

2-Mbit (256K x 8) Static RAM

Features

■ Very High-speed: 45 ns

■ Temperature ranges

☐ Industrial: —40 °C to 85 °C ☐ Automotive-A: —40 °C to 85 °C

■ Wide voltage range: 2.20 V to 3.60 V

■ Pin compatible with CY62138CV25/30/33

■ Ultra low standby power

Typical standby current: 1 μA

Maximum standby current: 5 μA

■ Ultra low active power

□ Typical active current: 1.6 mA at f = 1 MHz

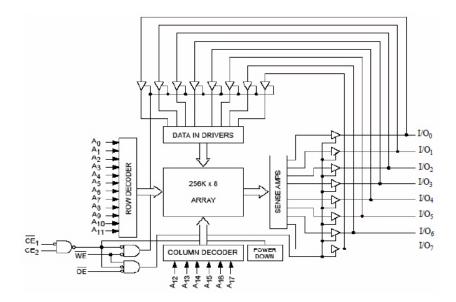
■ Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} Features

■ Automatic power down when deselected

 complementary metal oxide semiconductor (CMOS) for Optimum speed and power

■ Offered in Pb-free 36-Ball VFBGA, 32-Pin TSOP II, 32-Pin SOIC, 32-Pin TSOP I and 32-Pin STSOP Packages

Functional Description


The CY62138FV30^[1] is a high performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption. Place the device into <u>sta</u>ndby mode reducing power consumption when deselected (CE_1 HIGH or CE_2 LOW).

To write to the device, take Chip Enable (\overline{CE}_1 LOW and CE_2 HIGH) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₇).

To read from the device, take Chip Enable ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

The eight input and output pins (I/O $_0$ through I/O $_7$) are placed in a high impedance state when the device is deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW and \overline{CE}_2 HIGH and \overline{WE} LOW).

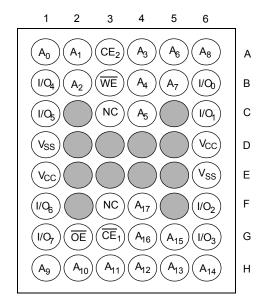
Logic Block Diagram

Note

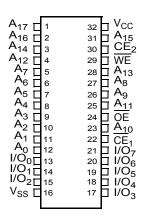
1. For best practice recommendations, refer to the Cypress application note "System Design Guidelines" at http://www.cypress.com.

CY62138FV30 MoBL®

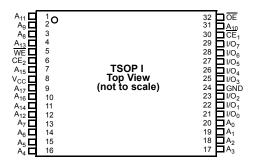
Contents

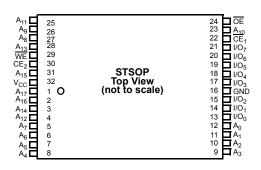

Pin Configuration	3
Product Portfolio	
Maximum Ratings	
Electrical Characteristics	
Capacitance	
Thermal Resistance	
Data Retention Characteristics	
Switching Characteristics	
Switching Waveforms	7
Truth Table	
Ordering Information	

Ordering Code Definition	9
Package Diagrams	
Acronyms	
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	16
Products	
PSoC Solutions	16



Pin Configuration


36-Ball VFBGA (Top View) [2]


32-Pin SOIC/TSOP II (Top View)

32-Pin TSOP I (Top View)

32-Pin STSOP (Top View)

Product Portfolio

	Range							Power D	issipatio	n	
Product		V _{CC} Range (V)		Speed (ns)	C	perating	I _{CC} (mA	.)	Standby	Iona (uA)	
				, ,	f = 1 MHz		f = f _{max}		Standby I _{SB2} (μA)		
		Min	Typ ^[3]	Max		Typ ^[3]	Max	Typ ^[3]	Max	Typ ^[3]	Max
CY62138FV30LL	Ind'I/Auto-A	2.2	3.0	3.6	45	1.6	2.5	13	18	1	5

NC pins are not connected on the die.

^{3.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Ambient temperature with

Supply voltage to ground potential-0.3 V to 3.9 V

DC voltage applied to outputs in High-Z State $^{[4,\ 5]}$ -0.3 V to 3.9 V

DC input voltage [4, 5]	0.3 V to 3.9 V
Output current into outputs (LOW)	20 mA
Static Discharge Voltage(MIL-STD-883, Method 3015)	> 2001 V
Latch-up current	> 200 mA

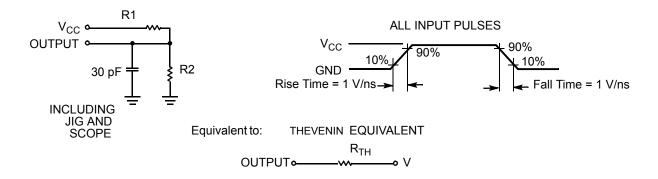
Product	Range	Temperature	
CY62138FV30LL	Ind'l/Auto-A	–40 °C to +85 °C	2.2 V to 3.6 V

Electrical Characteristics (Over the Operating Range)

Davamatan	Description.	Took Conditions	45	Unit		
Parameter	Description	Test Conditions	Min	Typ [7]	Max	Oill
V _{OH}	Output HIGH voltage	I _{OH} = -0.1 mA	2.0	_	_	V
		I_{OH} = -1.0 mA, $V_{CC} \ge 2.70 \text{ V}$	2.4	_	_	V
V _{OL}	Output LOW voltage	I _{OL} = 0.1 mA	_	_	0.4	V
		I _{OL} = 2.1 mA, V _{CC} ≥ 2.70 V		_	0.4	V
V _{IH}	Input HIGH voltage	V _{CC} = 2.2 V to 2.7 V	1.8	_	V _{CC} + 0.3V	V
		V _{CC} = 2.7 V to 3.6 V	2.2	_	V _{CC} + 0.3V	V
V_{IL}	Input LOW voltage	V _{CC} = 2.2 V to 2.7 V For BGA package	-0.3	_	0.6	V
		V _{CC} = 2.7 V to 3.6 V	-0.3	_	0.8	V
		V _{CC} = 2.2 V to 3.6 V For other packages	-0.3	_	0.6	V
I _{IX}	Input leakage current	$GND \le V_1 \le V_{CC}$	-1	_	+1	μΑ
I _{OZ}	Output leakage current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ & \text{output disabled} \end{aligned}$	-1	_	+1	μА
I _{CC}	V _{CC} Operating supply current	$f = f_{max} = 1/t_{RC}$ $V_{CC} = V_{CCmax}$	_	13	18	mA
		f = 1 MHz	_	1.6	2.5	
I _{SB1} ^[8]	Automatic CE Power-down Current CMOS inputs	$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or } \text{CE}_2 \le 0.2 \text{ V},$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}, \text{V}_{\text{IN}} \le 0.2 \text{ V},$ $\text{f} = \text{f}_{\text{max}} \text{ (address and data only)},$ $\text{f} = 0 (\overline{\text{OE}}, \text{ and } \overline{\text{WE}}), \text{V}_{\text{CC}} = 3.60 \text{ V}$	_	1	5	μА
I _{SB2} ^[8]	Automatic CE Power-down Current CMOS inputs	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V},$ $f = 0, V_{CC} = 3.60 \text{ V}$	_	1	5	μА

Capacitance

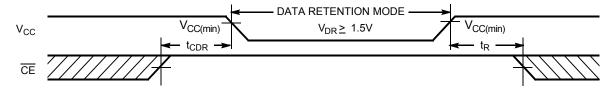
Parameter ^[9]	Description	Description Test Conditions		
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1 \text{ MHz}$,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	10	pF


- 4. $V_{IL(min)} = -2.0V$ for pulse durations less than 20 ns.
- 5. $V_{IH(max)} = V_{CC} + 0.75V$ for pulse durations less than 20 ns.
- 6. Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
- 7. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25 °C
- 8. Chip enables $(\overline{CE}_1 \text{ and } CE_2)$ must be at CMOS level to meet the $I_{SB1}/I_{SB2}/I_{CCDR}$ spec. Other inputs can be left floating.
- 9. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance

Parameter ^[10]	Description	Test Conditions	SOIC	VFBGA	TSOP II	STSOP	TSOP I	Unit
Θ_{JA}	(Junction to Ambient)	Still air, soldered on a 3 x 4.5 inch, two layer	44.53	38.49	44.16	59.72	50.19	°C/W
Θ _{JC}	Thermal resistance (Junction to Case)	printed circuit board	24.05	17.66	11.97	15.38	14.59	°C/W

Figure 1. AC Test Loads and Waveforms



Parameter	2.5 V (2.2 V to 2.7 V)	3.0 V (2.7 V to 3.6 V)	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions			Typ [11]	Max	Unit
V_{DR}	V _{CC} for data retention			1.5	_	_	V
I _{CCDR} [12]	Data retention current	$V_{CC} = 1.5 \text{ V},$ $\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2$ $V, V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	Ind'I/Auto-A	_	1	4	μΑ
t _{CDR} [10]	Chip deselect to data retention time			0	_	-	ns
t _R ^[13]	Operation recovery time			45	_	_	ns

Figure 2. Data Retention Waveform [14]

- 10. Tested initially and after any design or process changes that may affect these parameters.
- 11. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 2.5^{\circ}C$
- 12. Chip enables (\overline{CE}_1) and (\overline{CE}_2) must be at CMOS level to meet the $|_{SB1}/|_{SB2}/|_{CCDR}$ spec. Other inputs can be left floating
- 13. Full device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \,\mu s$ or stable at $V_{CC(min)} \ge 100 \,\mu s$. 14. \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

Switching Characteristics (Over the Operating Range)

Parameter ^[15]	December 1	45 ns (Ind	l'I/Auto-A)	1114
Parameter	Description	Min	Max	Unit
Read Cycle				•
t _{RC}	Read cycle time	45	_	ns
t _{AA}	Address to data valid	_	45	ns
t _{OHA}	Data hold from address change	10	-	ns
t _{ACE}	CE₁ LOW and CE₂ HIGH to data valid	_	45	ns
t _{DOE}	OE LOW to data valid	_	22	ns
t _{LZOE}	OE LOW to Low-Z [16]	5	_	ns
t _{HZOE}	OE HIGH to High-Z [16,17]	_	18	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z [16]	10	_	ns
t _{HZCE}	$\overline{\text{CE}}_1$ HIGH or CE_2 LOW to High-Z $^{[16,17]}$	-	18	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-up	0	_	ns
t _{PD}	CE₁ HIGH or CE₂ LOW to Power-down	_	45	ns
Write Cycle ^[18]	•			•
t _{WC}	Write cycle time	45	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35	_	ns
t _{AW}	Address setup to write end	35	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to Write Start	0	_	ns
t _{PWE}	WE pulse Width	35	-	ns
t _{SD}	Data setup to write end	25	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to High-Z [16,17]	_	18	ns
t _{LZWE}	WE HIGH to Low-Z [16]	10	_	ns

^{15.} Test conditions for all parameters other than tristate parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} as shown in the AC Test Loads and Waveforms on page 5.

^{16.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.

^{17.} t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enters a high impedance state.

^{18.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. Reference the data input setup and hold timing to the edge of the signal that terminates the write.

Switching Waveforms

Figure 3. Read Cycle 1 (Address transition controlled) [20, 21]

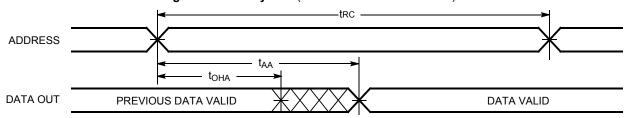


Figure 4. Read Cycle No. 2 $(\overline{OE} \text{ controlled})^{[21, 22, 25]}$

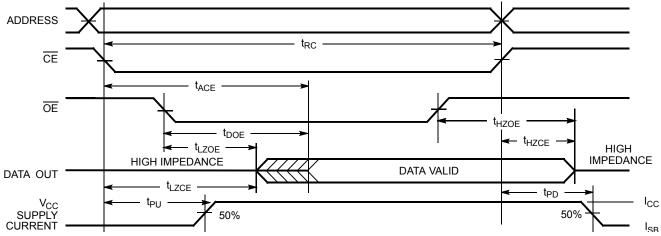
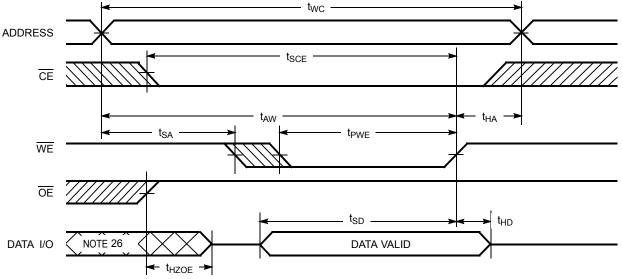



Figure 5. Write Cycle No. 1 (WE controlled) [19, 23, 24, 25]

- 19. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. Reference the data input setup and hold timing to the edge of the signal that terminates the write
- 20. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
- 21. $\overline{\text{WE}}$ is HIGH for read cycle.
- 22. Address valid before or similar to $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.
- 23. Data I/O is high impedance if $\overline{\text{OE}}$ = V_{IH}.
- 24. If $\overline{\text{CE}}_1$ goes HIGH or CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in high impedance state.
- 25. $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.
- 26. During this period, the I/Os are in output state. Do not apply input signals

Switching Waveforms (continued)

Figure 6. Write Cycle No. 2 (CE1 or CE2 controlled) [27, 28, 29, 30]

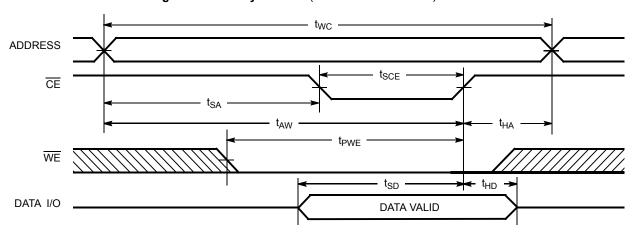
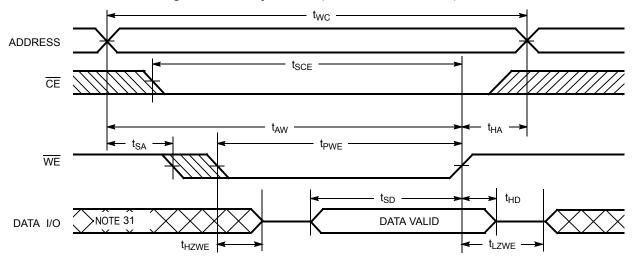
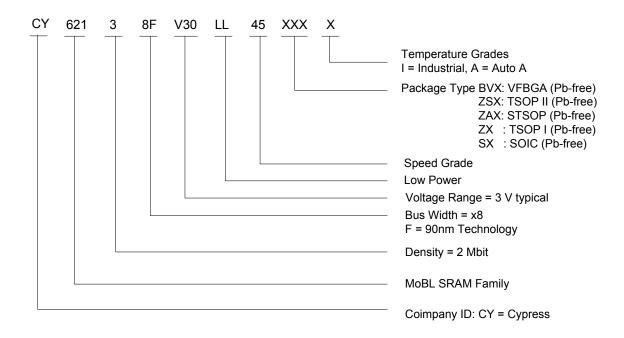



Figure 7. Write Cycle No. 3 (WE controlled, OE LOW) [27, 30]

Truth Table

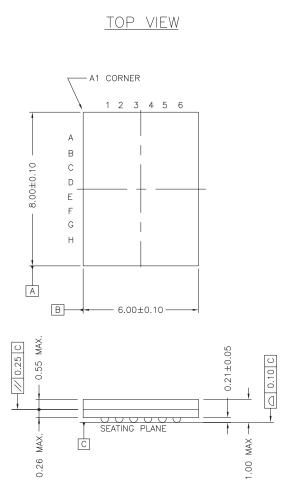
CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	X ^[32]	Х	Х	High-Z	Deselect / Power-down	Standby (I _{SB})
X ^[32]	L	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data out	Read	Active (I _{CC})
L	Н	Н	Н	High-Z	Output disabled	Active (I _{CC})
L	Н	L	Х	Data in	Write	Active (I _{CC})

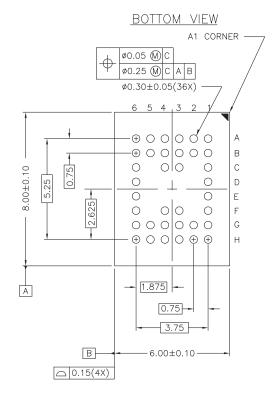
- 27. \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.


 28. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{IL}$, and $\overline{CE}_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. Reference the data input setup and hold timing to the edge of the signal that terminates the write
- 29. Data I/O is high impedance if $\overline{OE} = V_{IH}$. 30. If $\overline{\text{CE}}_1$ goes $\overline{\text{HIGH}}$ or $\overline{\text{CE}}_2$ goes LOW simultaneously with $\overline{\text{WE}}$ HIGH, the output remains iin high impedance state.
- 31. During this period, the I/Os are in output state. <u>Do</u> not apply input signals.
- 32. The 'X' (Don't care) state for the Chip enables (CE₁ and CE₂) in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

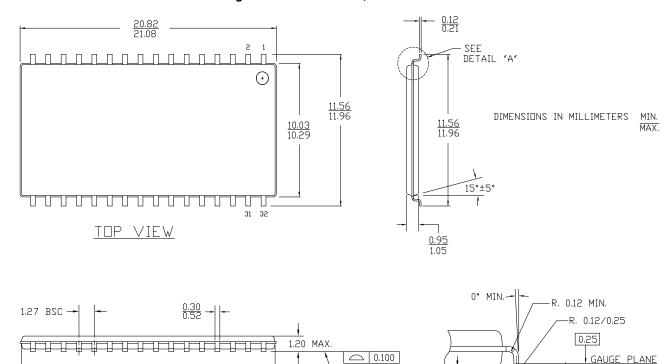
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62138FV30LL-45BVXI	51-85149	36-ball VFBGA (Pb-free)	Industrial
	CY62138FV30LL-45ZSXI	51-85095	32-pin TSOP II (Pb-free)	
	CY62138FV30LL-45ZAXI	51-85094	32-pin STSOP (Pb-free)	
	CY62138FV30LL-45ZXI	51-85056	32-pin TSOP I (Pb-free)	
	CY62138FV30LL-45SXI	51-85081	32-pin SOIC (Pb-free)	
	CY62138FV30LL-45ZAXA	51-85094	32-pin STSOP (Pb-free)	Automotive-A


Ordering Code Definition



Package Diagrams

Figure 8. 36-Ball VFBGA (6 x 8 x 1 mm), 51-85149



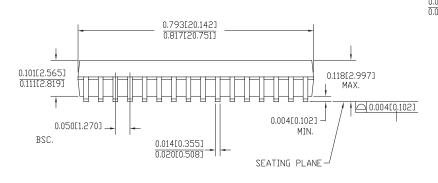
51-85149 *D

Figure 9. 32-Pin TSOP II, 51-85095

SEATING PLANE

51-85095 *A

0°-5°



16 1 0.546[13.868] 0.566[14.376] 0.440[11.176] 0.450[11.430] 17 32

Figure 10. 32-Pin (450 Mil) Molded SOIC, 51-85081

DIMENSIONS IN INCHES[MM] MIN. MAX. PACKAGE WEIGHT 1.42gms

PART #
S32.45 STANDARD PKG.
SZ32.45 LEAD FREE PKG.

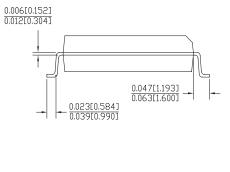
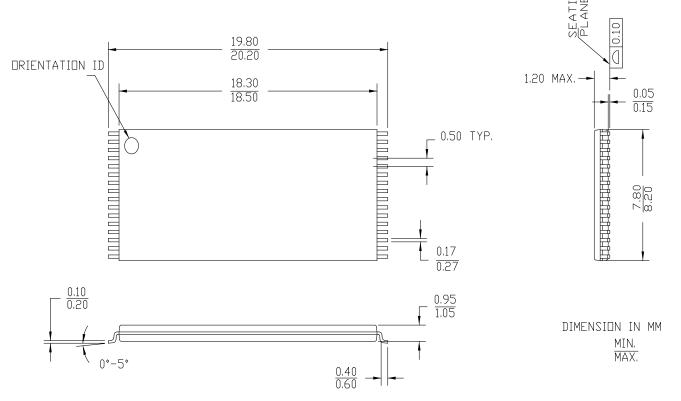



Figure 11. 32-Pin TSOP I (8 x 20 mm), 51-85056

51-85056 * E

DIMENSION IN MM 13.20 13.60 MIN. MAX. 1.20 - $\frac{11.70}{11.90}$ MAX. $\frac{0.05}{0.15}$ 0.50 DRIENTATION ID -TYP. 0.17 0.23 0.95 1.05 0.21 MAX. SEATING PLANE □ 0.10MM 0°-5° 0.25 0.675 MIN. GAUGE PLANE

Figure 12. 32-Pin STSOP (8 x 13.4 mm), 51-85094

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
I/O	input/output
SRAM	static random access memory
VFBGA	very fine ball grid array
TSOP	thin small outline package

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degrees Celsius	
μΑ	microamperes	
mA	milliampere	
MHz	megahertz	
ns	nanoseconds	
pF	picofarads	
V	volts	
Ω	ohms	
W	watts	

51-85094 * E

Document History Page

Documo Documo	Document Title: CY62138FV30 MoBL [®] , 2-Mbit (256K x 8) Static RAM Document Number: 001-08029					
Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change		
**	463660	See ECN	NXR	New data sheet		
*A	467351	See ECN	NXR	Added 32-pin TSOP II package, 32 pin TSOP I and 32 pin STSOP packages Changed ball A3 from NC to CE ₂ in 36-ball FBGA pin out		
*B	566724	See ECN	NXR	Converted from Preliminary to Final Corrected typo in 32 pin TSOP II pin configuration diagram on page #2 (changed pin 24 from CE ₁ to OE and pin 22 from CE to CE ₁) Changed the I _{CC(max)} value from 2.25 mA to 2.5 mA for test condition f=1 MHz Changed the I _{SB2(typ)} value from 0.5 μ A to 1 μ A Changed the I _{SB2(max)} value from 2.5 μ A to 5 μ A Changed the I _{CCDR(typ)} value from 0.5 μ A to 1 μ A and I _{CCDR(max)} value from 2.5 μ A to 4 μ A		
*C	797956	See ECN	VKN	Added 32-pin SOIC package Updated VIL spec for SOIC, TSOP-II, TSOP-I, and STSOP packages on Electrical characteristics table		
*D	809101	See ECN	VKN	Corrected typo in the Ordering Information table		
*E	940341	See ECN	VKN	Added footnote #7 related to I _{SB2} and I _{CCDR}		
*F	2769239	09/25/09	VKN/AESA	Included Automotive-A information		
*G	3055119	10/12/2010	RAME	Updated and converted all tablenotes into Footnote Added Acronyms and Units of Measure table Added Ordering Code Definition Updated All Package Diagrams. Updated datasheet as per new template.		
*H	3061313	10/15/2010	RAME	Minor changes: Corrected "IO" to "I/O"		
*	3078557	11/04/2010	RAME	Corrected 55 C to -55C in Ambient Temperature with Power applied in Maximum Ratings Section		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturers representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc

cypress.com/go/plc
Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-08029 Rev. *I

Revised November 4, 2010

Page 16 of 16