Small Signal MOSFET

25 V, 0.75 A, Single, N–Channel, ESD Protection, SC–70/SOT–323

Features

- Advance Planar Technology for Fast Switching, Low RDS(on)
- Higher Efficiency Extending Battery Life
- This is a Pb–Free Device

Applications

- Boost and Buck Converter
- Load Switch
- Battery Protection

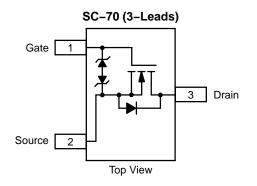
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

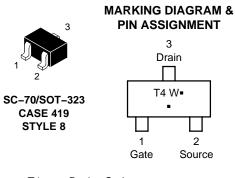
Rating			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	25	V
Gate-to-Source Voltage			V _{GS}	±8.0	V
Drain Current	t < 5 s	$T_A = 25^{\circ}C$	I _D	0.75	А
Continuous Drain Current	Steady $T_A = 25^{\circ}C$		Ι _D	0.7	А
(Note 1)	State	$T_A = 75^{\circ}C$		0.6	
Power Dissipation (Note 1)	Stead	dy State	PD	0.28	W
Power Dissipation (Note 1)	t≤	≤ 5 s	PD	0.33	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	3.0	А
Operating Junction and Sto	T _J , T _{STG}	–55 to +150	°C		
Source Current (Body Diod	۱ _S	0.3	А		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			Τ _L	260	°C
ESD Rating – Machine Model				250	V

THERMAL RESISTANCE RATINGS

Rating	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	450	°C/W
Junction-to-Ambient – t \leq 5 s (Note 1)	R_{\thetaJA}	375	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


- 1. Surface mounted on FR4 board using 1 in sq pad size
 - (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

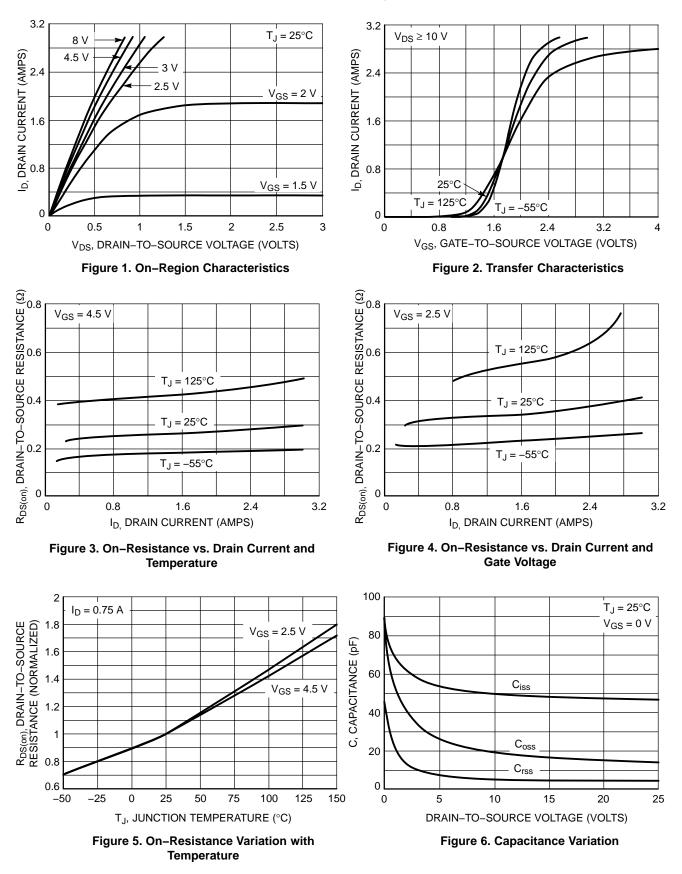
http://onsemi.com

V _{(BR)DSS} R _{DS(on)} Typ		I _D Max
25 V	249 mΩ @ 4.5 V	0.75 A
	299 mΩ @ 2.7 V	0.73 A

W = Work Week

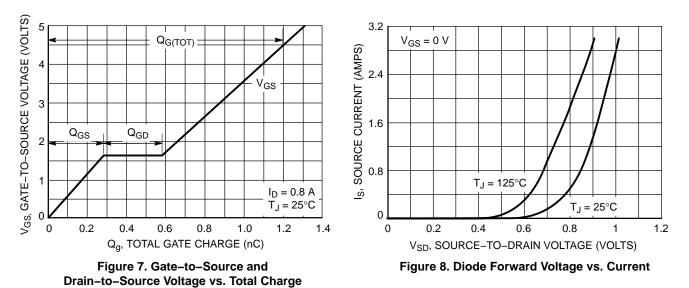
- = Pb-Free Package
- (Note: Microdot may be in either location)

ORDERING INFORMATION


Device	Package	Shipping [†]
NTS4409NT1G	SOT-323 (Pb-Free)	3000/Tape & Reel

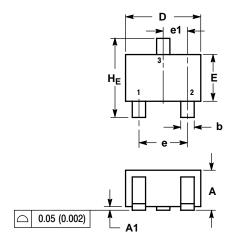
⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	·				•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				30		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		$T_J = 25^{\circ}C$			0.5	μΑ
		V _{GS} = 0 V, V _{DS} = 20 V	$T_J = 70^{\circ}C$			2.0	
		103 201	T _J = 125°C			5.0	
Gate-to-Source Leakage Current	I _{GSS}	$V_{\text{DS}} = 0 \text{ V}, \text{ V}_{\text{C}}$	_{GS} = 8.0 V			100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$		0.65		1.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 4.5 V, I _D = 0.6 A			249	350	mΩ
		$V_{GS} = 2.7 \text{ V}, I_D = 0.2 \text{ A}$			299	400	
		V_{GS} = 4.5 V, I _D = 1.2 A			260		
Forward Transconductance	9fs	$V_{DS} = 5.0 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$			0.5		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				49	60	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = V _{DS} = 1	1.0 MHz, 0 V		22.4	30	
Reverse Transfer Capacitance	C _{RSS}	. 52			8.0	12	
Total Gate Charge	Q _{G(TOT)}				1.2	1.5	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V	ns = 15 V,		0.2		
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = 0.3$	8 Å		0.28	0.50	
Gate-to-Drain Charge	Q _{GD}				0.3	0.40	
SWITCHING CHARACTERISTICS (No	ote 3)						
Turn–On Delay Time	t _{d(ON)}				5.0	12	ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 0.7 A, R_{G} = 51 Ω			8.2	8.0	
Turn-Off Delay Time	t _{d(OFF)}				23	35	
Fall Time	t _f				41	60	
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $I_{S} = 0.6 A$	$T_J = 25^{\circ}C$		0.82	1.20	V

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)


TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

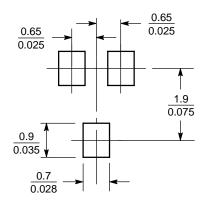
http://onsemi.com 4

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE M

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

DIM	MIN		MILLIMETERS			INCHES		
		NOM	MAX	MIN	NOM	MAX		
Α	0.80	0.90	1.00	0.032	0.035	0.040		
A1	0.00	0.05	0.10	0.000	0.002	0.004		
A2	0.7 REF			0.028 REF				
b	0.30	0.35	0.40	0.012	0.014	0.016		
С	0.10	0.18	0.25	0.004	0.007	0.010		
D	1.80	2.10	2.20	0.071	0.083	0.087		
E	1.15	1.24	1.35	0.045	0.049	0.053		
е	1.20	1.30	1.40	0.047	0.051	0.055		
e1	0.65 BSC				0.026 BSC			
L	0.425 REF			0.017 REF				
HE	2.00	2.10	2.40	0.079	0.083	0.095		


SOLDERING FOOTPRINT*

С

STYLE 8: PIN 1. GATE 2. SOURCE 3. DRAIN

¥

A2

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and images are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product care as suitability of there personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.