.7 -481.5 S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S54	86	1567.7	481.5	S149	185	-1964.7	-481.5
S57 89 1405.7 481.5 S152 188 -1802.7 -481.5 S58 90 1351.7 481.5 S153 189 -1748.7 -481.5 S59 91 1297.7 481.5 S154 190 -1694.7 -481.5 S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S55	87	1513.7	481.5	S150	186	-1910.7	-481.5
S58 90 1351.7 481.5 S153 189 -1748.7 -481.5 S59 91 1297.7 481.5 S154 190 -1694.7 -481.5 S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S56	88	1459.7	481.5	S151	187	-1856.7	-481.5
S59 91 1297.7 481.5 S154 190 -1694.7 -481.5 S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S57	89	1405.7	481.5	S152	188	-1802.7	-481.5
S60 92 1243.7 481.5 S155 191 -1640.7 -481.5 S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S58	90	1351.7	481.5	S153	189	-1748.7	-481.5
S61 93 1189.7 481.5 S156 192 -1586.7 -481.5 S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S59	91	1297.7	481.5	S154	190	-1694.7	-481.5
S62 94 1135.7 481.5 S157 193 -1532.7 -481.5 S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S60	92	1243.7	481.5	S155	191	-1640.7	-481.5
S63 95 1081.7 481.5 S158 194 -1478.7 -481.5 S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S61	93	1189.7	481.5	S156	192	-1586.7	-481.5
S64 96 1027.7 481.5 S159 195 -1424.7 -481.5 S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S62	94	1135.7	481.5	S157	193	-1532.7	-481.5
S65 97 973.7 481.5 BP3 196 -1370.7 -481.5 S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S63	95	1081.7	481.5	S158	194	-1478.7	-481.5
S66 98 858.2 481.5 BP1 197 -1316.7 -481.5	S64	96	1027.7	481.5	S159	195	-1424.7	-481.5
	S65	97	973.7	481.5	BP3	196	-1370.7	-481.5
S67 99 804.2 481.5	S66	98	858.2	481.5	BP1	197	-1316.7	-481.5
	S67	99	804.2	481.5	-	-	-	-

The dummy bumps are connected to the pins shown in Table 21, but are not tested.

Table 21. Dummy bumps

All x/y coordinates represent the position of the center of each bump with respect to the center (x/y = 0) of the chip; see Figure 26.

Symbol	Connected to pin	Χ (μm)	Υ (μm)
D1	S131	-3079.2	-481.5
D2	S28	3065.9	-481.5
D3	S29	3121.7	481.5
D4	S130	-3094.7	481.5

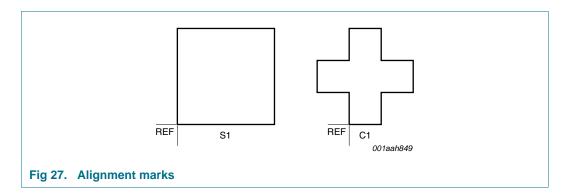
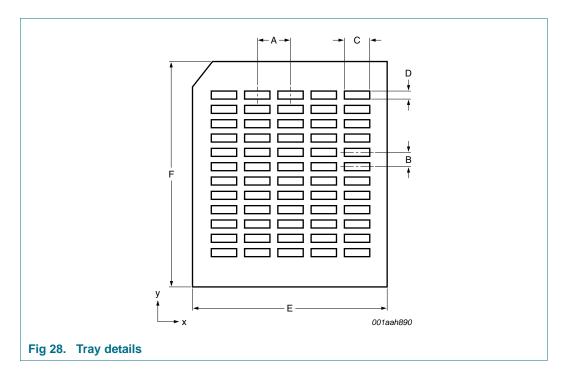

The alignment marks are shown in Table 22.

Table 22. Alignment marks

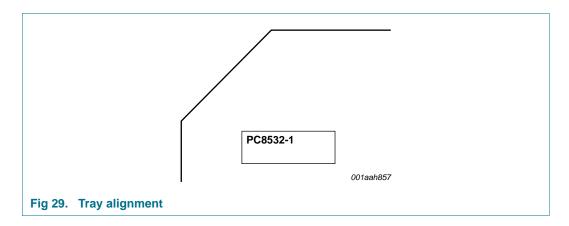
All x/y coordinates represent the position of the REF point (see <u>Figure 27</u>) with respect to the center (x/y = 0) of the chip; see <u>Figure 26</u>.

Symbol	Size (μm)	Χ (μm)	Υ (μm)
S1	121.5 × 121.5	-2733.75	-47.25
C1	121.5 × 121.5	2603.7	-47.25

Universal LCD driver for low multiplex rates



14. Packing information


Table 23. Tray dimensions

Tray details are shown in Figure 28.

Symbol	Description	Value
A	pocket pitch in x direction	8.8 mm
В	pocket pitch in y direction	3.6 mm
С	pocket width in x direction	6.65 mm
D	pocket width in y direction	1.31 mm
E	tray width in x direction	50.8 mm
F	tray width in y direction	50.8 mm
X	number of pockets, x direction	5
у	number of pockets, y direction	12

Universal LCD driver for low multiplex rates

15. Abbreviations

Table 24. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
COG	Chip-On-Glass
НВМ	Human Body Model
I ² C	Inter-Integrated Circuit
ITO	Indium Tin Oxide
LCD	Liquid Crystal Display
LSB	Least Significant Bit
MM	Machine Model
MSB	Most Significant Bit
RAM	Random Access Memory
RMS	Root Mean Square

Universal LCD driver for low multiplex rates

16. References

- [1] AN10170 Design guidelines for COG modules with NXP monochrome LCD drivers
- [2] AN10706 Handling bare die
- [3] AN10853 ESD and EMC sensitivity of IC
- [4] IEC 60134 Rating systems for electronic tubes and valves and analogous semiconductor devices
- [5] IEC 61340-5 Protection of electronic devices from electrostatic phenomena
- [6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
- [7] JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)
- [8] JESD78 IC Latch-Up Test
- [9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
- [10] NX3-00092 NXP store and transport requirements
- [11] UM10204 I²C-bus specification and user manual

Universal LCD driver for low multiplex rates

17. Revision history

Table 25. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
PCF8532 v.2	20110210	Product data sheet	-	PCF8532_1			
Modifications:	 Corrected dr 	awings of Figure 2 and I	igure 26				
	 Added table 	note to Table 9					
	Corrected LCD voltage equations						
	 Reworked sections 						
	 Display RAM 						
	 Data poir 	nter					
	 Subaddre 	ess counter					
 Output bank selector 							
	 Input bank selector 						
PCF8532_1	20090210	Product data sheet	-	-			

Universal LCD driver for low multiplex rates

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

PCF8532

Universal LCD driver for low multiplex rates

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and

transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PCF8532 NXP Semiconductors

Universal LCD driver for low multiplex rates

20. Contents

1	General description	1
2	Features and benefits	
3	Ordering information	
4	Marking	
5	Block diagram	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Functional description	. 5
7.1	Power-on reset	
7.2	LCD bias generator	
7.3	LCD voltage selector	
7.3.1	Electro-optical performance	
7.4	LCD drive mode waveforms	
7.4.1	Static drive mode	
7.4.2	1:2 multiplex drive mode	11
7.4.3	1:3 multiplex drive mode	13
7.4.4	1:4 multiplex drive mode	14
7.5 7.5.1	OscillatorInternal clock	15 15
7.5.1 7.5.2	External clock	15
7.5. <u>2</u> 7.6	Timing and frame frequency	15
7.0 7.7	Display register	15
7.7 7.8	Segment outputs	16
7.9	Backplane outputs	16
7.10	Display RAM	16
7.11	Data pointer	19
7.12	Subaddress counter	19
7.13	Output bank selector	19
7.14	Input bank selector	20
7.15	Blinker	20
7.16	Characteristics of the I ² C-bus	21
7.16.1	Bit transfer	
7.16.2	START and STOP conditions	
7.16.3	System configuration	
7.16.4	Acknowledge	
7.16.5	I ² C-bus controller	
7.16.6	Input filters	
7.16.7	I ² C-bus protocol	
7.17	Command decoder	25
7.18	Display controller	28
8	Internal circuitry	29
9	Limiting values	30
10	Static characteristics	31
11	Dynamic characteristics	33
12	Application information	35

Cascaded operation	35
Bare die outline	39
Packing information	43
Abbreviations	44
References	45
Revision history	46
Legal information	47
Data sheet status	47
Definitions	47
Disclaimers	47
Trademarks	48
Contact information	48
Contents	49

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10 February 2011 Document identifier: PCF8532