
TetraFET

DMD1006 DMD1006-A

ROHS COMPLIANT METAL GATE RF SILICON FET

MECHANICAL DATA

DIM	Millimetres	Tol.	Inches	Tol.
A	19.43	0.13	0.765	0.005
В	9.78	0.13	0.385	0.005
С	9.40	0.10	0.370	0.004
D	45°	5°	45°	5°
E	1.63R	0.13	0.064R	0.005
F	27.94	0.13	1.100	0.005
G	12.70	0.13	0.500	0.005
Н	1.57	0.13	0.062	0.005
I	34.04	0.13	1.340	0.005
J	1.01	0.13	0.040	0.005
K	19.94	0.25	0.785	0.009
L	0.10	0.25	0.004	0.002
М	4.24	0.25	0.167	0.01

GOLD METALLISED MULTI-PURPOSE SILICON **DMOS RF FET** 150W – 28V – 175MHz SINGLE ENDED

FEATURES

- SUITABLE FOR BROAD BAND APPLICATIONS
- SIMPLE BIAS CIRCUITS
- ULTRA-LOW THERMAL RESISTANCE
- BeO FREE
- LOW C_{rss}
- HIGH GAIN 15 dB MINIMUM

APPLICATIONS

 HF/VHF/UHF COMMUNICATIONS from 1 MHz to 200 MHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

PD	Power Dissipation	438W (219W - A Version)
BV _{DSS}	Drain – Source Breakdown Voltage	70V
BV _{GSS}	Gate – Source Breakdown Voltage	±20V
I _{D(sat)}	Drain Current	30A
T _{stg}	Storage Temperature	–65 to 150°C
Tj	Maximum Operating Junction Temperature	200°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

DMD1006 DMD1006-A

Test Conditions Min. Unit Parameter Тур. Max. Drain-Source BV_{DSS} $V_{GS} = 0$ $I_{D} = 100 \text{mA}$ 70 V Breakdown Voltage Zero Gate Voltage $V_{DS} = 28V$ $V_{GS} = 0$ 6 mΑ IDSS **Drain Current** $V_{GS} = 20V$ $V_{DS} = 0$ Gate Leakage Current 1 μΑ IGSS $V_{DS} = V_{GS}$ Gate Threshold Voltage* $I_D = 10 mA$ 1 7 V V_{GS(th)} $V_{DS} = 10V$ Forward Transconductance* $I_D = 6A$ S 4.8 9_{fs} **Common Source Power Gain** $P_{O} = 150W$ 15 dB G_{PS} **Drain Efficiency** $V_{DS} = 28V$ $I_{DQ} = 1.2A$ 50 % η VSWR Load Mismatch Tolerance f = 175MHz 20:1 ____ $V_{GS} = -5V f = 1MHz$ Input Capacitance $V_{DS} = 0V$ 360 pF Ciss C_{oss} f = 1MHz**Output Capacitance** V_{DS} = 28V $V_{GS} = 0$ 180 pF **Reverse Transfer Capacitance** V_{DS} = 28V $V_{GS} = 0$ f = 1MHz15 pF Crss


ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

* Pulse Test: Pulse Duration = $300 \ \mu s$, Duty Cycle $\leq 2\%$

THERMAL DATA

R _{THi-case}	Thermal Resistance Junction – Case	Max. 0.4°C / W
,		0.8 °C / W -A Version

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

DMD1006 DMD1006-A

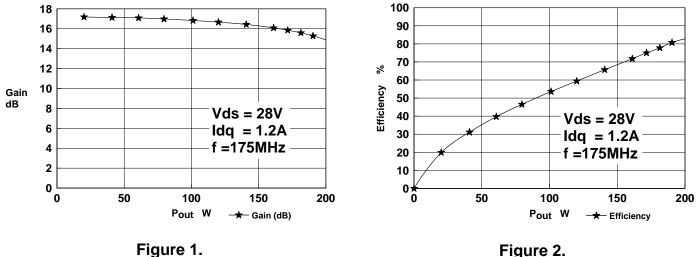
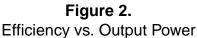



Figure 1. Gain vs.Output Power

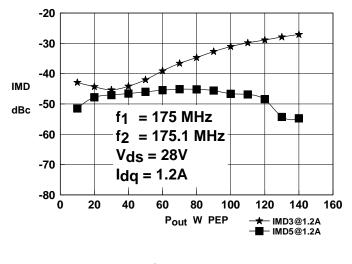


Figure 3. IMD vs Output Power

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

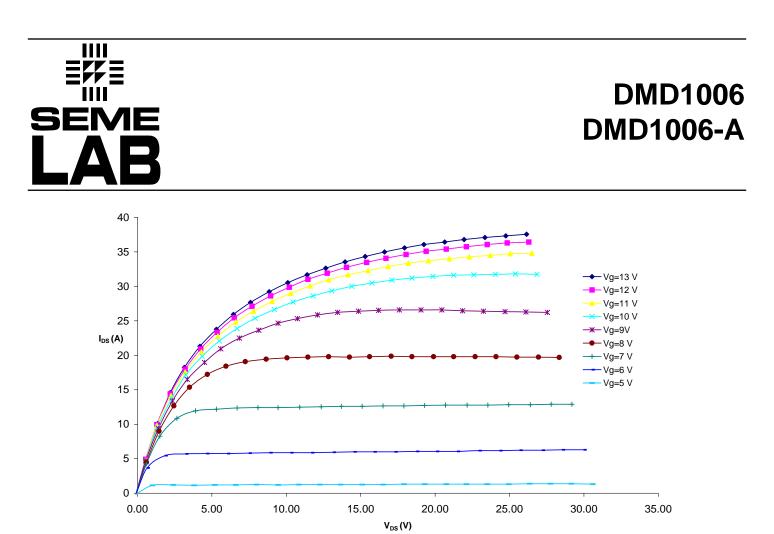
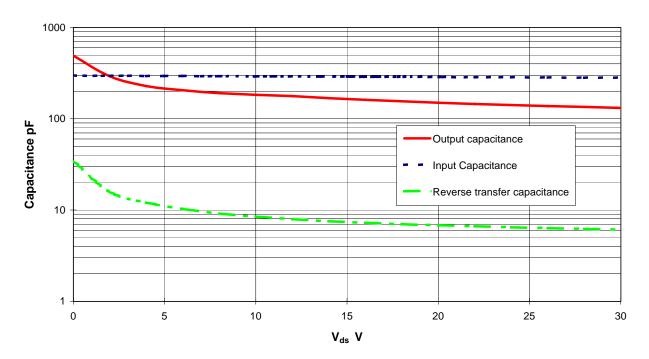
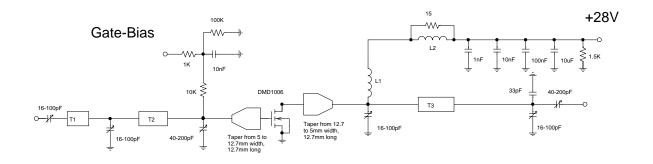



Figure 4 – Typical IV Characteristics.



Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

DMD1006 DMD1006-A

175 MHz Test Fixture

Substrate 1.6mm PTFE/glass, Er = 2.5 All microstrip lines W = 5mm

- T1 7.5mm
- T2 16mm
- T3 20mm
- L1 9 turns 20swg encamelled copper wire, 6mm i.d.
- L2 11 turns 19swg enamelled copper wire on Fair-Rite FT82 ferrite core

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.