1 Form A
Solid State Relay

DESCRIPTION

The S110 is a multipurpose, bi-directional, single-pole, single-throw, normally open multipurpose relay. The circuit is composed of one LED on the input side which activates an optically coupled IC circuit on the output side - controlling the firing angle of two back-to-back SCRs. This circuit assures no false triggering under most adverse conditions, and a tight zero-volt window not exceeding 5V.

FEATURES

- Inverse parallel SCR output
- High input to output Isolation
- High transient immunity
- Input to output Isolation exceeds 2500 V AC
- 400 V maximum Blocking Voltage
- 0.8A maximum Continuous Load Current
- Zero-volt switching
- -H High Output Isolation
- -S Surface Mount Option
- -TR Tape and Reel
- -X 300w Input Resistor

SCHEMATIC DIAGRAM

APPLICATIONS

- Interface between microprocessors and logic circuits
- Drive small lamps / solenoids
- Medical electronic equipment
- Communication equipment

MAXIMUM RATINGS

PARAMETER	UNIT	MIN	TYP	MAX
Storage Temperature	C	-55°	-	125°
Operating Temperature	C	-40°	-	85°
Continuous Input Current	mA	-	-	40
Transient Input Current	mA	-	-	400
Reverse Input Control Voltage	V	6.0	-	-
Blocking Voltage	V	-	-	± 400
Output Power Dissipation	mW	-	-	500

APPROVALS

- BABT CERTIFICATE \# 608203:

BS EN 60950, BS EN 41003, BS EN 60065

- UL FILE \# E90096

PARAMETER	UNIT	MIN	TYP	MAX	TEST CONDITIONS
INPUT SPECIFICATIONS					
LED Forward Voltage	V	-	1.2	1.5	$\mathrm{I}_{\mathrm{f}}=10 \mathrm{~mA}$
LED Reverse Voltage	V	6.0	12	-	$\mathrm{I}_{\mathrm{r}}=10 \mu \mathrm{~A}$
Must Operate Current	mA	-	2.5	5.0	Full Load, Resistive
Reverse Current	$\mu \mathrm{A}$	-	-	10.0	$\mathrm{V}_{\mathrm{r}}=5.0 \mathrm{~V}$
Junction Capacitance	pF	5.0	-	-	$\mathrm{V}_{\mathrm{f}}=0 \mathrm{~V}$
Input Resistor	Ω	-	250	300	-
OUTPUT SPECIFICATIONS					
Blocking Voltage	V	-	-	400	$\mathrm{I}_{0}=10 \mu \mathrm{~A}$
Continuous Load Current	A	-	-	0.8	$\mathrm{I}_{\text {in }}=5.0 \mathrm{~mA}$
Surge Current Rating	A	-	-	5.0	$\mathrm{T}=10 \mu \mathrm{~S}$
Holding Current	mA	-	-	10	-
On-Voltage	V	-	-	1.2	$\mathrm{I}_{0}=0.8 \mathrm{~A}$
Voltage Across Load at Turn-On	V	-	-	5.0	$\mathrm{t}_{\mathrm{t}}=5.0 \mathrm{~mA}$
Leakage Current	$\mu \mathrm{A}$	-	100	250	$\mathrm{V}_{\mathrm{o}}=250 \mathrm{~V}$
Thermal Resistance	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-	150	-	-
Power Factor	-	0.3	-	-	-
Critical Rate of Rise ($\mathrm{dV} / \mathrm{dt}$)	$\mathrm{V} / \mu \mathrm{S}$	400	-	-	-
COUPLED SPECIFICATIONS					
Isolation Voltage -H Suffix	V	$\begin{aligned} & 2500 \\ & 3750 \end{aligned}$	-	-	$\mathrm{T}=1$ Minute
Isolation Resistance	Ω	10^{11}	-	-	-
Coupled Capacitance	pF	-	6.0	-	-

1 Form A
Solid State Relay

PERFORMANCE DATA

ZERO-VOLT SWITCHING

The S110 solid state relay has been designed with a driver circuit that controls the operation of two back-to-back silicon controlled rectifiers (SCRs), each responsible for one half of the AC cycle. If an AC signal is examined, the turn on, turn off, and zero-volt switching can be shown. Figure 1 shows a typical $60 \mathrm{~Hz}, 120 \mathrm{Vac}$ signal with a corresponding relay input signal:

Figure 1: Zero-Volt Switching

Figure 1 shows the sequence of zero-volt switching operation. At Stage 1, an input signal is applied to the relay. The relay will not turn on until the Threshold Voltage of 5 V is reached. Once this point (Stage 2) is reached, SCR \#1 (Designated as the SCR which controls positive AC voltage) turns on. However, SCR \#1 only stays on for an instant, as the cycle quickly crosses zero. At this point (Stage 3), SCR \#1 will turn off and SCR \#2 (negative AC voltage) will turn on. Likewise, at the next zero cross (Stage 4), SCR \#2 will turn off and SCR \#1 will turn back on. Even though the input signal is terminated at Stage 5 , the relay will still continue to conduct (typical SCR behavior) until Stage 6, when SCR \#1 crosses zero and turns off. Please note that Turn On can likewise begin on the negative phase of the AC cycle with a -5 V threshold as well, even though only the positive phase is shown here.

1 Form A
Solid State Relay

END VIEW

TOP VIEW

END VIEW

TOP VIEW

BOTTOM VIEW / BOARD PATTERN

