

1

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

LS2051 (also refer to LS4051) is high performance eight bit microcomputer designed and

manufactured by our company and is compatible with MCS-51 instruction set, and its internal

function, pin function, pin configuration, and electrical characteristics of pins are compatible

with AT89C2051. LS2051 supports simultaneous operation of two independent or associated

programs. The performance when only one program is executed is 1.27 times of that of

AT89C2051, and the processing capacity is 2.55 times of AT89C2051 when two programs are

executed simultaneously.

Features

 Compatible with MCS-51 instruction set，pins are compatible with AT89C2051.

 2/4KB internal flash program memory, Endurance: 2000 times erase/write cycles.

 3.0V to 5.5V operating range.

 0Hz to 24 MHz frequencies.

 Two-level of Encryption of Program Memory.

 128×8B internal SRAM.

 15 programmable I/O ports，20mA sink current，drives LED directly.

 Six interrupt sources.

 Two 16-bit timer and counter.

 One programmable UART.

 SPI programming interface.

 One high-resolution on-chip Analog Comparator.

 Low power idle and power-down modes.

Description
LS2051 contains 2K bytes of program memory (LS4051 contains 4K bytes), 128 byte of

data memory (SRAM), two 16-bit timer/counter, one five-vector secondary interrupt

architecture , a single-kernel for execute two programs, fifteen IO ports, a full duplex serial port,

a high-accuracy on-chip analogy comparator, oscillator and clock circuitry.

The operating range of LS2051 is 0Hz to 24MHz, and supports the idle power saving

mode and the power-down power saving mode which are software selectable. The idle mode

stops the CPU, while allowing the SRAM, timer/counter, serial port and interrupt machine and

the power-down system to continue functioning. The power-down mode saves the SRAM

contents but freezes oscillator and turns all the internal clocks off.

LS2051 achieves the function of double kernels, that is, it can execute one programming

singly, and it can also execute associated or non-associated two programs concurrently. The

performance of executing one program is 1.27 times of compatible chips, and that of

www.DataSheet4U.com

2

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

processing two programs can reach 2.55 times of compatible chips at most.

Pin Description
Pin configuration and its multiplexing function of LS2051 are as Figure 1.

Figure 1: LS2051 Pin Configuration

 VCC：Supply voltage

 GND：Ground

 P1 port: an eight-bit programmable bi-directional I/O port. Pin P1.2 to P1.7 provide

internal pull-ups. P1.0 and P1.1 serve as the positive input (AIN0) and the negative input

(AIN1) of the on-chip comparator and with no internal pull-up, one can add pull-ups for

the pins if needed. P1 port output buffer can absorb 20mA current and can drive LED

directly. A pin of P1 can be used as input only after “1” is written into the pin; A pin can

output “1” or “0” when “1” or “0” is written into the pin. P1 port is used as inputting port

when chip is reset . When pins P1.2 to P1.7 are taken as inputting and are pulled down,

they will produce original current because of their inside pull-up resistance (IIL). When

programming, P1.5, P1.6 and P1.7 should correspond to programming interface signal,

SPI-MOSI, SPI-MISO and SPI-CLK. Note that 4.7K ohm pull-up resistance should be

added when the speed of I/O port is over 40 KHz.

 P3 port: P3.0 to P3.5, P3.7 are seven bi-directional I/O pins with internal pull-ups, P3.6

is the output of the on-chip comparator and is not connected outside the LS2051. Port 3’s

output buffer can sink 20mA and can drive LED directly. A pin of P3 can be used as

input only after “1” is written into the pin; A pin can output “1” or “0” when “1” or “0” is

written into the pin. P3 port is used as inputting port when chip is reset. When used as

inputs, Port 3 pins are externally being pulled down and will produce current (IIL).

www.DataSheet4U.com

3

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

Multiplexing function of P3 port is shown in Table 1. Note that 4.7K ohm pull-up

resistance should be added when the speed of I/O port is over 40 KHz.

Port pin Alternate Functions

P3.0 RXD（serial input port）

P3.1 TXD（serial output port）

P3.2 0INT （external interrupt 0）

P3.3 1INT （external interrupt 1）

P3.4 T0 （timer 0 input）

P3.5 T1 （timer 1 input）

Table 1: Special Functions of Port P3

 RST: Reset input. High is active, after power-on or power-down mode of chips, chips

can execute smoothly only when the reset signal of 1s must be kept over 100us. Under

other circumstance, holding the RST pin high for two machines cycle can reset the chip.

Each machine cycle takes 12 oscillator or clock cycles.

 XTAL1: Input to the inverting amplifier of the internal oscillator and input to the internal

clock generating circuit.

 XTAL2: Output from the inverting amplifier of the internal oscillator.

Clock Characteristics
Either quartz crystal or ceramic resonator may be used, as figure 2. XTAL1 is the input of

external clock. When external clock is used, XTAL2 is left unconnected, as Figure 3. There is a

divider inside LS2051 to perform the function of dividing-by-two and forming for output clock of

internal oscillator or for external input clock from pins. Therefore there is no special

requirement for external input clock, but it is must be in accordance with current and

alternating standards of clock signal.

Fig 2: Clock Circuitry Using Internal Oscillator Fig 3: Connection of External Clock

www.DataSheet4U.com

4

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

When quartz crystal is adopted： C1,C2=30pF±10pF.

When ceramic resonator is adopted ：C1,C2=40pF±10pF.

Special Function Registers
The memory map for special function register (SFR) is shown in Table 2. The blank bytes

are not defined in this version. They will return indeterminate values when being read.

Addr B0 B1 B2 B3 B4 B5
B

6
B7 Addr

0F8H 0FFH

0F0H
B

00000000
 0F7H

0E8

H

0EF

H

0E0

H

ACC

00000000
 0E7H

0D8

H

0DF

H

0D0

H

PSW

00000000

0D7

H

0C8

H

0CF

H

0C0

H

0C7

H

0B8

H

IP

XXX0000

0

0BF

H

0B0

H

P3

11111111

0B7

H

0A8

H

IE

0XX0000

0

0AF

H

0A0

H

0A7

H

98H
SCON

00000000

SBUF

XXXXXXX

X

 9FH

w w w . D a t a S h e e t 4 U . c o m

5

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

90H
P1

11111111
 97H

88H
TCON

00000000

TMOD

00000000

TL0

00000000

0

TL1

0000000

0

TH0

0000000

0

TH1

0000000

0

 8FH

80H
SP

00000111

DPL

00000000

DPH

0000000

0

PCON

0XXX000

0

87H

Table 2: SFR Map and Reset Values

Note: IE ‘s d7 bit of Special Register is the interrupt enable bit for the main or first program,

and d6 bit is the interrupt enable bit for the second program.

 Restriction on Some Instructions
The instruction system of LS2051 is compatible with MCS-51, but one should pay

attention to the following two restrictions when using LS2051 to develop application programs.

1、MOVX Related Instructions, Data Memory

The internal data memory of LS2051 is 128 bytes, the depth of stack is 128bytes,

accessing to the external data memory is not supported in LS2051, nor is the external program

memory. Therefore, no MOVX related instructions should be included in application programs.

A typical 51 assembler will still assemble such instructions even if they read and/or write

external memories. Users should know the physical features and limitations of LS2051 and

adjust instructions correspondingly.

2、Branching Instructions

The unconditional branching instructions , such as LCALL, LJMP, ACALL, AJMP, SJMP

and JMP @A+DPTR, are executed correctly only when the destination branching addresses

fall within 000H to 7FF, otherwise programs might go wrong.

The restrictions of conditional branching instructions, such as CJNE, DJNZ, JB, JNB, JC,

JNC, JBC, JZ and JNZ, are the same as that of unconditional branching instructions.

Other Restrictions
 The reset time should be over 100us when chips are power-on and/or waked from

power-down mode.

 It won’t response to an interrupt when the interrupt service for the interrupt is suspended.

 If idle mode is entered during an interrupt is being served, the idle mode can not be

waked up by the interrupt.

www.DataSheet4U.com

6

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

 Both programs have their own ACC、B、DPTR、PSW and SP, but the main program (the

first program) has 32 general registers while the second has 8. It should be pay more

attention to the stack operations in the development of the second program.

 The design of the main program is completely the same as that of AT89C2051. If the

second program is not used, an LS2051 is totally compatible with AT89C2051.

 The interrupt processing of LS2051 is more active and effective than that of AT89C2051

because of the peculiar second program processing engine of LS2051. If the interrupt for

the main program is enabled while the interrupt for the second program is not enabled,

the main program will deal with all the interrupts. If the interrupts for both programs are

enabled and the second program has not been started to execute or not been designed,

both programs may deal with interrupts, this is automatically arranged by the chip itself.

 Once the second program is started to execute, it won’t be interrupted.

 When an interrupt comes, LS2051 jumps into the interrupt service routine before the

current instruction is done, while 89C2051 is after the current instruction is done.

 Pay more attention to the possible confliction for public resources when two programs

are employed.

 The baud rate of LS2051’s Serial way 0 is Fosc/24, and the baud rate of serial way 2 is

Fosc/64 and Fosc/128, while that in 89C2051 are Fosc/12, Fosc/32 and Fosc/64.

 If P1 port and P3 port are used to input/output in a rate over 40 KHz, the ports should be

pulled up with external resistances of 4.7K.

Program Memory Lock Bit
On the chip are two lock bits which can be left un-programmed (U) or can be programmed

(P) to obtain program lock, as shown in Figure 3, lock bit can be turned to invalidation only by

erasing .

LB1 LB2 Function

U U No program lock

P U
Further the programming of Flash is

disabled

P P
Further the programming of Flash is

disabled, also verify is disabled.

Figure 3: Program Lock of LS2051

www.DataSheet4U.com

7

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

Work mode

1、Idle mode

Idle state can be entered through program instructions, and can be terminated by any

enable interrupt or a hardware reset. While in idle state, CPU stops to work, but allowing

SRAM, timer/counter, serial ports and interrupt system to continue to function. P1.0 and P1.1

should be set to “0” if no external pull-ups are used, or set to “1” if external pull-ups are used to

decrease further power consumption.

It should be noted that when idle state is terminated by a hardware reset, the chip

normally resumes to work after two machine cycles of the reset. During this time, internal

SRAM is inhibited to access, but the port pins are not inhibited. To eliminate the possibility of

an unexpected write to a port pin when Idle is terminated by reset, the instruction following the

one that invokes to enter an idle state should not be to write to a port pin.

2. Power-down mode

A power-down state can be entered through program instructions, and can be terminated

by hardware reset. In the power down state, the oscillator is stopped, and the instruction that

invokes power down is the last instruction executed. The on-chip SRAM and Special Function

Registers retain their values during the power down state. Reset redefines the SFRs but does

not change the on-chip SRAM. The reset signal is invalid until VCC is restored to its normal

operating level, and the reset signal must be held active long enough to allow the oscillator to

restart and stabilize. P1.0 and P1.1 should be set to “0” if no external pull-ups are used, or set

to “1” if external pull-ups are used, this can help to decrease power consumption.

Programming the Flash
LS2051 uses SPI protocol to programming the flash. And special programming driver and

cables are also provided.

LS2051’s SPI interfaces will not provide read operation to the internal flash in order to

strengthen the security of user’s application software.

SPI Programming Agreement

SPI interface of LS2051 includes RST, SCK(P1.7), MOSI(P1.5) and MISO(P1.6) signals ,

as Figure 5.

Chips are in programmable state when reset input RST is “1”. At this time it can send

programming instructions and codes through SCK and MOSI, MOSI is programming fault

indication. Chips are in normal operating state when the reset signal is “0”.

www.DataSheet4U.com

8

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

Figure 5: Flash Programming Interface Signals

SPI adopts synchronous serial way to sending byte data, its timing sequence is as Figure

6.

Figure 6: SPI Interface Sequence

When a LS2051 is in programming state, serial data carried by MOSI are sampled at the

up edge of SCK, the successive eight bits are set to be one byte, and the seventh bit of a byte

is transmitted first.

MISO is the verifying output. LS2051 will verify each byte of data. When a byte is failed to

pass the verification, MISO will output “1” until next correct verification, and MISO will output

“0”.

Programming order

 Write Flash: the sequence of order code is AA-50-AX-AY-data. When SPI interface

receives these five bytes successively, chips enter Flash writing operation. The first byte

AA and the second byte 50 are order codes, the third byte is high 6-bit address of Flash,

the fourth byte is low 6-bit address of Flash, and the fifth byte is data to be input.

 Erase Flash：Order code sequence AA-8A or AA-E4. LS2051allows to erase whole 2KB

Flash space. When SPI receives these two bytes successively, chips enter sequence of

Flash erasing operation: the first byte is AA, and the second byte is 8A or E4.

 LS2051’s SPI does not support read operation to Flash in order to strength lock

performance.

www.DataSheet4U.com

9

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

Erasing Sequence of Flash

When SPI receives the order code AA and 8A, chips enter the flash erasing sequence, the

sequence is shown in Figure 7. The order code AA and 8A must be transmitted successively ,

any other information should not be inserted. Other order codes should not sent to SPI

interface during the erasing period, otherwise it will cause failure of erasing operation.

 Erasing order Erasing

Figure 7: Erasing Sequence of Flash

Writing sequence of Flash

When SPI receives AA-50-AX-AY-data bytes, chips enter the flash writing sequence.

Order codes should be transmitted successively, any other information should not be inserted.

The flash writing sequence is shown in Figure 8. During the writing period, the other order

codes should not be transmitted to SPI interface, or it will cause failure of writing operation.

There will be auto-verification after finishing writing a byte. If it is correct, MOSI will output 0, if

not, MOSI will output 1. The failure of some byte’s writing will not affect the writing operation of

following bytes, but rewriting of the byte will not succeed.

 Write order write address write data

Figure 8: Flash Sequence

www.DataSheet4U.com

10

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

Limit Parameter
The LS2051’s limit parameters is as Table 4.

Operating temperature -40℃ to +85℃

Storage temperature -60℃ to +125℃

Voltage on Pin with Respect

to Ground
-1.0V to +7.0V

VCC 6.6V

ICC 25.0mA

Table 4: LS2051 Limit Parameters

Current characteristic
LS2051’s direct current characteristic is as Table 5.

Sym Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.2 Vcc - 0.1 V

VIH Input High-voltage (Except XTAL1, RST)
0.2 Vcc +

0.9
Vcc + 0.5 V

VIH1 Input High-voltage (XTAL1, RST) 0.7 Vcc Vcc + 0.5 V

VOL Output Low-voltage Iol = 20 mA, Vcc = 5V 0.5 V

VOH Output High-voltage Ioh = -80 μA, Vcc = 5V*10% 2.4 V

IIL Logical 0 Input Current Vin = 0.45V -50 μA

ITL
Logical 1 to 0 Transition

Current
Vin = 2V, Vcc = 5V*10% -750 μA

ILI Input Leakage Current 0 < Vin < Vcc 　10 μA

VOS
Comparator Input Offset

Voltage
Vcc= 5V 20 mV

VCM
Comparator Input

Common Mode Voltage
 0 Vcc V

RRST Reset Pull-down Resistor 30 70 KΩ

CIO Pin Capacitance Test Freq. = 1 MHz, TA = 25°C 10 pF

ICC Power Supply Current Active Mode, 12 MHz, Vcc=5V 20 mA

Table 5: Current Parameters of LS2051

www.DataSheet4U.com

11

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

Notes ：

Under the stable circumstance (not instant), IOL is restricted the following

 The max allowable value of each port IOL is 20mA.

 The max sum of all the output port IOL is 80mA.

 If IOL exceeds test condition allowable value, and then VOL may exceed allowable value

by relatively, but it can guarantee port value will exceed value gained from test condition

as in Table 5.

Instruction set
 Mnemonics definition table

In order to convenience the description to LS2051, the mnemonics are as table 6.

Mnemonics Description

Rn Register R7±R0 of the currently selected Register Bank.

Direct 8-bit internal data location's address. This could be an Internal Data RAM location (0±127)

or a SFR [i.e., I/O port, control register, status register, etc. (128±255)].

@Ri 8-bit internal data RAM location (0±255) addressed indirectly through register R1 or R0.

#data 8-bit constant included in instruction.

#data16 16-bit constant included in instruction.

Addr16 16-bit destination address. Used by LCALL & LJMP. A branch can be anywhere within the

64K-byte Program Memory address space.

Addr11 11-bit destination address. Used by ACALL & AJMP. The branch will be within the same

2K-byte page of program memory as the first byte of the following instruction

Rel Signed (two's complement) 8-bit offset byte. Used by SJMP and all conditional jumps.

Range is b128 to a127 bytes relative to first byte of the following instruction.

bit Direct Addressed bit in Internal Data RAM or Special Function Register.

Table 6: Mnemonics Descriptions

Instructions

LS2051 instructions and their operations are show in Table 7.

Instruction Byte
Oscillator

Period
Description

ARITHMETIC OPERATIONS

1 ADD A,Rn 1 12 Add register to Accumulator

2 ADD A,direct 2 12 Add direct byte to Accumulator

3 ADD A,@Ri 1 12 Add indirect RAM to Accumulator

4 ADD A,#data 2 12 Add immediate data to Accumulator

www.DataSheet4U.com

12

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

5 ADDC A,Rn 1 12 Add register to Accumulator with Carry

6 ADDC A,direct 2 12 Add direct byte to Accumulator with Carry

7 ADDC A,@Ri 1 12 Add indirect RAM to Accumulator with Carry

8 ADDC A,#data 2 12 Add immediate data to Acc with Carry

9 SUBB A,Rn 1 12 Subtract Register from Acc with borrow

10 SUBB A,direct 2 12 Subtract direct byte from Acc with borrow

11 SUBB A,@Ri 1 12 Subtract indirect RAM from ACC with borrow

12 SUBB A，#data 2 12 Subtract immediate data from Acc with borrow

13 INC A 1 12 Increment Accumulator

14 INC Rn 1 12 Increment register

15 INC direct 2 12 Increment direct byte

16 INC @Ri 1 12 Increment direct RAM

17 INC DPTR 1 12 Increment Data Pointer

18 DEC A 1 12 Decrement Accumulator

19 DEC Rn 1 12 Decrement Register

20 DEC direct 2 12 Decrement direct byte

21 DEC @Ri 1 12 Decrement indirect RAM

22 MUL AB 1 12 Multiply A & B

23 DIV AB 1 12 Divide A by B

24 DA A 1 12 Decimal Adjust Accumulator

LOGICAL OPERATIONS

25 ANL A,Rn 1 12 AND Register to Accumulator

26 ANL A,direct 2 12 AND direct byte to Accumulator

27 ANL A,@Ri 1 12 AND indirect RAM to Accumulator

28 ANL A,#data 2 12 AND immediate data to Accumulator

29 ANL direct,A 2 12 AND Accumulator to direct byte

30 ANL direct,#data 3 12 AND immediate data to direct byte

31 ORL A,Rn 1 12 OR register to Accumulator

32 ORL A,direct 2 12 OR direct byte to Accumulator

33 ORL A,@Ri 1 12 OR indirect RAM to Accumulator

34 ORL A,#data 2 12 OR immediate data to Accumulator

35 ORL direct,A 2 12 OR Accumulator to direct byte

36 ORL direct,#data 3 12 OR immediate data to direct byte

37 XRL A,Rn 1 12 Exclusive-OR Register to Accumulator

38 XRL A,direct 2 12 Exclusive-OR direct byte to Accumulator

39 XRL A,@Ri 1 12 Exclusive-OR indirect RAM to Accumulator

40 XRL A,#data 2 12 Exclusive-OR immediate data to Accumulator

41 XRL direct,A 2 12 Exclusive-OR Accumulator to direct byte

www.DataSheet4U.com

13

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

42 XRL direct,#data 3 12 Exclusive-OR immediate data to direct byte

43 CLR A 1 12 Clear Accumulator

44 CPL A 1 12 Complement Accumulator

45 RL A 1 12 Rotate Accumulator Left

46 RLC A 1 12 Rotate Accumulator Left through the Carry

47 RR A 1 12 Rotate Accumulator Right

48 RRC A 1 12 Rotate Accumulator Right through the Carry

49 SWAP A 1 12 Swap nibbles within the Accumulator

DATA TRANSFER

50 MOV A,Rn 1 12 Move register to Accumulator

51 MOV A,direct 2 12 Move direct byte to Accumulator

52 MOV A,@Ri 1 12 Move indirect RAM to Accumulator

53 MOV A,#data 2 12 Move immediate data to Accumulator

54 MOV Rn，A 1 12 Move Accumulator to register

55 MOV Rn,direct 2 12 Move Accumulator to register

56 MOV Rn,gdata 2 12 Move Accumulator to register

57 MOV direct,A 2 12 Move Accumulator to direct byte

58 MOV direct,Rn 2 12 Move register to direct byte

59 MOV direct1, direct2 3 12 Move direct2 byte to direct1

60 MOV direct,@Ri 2 12 Move indirect RAM to direct byte

61 MOV direct,#data 3 12 Move immediate data to direct byte

62 MOV @Ri,A 1 12 Move Accumulator to indirect RAM

63 MOV @Ri,direct 2 12 Move direct byte to indirect RAM

64 MOV @Ri,#data 2 12 Move direct byte to indirect RAM

65 MOV DPTR, #data16 3 12 Load Data Pointer with a 16-bit constant

66 MOVC A,

@A+DPTR
1 24 Move Code byte relative to DPTR to Acc

67 MOVC A, @A+PC 1 24 Move Code byte relative to PC to Acc

68 PUSH direct 2 12 Push direct byte onto stack

69 POP direct 2 12 Pop direct byte from stack

70 XCH A,Rn 1 12 Exchange register with Accumulator

71 XCH A,direct 2 12 Exchange direct byte with Accumulator

72 XCH A,@Ri 1 12 Exchange indirect RAM with Accumulator

73 XCHD A,@Ri 1 12 Exchange low-order Digit indirect RAM with Acc

BOOLEAN VARIABLE MANIPULATION

74 CLR C 1 12 Clear Carry

75 CLR bit 2 12 Clear direct bit

76 SETB C 1 12 Set Carry

www.DataSheet4U.com

14

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

77 SETB bit 2 12 Set direct bit

78 CPL C 1 12 Complement Carry

79 CPL bit 2 12 Complement direct bit

80 ANL C,bit 2 12 AND direct bit to CARRY

81 ANL C,/bit 2 12 AND complement of direct bit to Carry

82 ORL C,bit 2 12 OR direct bit to CARRY

83 ORL C,/bit 2 12 OR complement of direct bit to Carry

84 MOV C,bit 2 12 Move direct bit to Carry

85 MOV bit,C 2 12 Move Carry to direct bit

86 JC rel 2 12 Jump if Carry is set

87 JNC rel 2 12 Jump if Carry is not set

88 JB bit,rel 3 12 Jump if direct Bit is set

89 JNB bit,rel 3 12 Jump if direct Bit is not set

90 JBC bit,rel 3 12 Jump if direct Bit is set & clear bit

PROGRAM BRANCHING

91 ACALL addr11 2 12 Absolute Subroutine Call

92 LCALL addr16 3 12 Long Subroutine Call

93 RET 1 12 Return from Subroutine

94 RETI 1 12
Return from interrupt (Program 1). Stop running

(Program 2)

95 AJMP addr11 2 12 Absolute Jump (2K)

96 LJMP addr16 3 12 Long Jump (64K)

97 SJMP rel 2 12 Short Jump (relative addr, -128～+127bytes)

98 JMP @A+DPTR 1 12 Jump indirect relative to the DPTR

99 JZ rel 2 12 Jump if Accumulator is Zero

100 JNZ rel 2 12 Jump if Accumulator is not Zero

101 CJNE A,direct,rel 3 12 Compare direct byte to Acc and Jump if Not Equal

102 CJNE A,#data,rel 3 12 Compare immediate to Acc and Jump if Not Equal

103 CJNE Rn, #data, rel 3 12 Compare immediate to register and Jump if Not Equal

104 CJNE @Ri, #data,

rel
3 12 Compare immediate to indirect and Jump if Not Equal

105 DJNZ Rn,rel 2 12 Decrement register and Jump if Not Zero

106 DJNZ direct,rel 3 12 Decrement direct byte and Jump if Not Zero

107 NOP 1 12 No Operation

INSTRUCTIONS REALETED TO CONCURRENT PROGRAMS

MOV 0FEH,#data 3 12 Program 2 Stops Running

MOV 0FCH,#addr8 3 12
Jump and Set the Synchronizing-bit to be One if the

Synchronizing-bit is Zero

www.DataSheet4U.com

15

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

MOV 0FBH,#addr8 3 12
Jump and Set the Synchronizing-bit to be Zero if the

Synchronizing-bit is not Zero

MOV 0FFH,#addr8 3 12 Load Program 2 to execute (Start Address is addr8)

MOV 0FDH, #1 3 12 Set the Synchronizing-bit to be One

MOV 0FDH, #0 3 12 Set the Synchronizing-bit to be Zero

Table 7: LS2051Instruction Set

Examples for Two programs to Execute Concurrently
1. The sample program for running two programs concurrently: two programs execute

their own algorithms to calculate something concurrently, and then the results will be added up

to produce the final results. The final result will be then output through P1 port. The final results

are 07H, 38H, 39H, 07H, 07H, 04H, 0BH. The program is as follows.

MAIN: ； Major program executes in the first path

MOV 0FFH,#ROAD1 ； Turn program in the first path on

MOV A,#2 ；A=2

ADD A,#5 ；A=7

INC A ；A=8

SUBB A,#4 ；A=4

MOV R0,A

MOV 0FBH,#$ ； Judge whether synchronous flag is 1, if it is 1, then continue

; to execute; if it is 0, then execute this statement always.

MOV A,12H

MOV P1,A ；A=7

MOV A,R0

MOV P1,A ；Output from P1 port, A=4

ADD A,12H ；A=0BH

MOV P1,A ； Output from P1 port

AJMP $ ； Program in the first path cycles here

ROAD1: ；The entrance address of program in the second path

MOV A,#7 ；A=7

MOV P1,A ；Output from P1 port

MOV B,#8

www.DataSheet4U.com

16

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

MUL AB ；B=0 A=56

MOV P1,A

INC A ；A=57

MOV P1,A

SUBB A,#50 ；A=7

MOV P1,A

MOV 12H,A

MOV 0FDH,#1 ；Set synchronous flag to be 1

RETI ；The second program ends. This can be replaced by MOV 0FEH

; # instant number.

2. Play two songs by two programs concurrently: the main program play the song

(named Sweet Olive Blooming in August) edited by C language, and the output port is P1.0.

The second program play the song named Happy Birthday, assembled by assembler, and

output through Port P1.1. The example includes the following programs: music_c_asm.c,

road1.a51, loadp.a51.

Sweet Olive Blooming in August: music_c_asm.c:

extern void loadp(void)；

#include <reg2051.h>

#include <intrins.h>

// crystal applied in this example is 11.0592MHZ

unsigned char n=0; //n is beat constant variable

unsigned char temp_th1=0,temp_tl1=0;

unsigned char code music_tab[] =

{ //format is：frequency constant, beat constant, frequency constant, beat constant.

0x18, 0x30, 0x1C , 0x10, 0x20, 0x40, 0x1C , 0x10,

0x18, 0x10, 0x20 , 0x10, 0x1C, 0x10, 0x18 , 0x40,

0x1C, 0x20, 0x20 , 0x20, 0x1C, 0x20, 0x18 , 0x20,

0x20, 0x80, 0xFF , 0x20, 0x30, 0x1C, 0x10 , 0x18,

0x20, 0x15, 0x20 , 0x1C, 0x20, 0x20, 0x20 , 0x26,

0x40, 0x20, 0x20 , 0x2B, 0x20, 0x26, 0x20 , 0x20,

0x20, 0x30, 0x80 , 0xFF, 0x20, 0x20, 0x1C , 0x10,

0x18, 0x10, 0x20 , 0x20, 0x26, 0x20, 0x2B , 0x20,

0x30, 0x20, 0x2B , 0x40, 0x20, 0x20, 0x1C , 0x10,

0x18, 0x10, 0x20 , 0x20, 0x26, 0x20, 0x2B , 0x20,

www.DataSheet4U.com

17

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

0x30, 0x20, 0x2B , 0x40, 0x20, 0x30, 0x1C , 0x10,

0x18, 0x20, 0x15 , 0x20, 0x1C, 0x20, 0x20 , 0x20,

0x26, 0x40, 0x20 , 0x20, 0x2B, 0x20, 0x26 , 0x20,

0x20, 0x20, 0x30 , 0x80, 0x20, 0x30, 0x1C , 0x10,

0x20, 0x10, 0x1C , 0x10, 0x20, 0x20, 0x26 , 0x20,

0x2B, 0x20, 0x30 , 0x20, 0x2B, 0x40, 0x20 , 0x15,

0x1F, 0x05, 0x20 , 0x10, 0x1C, 0x10, 0x20 , 0x20,

0x26, 0x20, 0x2B , 0x20, 0x30, 0x20, 0x2B , 0x40,

0x20, 0x30, 0x1C , 0x10, 0x18, 0x20, 0x15 , 0x20,

0x1C, 0x20, 0x20 , 0x20, 0x26, 0x40, 0x20 , 0x20,

0x2B, 0x20, 0x26 , 0x20, 0x20, 0x20, 0x30 , 0x30,

0x20, 0x30, 0x1C , 0x10, 0x18, 0x40, 0x1C , 0x20,

0x20, 0x20, 0x26 , 0x40, 0x13, 0x60, 0x18 , 0x20,

0x15, 0x40, 0x13 , 0x40, 0x18, 0x80, 0x00

};

void int0() interrupt 1 // apply interrupt 0 to controlling beat

{

TH0=0xd8;

TL0=0xef;

n--;

}

void int1() interrupt 3 // apply interrupt 1 to controlling music in the second path

{

TL1=temp_tl1;

TH1=temp_th1;

P1_1=~P1_1;

}

void delay (unsigned char m) // control frequency delay

{

unsigned i=3*m;

while(--i);

}

void delayms(unsigned char a) // millisecond delay sub-programs

{

while(--a); //adopt (--a) rather than while(a--);

}

www.DataSheet4U.com

18

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

void main()

{

unsigned char p,m; //m is frequency constant variable

unsigned char i=0;

TMOD&=0xff;

TMOD|=0x11;

TH0=0xd8;

TL0=0xef;

IE=0x8a;

loadp(); //load the second program

play:

while(1)

{

a:

p=music_tab[i];

if(p==0x00)

{

i=0;

delayms(1000);

goto play;

} // if there is end signal, delay 1 second, do it again from the beginning.

else if(p==0xff)

{

i=i+1;

delayms(100);

TR0=0;

goto a;

} // If there is rest, delay100ms, and then continue to select the next note.

else

{

m=music_tab[i++];

n=music_tab[i++];

} // Select frequency constants and beat constants

TR0=1; //turn on timer 0

while(n!=0)

{

www.DataSheet4U.com

19

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

P1_0=~P1_0;

delay(m);

} // wait for completion of beat and output audio frequency from P1 port.

TR0=0; // turn off timer 0

}

}

Loader program of the second program loadp.a51

extrn code(road1)

NAME LOADP

LOADP1 SEGMENT CODE

PUBLIC loadp

RSEG LOADP1

loadp:

USING 0

MOV 0FFH,#ROAD1 ;start the second path and execute ROAD1 on it.

RET

END

Happy Birthday road1.a51

extrn data(temp_th1)

extrn data(temp_tl1)

NAME ROAD1

ROAD11 SEGMENT CODE

PUBLIC ROAD1

RSEG ROAD11

ROAD1:

USING 0

start0:

mov 60h,#00h ;select indicator of sight-sing code

next: mov a,60h ; load A to sight-sing code

mov dptr,#table ;till table select sight-sing code

movc a,@a+dptr

mov r2,a ; store selected sight-sing codes to R2

temporarily

jz end1 ;Whether select 00(end code)?

www.DataSheet4U.com

20

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

anl a,#0fh ; if not, select low 4 bit(note code)

mov r5,a ; store beat code to R5

mov a,r2 ; A load A to sight-sing code again

swap a ; interchange of high and low four bits

anl a,#0fh ; select low four bits(notes)

jnz sing ; whether the selected note is zero?

clr tr1 ; If so, it is aphonic

jmp d1

sing: dec a ; selected note minus 1(not include 0)

mov 63h,a ;store (22H).

rl a ;multiply 2

mov dptr,#table1 ;till table1 select comparable high byte count

;value

movc a,@a+dptr

mov th1,a ; store selected byte to TH1

mov temp_th1,a ;store selected byte to (21H)

mov a,63h ;reload selected note

rl a ;multiply 2

inc a ;plus 1

movc a,@a+dptr ;till table1 select comparable low byte count

; value

mov tl1,a ;store the selected high-bit type to TL1

mov temp_tl1,a ;store the selected high-bit byte to (20H)

setb tr1 ;start timer 0

d1: call delay ; basic unit time 1/4 beat 187millisecond

inc 60h ;select sight-singing indicator plus one

jmp next ; select a code

end1: clr tr1 ; terminate timer1

jmp start0 ;loop?

delay: mov r7,#02h ;187 millisecond

d2: mov r4,#187

d3: mov r3,#248

djnz r3,$

djnz r4,d3

djnz r7,d2

djnz r5,delay ;decide beat

www.DataSheet4U.com

21

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

ret

table1:

dw 64260,64400,64524,64580

dw 64684,64777,64820,64898

dw 64968,65030,65058,65110

dw 65157,65178,65217

table:

;1

db 82h,01h,81h,94h,84h,0b4h,0a4h,04h,82h,01h,81h,94h,84h,0c4h,0b4h,04h

;2

db 82h,01h,81h,0f4h,0d4h,0b4h,0a4h,94h,0e2h,01h,0e1h,0d4h,0b4h,0c4h,0b4h,04h

;3

db 82h,01h,81h,94h,84h,0b4h,0a4h,04h,82h,01h,81h,94h,84h,0c4h,0b4h,04h

;4

db 82h,01h,81h,0f4h,0d4h,0b4h,0a4h,94h,0e2h,01h,0e1h,0d4h,0b4h,0c4h,0b4h,04h,00h

RET

END

www.DataSheet4U.com

22

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

Product order

Frequency voltage Product Order packaging Operating range

0 to 24MHz 3.0V to 5.5V
LS2051-224SJI

LS4051-224SJI
20S -40℃to 85℃

0 to 24MHz 3.0V to 5.5V LS2051-224PJI

LS4051-224PJI

20P3 -40℃to 85℃

Packaging information
LS2051/LS4051 adopts 20 leads and 0.300” wide SOIC packing, as in Figure 9, the

dimensions are in inches and millimeters.

Figure 9 LS2051/LS4051 packaging（in SOIC）

www.DataSheet4U.com

23

Update Date 5/27/2008-1-16 HuNan Hochip Times Microelectronics Co.,Ltd

LS2051/LS4051 adopts 20 leads and 0.300” wide PDIP packing, as in Figure 10, the

dimensions are in inches and millimeters.

Figure 10 LS2051/LS4051 packaging（in PDIP）

www.DataSheet4U.com

