
TetraFET

DMD1009 DMD1009-A

ROHS COMPLIANT METAL GATE RF SILICON FET

MECHANICAL DATA

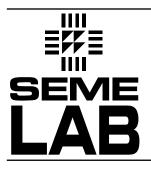
PIN 3 GATE 1 PIN 5

DIM	Millimetres	Tol.	Inches	Tol.
Α	15.24	0.50	0.600	0.020
В	10.80	0.13	0.425	0.005
С	45°	5°	45°	5°
D	9.78	0.13	0.385	0.005
E	8.38	0.13	0.330	0.005
F	27.94	0.13	1.100	0.005
G	1.52R	0.13	0.060R	0.005
Н	10.16	0.15	0.400	0.006
I	21.84	0.23	0.860	0.009
J	0.10	0.02	0.004	0.001
K	1.96	0.13	0.077	0.005
М	1.02	0.13	0.040	0.005
Ν	4.45	0.38	0.175	0.015
0	34.04	0.13	1.340	0.005
Р	1.63R	0.13	0.064R	0.005

GOLD METALLISED MULTI-PURPOSE SILICON **DMOS RF FET** 150W – 28V – 500MHz **PUSH-PULL**

FEATURES

- SUITABLE FOR BROAD BAND APPLICATIONS
- SIMPLE BIAS CIRCUITS
- ULTRA-LOW THERMAL RESISTANCE
- BeO FREE
- LOW Crss
- HIGH GAIN 12 dB MINIMUM


APPLICATIONS

 VHF/UHF COMMUNICATIONS from 1 MHz to 500 MHz

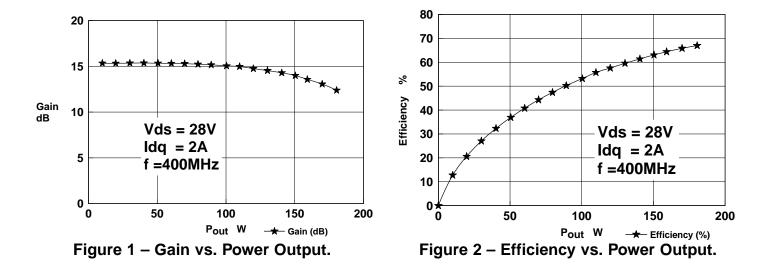
P _D	Power Dissipation	648W (389W -A Version)
BV _{DSS}	Drain – Source Breakdown Voltage *	70V
BV _{GSS}	Gate – Source Breakdown Voltage*	±20V
I _{D(sat)}	Drain Current*	20A
T _{stg}	Storage Temperature	–65 to 150°C
Тj	Maximum Operating Junction Temperature	200°C

* Per Side

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
	PER SIDE						
BV _{DSS}	Drain–Source Breakdown Voltage	V _{GS} = 0	I _D = 100mA	70			V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 28V	V _{GS} = 0			4	mA
I _{GSS}	Gate Leakage Current	$V_{GS} = 20V$	$V_{DS} = 0$			1	μA
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V
9 _{fs}	Forward Transconductance*	V _{DS} = 10V	I _D = 4A	3.2			mhos
V _{GS(th)m}	Gate Threshold Voltage atch Matching Between Sides	I _D = 1A	V _{DS} = V _{GS}			0.1	V
	TOTAL DEVICE						
G _{PS}	Common Source Power Gain	P _O = 150W		12			dB
η	Drain Efficiency	V _{DS} = 28V	I _{DQ} = 2A	50			%
VSWR	Load Mismatch Tolerance	f = 400MHz		20:1			_
PER SIDE							
C _{iss}	Input Capacitance	$V_{DS} = 28V$	$V_{GS} = -5V f = 1MHz$			240	pF
C _{oss}	Output Capacitance	V _{DS} = 28V	$V_{GS} = 0$ f = 1MHz			100	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 28V	$V_{GS} = 0$ f = 1MHz			10	pF


* Pulse Test: Pulse Duration = 300 μs , Duty Cycle $\leq 2\%$

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max. 0.27°C / W
		0.45 °C / W -A Versior
		<u> </u>

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

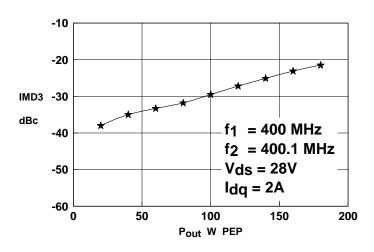
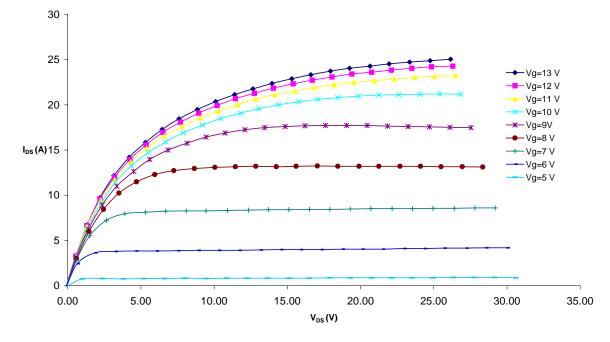
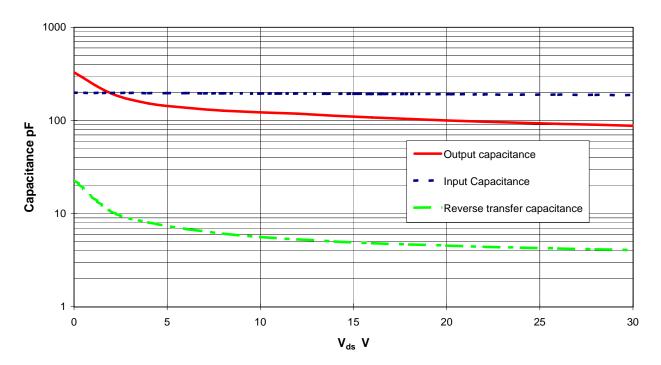
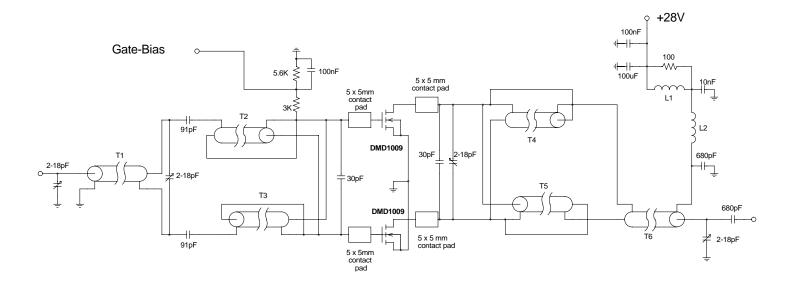


Figure 3 – IMD vs. Power Output

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.


Figure 4 – Typical IV Characteristics.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

DMD1009 TEST FIXTURE

Substrate 1.6mm PTFE/ glass, Er= 2.5 All microstrip lines W= 4.4mm

- T112cm 50Ω UT85 semi-rigid coax on ferrite coreT2,37.5cm 15Ω UT85-15 semi-rigid coaxT4,57cm 15Ω UT85-15 semi-rigid coax
- T6 11cm 50Ω UT85 semi-rigid coax on ferrite core
- L1 6.5 turns 25swg enamelled copper wire on Fair-Rite FT50B-43 core
- L2 6.5 turns 25swg enamelled copper wire, 4mm internal diameter

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.