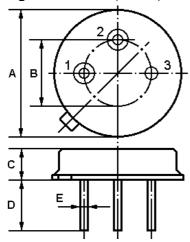


Approved by:
Checked by:
Issued by:


SPECIFICATION

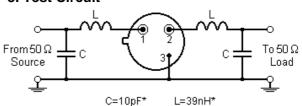
PRODUCT:	SAW	FILTER	
MODEL:	HF43	3 TO-39	

HOPE MICROELECTRONICS CO.,LIMITED

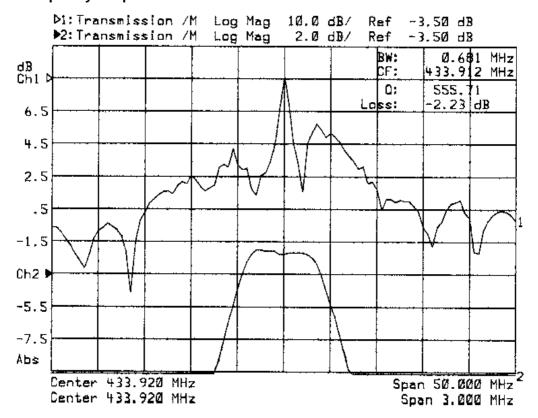
The **HF433** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a low-profile metal **TO-39** case designed to provide front-end selectivity in **433.920** MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

1. Package Dimension (TO-39)

Pin	Configuration
1	Input / Output
2	Output / Input
3	Case Ground


Dimension	Data (unit: mm)
А	9.30±0.20
В	5.08±0.10
С	3.40±0.20
D	3±0.20 / 5±0.20
E	0.45±0.20

2. Marking


HF433

Color: Black or Blue

3. Test Circuit

4. Typical Frequency Response

5. Performance

5-1.Maximum Rating

Rating		Value	Unit
CW RF Power Dissipation	Р	+10	dBm
DC Voltage Between Any Two Pins	V_{DC}	± 30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	
Operating Temperature Range	T_{A}	-10 to +60	

5-2. Electronic Characteristics

Characteristic			Minimum	Typical	Maximum	Units
Center Frequency (center frequency between 3dB points)		$f_{\mathbb{C}}$		433.920		MHz
Insertion Loss		IL		3.5	5.0	dB
3dB Bandwidth		BW_3		600	900	kHz
Rejection	at f _C -21.4MHz (Image)		40	50		
	at f _C -10.7MHz (LO)		20	30		dB
	Ultimate			60		
	Turnover Temperature	T_{O}	25		55	
Temperature	Turnover Frequency	f_{O}		fc		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50 test system with VSWR 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@hoperf.com.