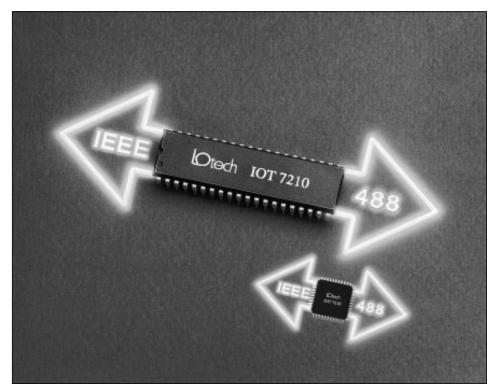
IOT7210 Low-Power CMOS IEEE 488 Controller Device


NEW

Features

- Completely meets IEEE Standard 488-1978:
 - SH1, source handshake
 - AH1, acceptor handshake
 - T5 or TE5, talker or extended talker
 - L3 or LE3, listener or extended listener
 - SR1, service request
- www.DataSheckLl, remote local
 - PP1 or PP2, parallel poll, remote, or local configuration
 - DC1, device clear
 - DT1, device trigger
 - C1-C5, controller, all functions
 - Programmable data transfer rate
 - 16 registers, 8 read/8 write
 - 2 address registers: detect MTA, MLA, MSA (my talk/my listen/my secondary addresses) and provide 2 device addresses
 - End-of-string (EOS) message automatic detection
 - Automatic (IEEE Standard 488-78) command processing and undefined command read capability
 - DMA-capable
 - Programmable bus transceiver I/O specification, Texas Instruments/ Motorola/Intel-compatible
 - 1 MHz to 8 MHz clock range
 - TTL-compatible
 - CMOS
 - +5V single power supply
 - 40-pin plastic DIP or 44-pin plastic TQFP
 - 8080/85/86-compatible

The IOT7210 low-power CMOS intelligent IEEE 488 controller meets all the functional requirements for talkers, listeners, and controllers as specified by the IEEE Standard 488-1978. It completely duplicates the NEC μ PD7210's function and provides enhancements such as lower power consumption and increased speed. Fully compatible with most processor architectures, the IOT7210 requires only the addition of the bus driver/receiver components to implement any IEEE 488 interface.

In its 40-pin plastic DIP package, the IOT7210 provides users with a drop-in replacement for the μ PD7210 and eliminates the need for either software or hardware modifications. It is also available in

The IOT7210 is an enhanced replacement for the NEC µPD7210 IEEE 488 controller device

a 44-pin, 1.27 mm thick plastic TQFP package for surface-mount applications.

IOT7210 Operation on the IEEE 488 Bus

Since its introduction in the 1970s, the IEEE 488 standard has become the most popular means of interconnecting instruments and controllers. This highly sophisticated standard has been refined over the years to provide a great degree of flexibility, permitting it to meet most instrumentation requirements.

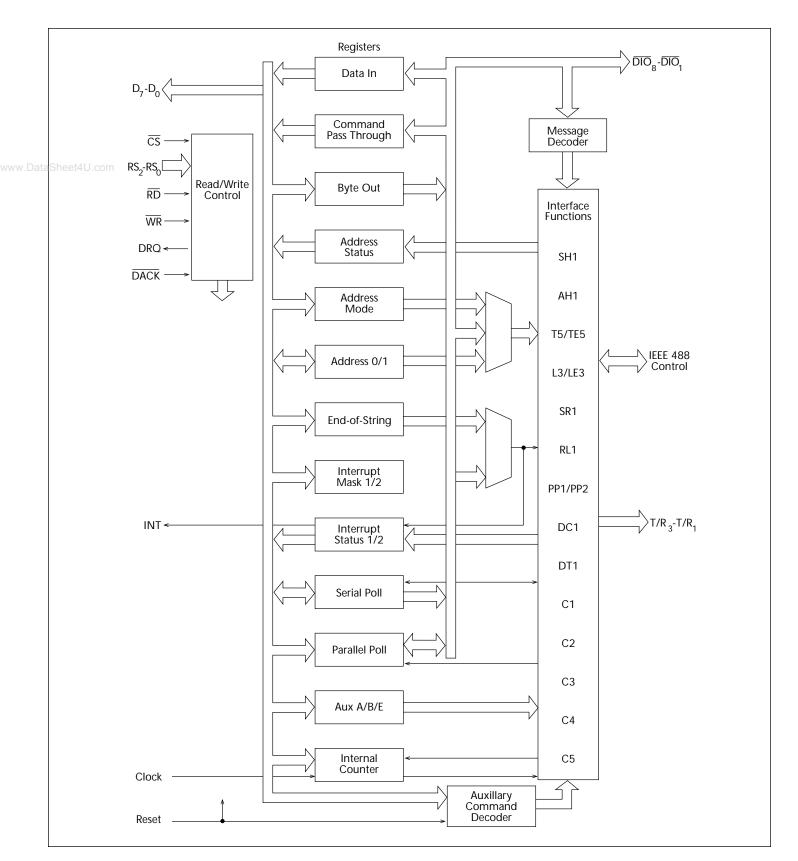
The IEEE 488 bus uses a common set of data and control lines to interconnect up to 15 devices. The device's capabilities are classified as a combination of talker, listener, and/or controller. Devices that incorporate the IOT7210 can perform all three functions—talker, listener, and controller.

Data is transferred on the IEEE 488 bus in a bit-parallel, byte-serial fashion over eight bidirectional data lines. A 3-wire handshake ensures synchronization of transmission and reception and allows more than one device to receive data at the same time, with the slowest device controlling the data rate. Other control lines perform a variety of functions, such as device addressing and interrupt generation. In addition to providing all the control and data lines necessary for IEEE 488 operation, the IOT7210 provides a flexible interface to the standard IEEE 488 transceivers.

The IOT7210 implements all the functions (including timing) that are required to interface to the IEEE 488 bus and provides high-level bus protocol management, which frees the host processor for other tasks. By performing these functions in dedicated hardware, the IOT7210 ensures bus compatibility with other IEEE 488 devices.

The IOT7210 is controlled by its 16 internal registers. To reduce CPU overhead, bus data bytes can be transferred to and from the IOT7210 using DMA. The IOT7210's DMA feature is generic enough that it can be used to interface to most processors and buses.

Pin Configurations


Pin DIP	(TQFP)	Symbol	I/O	Functions
1	(40)	T/R ₁	0	<i>Transmit/Receive Control.</i> Input/output control signal for the IEEE 488 bus transceivers.
2	(41)	T/R ₂	0	Transmit/Receive Control. The values of TRM1and TRM0 of the address mode register control the functions of T/R_2 and T/R_3 .
3	(42)	CLK	Ι	Clock. 1 MHz to 8 MHz reference clock for generating the state change prohibit times T_1 , T_6 , T_7 , T_8 , specified in IEEE Standard 488-1978.
4	(43)	RESET	Ι	<i>Reset.</i> Resets the IOT7210 to an idle state when high (active high).
5	(44)	T/R ₃	0	Transmit/Receive Control. See T/R ₂ .
6	(1)	DRQ	0	DMA Request. Requests data transfer. Becomes low on input of DMA acknowledge signal DACK.
7	(2)	DACK	I	DMA Acknowledge. Active low. Connects the data bus $(D_0 - D_7)$ to the byte in or data out register of the IOT7210.
8	(3)	ĊŚ	Ι	Chip Select. Active low. Enables access to the register selected by $RS_0 - RS_2$ (read or write operation).
9	(4)	RD	I	<i>Read.</i> Active low. Places contents of read register specified $RS_0 - RS_2$ on $D_0 - D_7$ (computer bus).
10	(5)	WR	Ι	<i>Write.</i> Active low. Writes data on $D_0 - D_7$ into the write register specified by $RS_0 - RS_2$.
11	(6)	INT, INT	0	Interrupt Request. Active high/low. Becomes active due to any 1 of 13 internal interrupt conditions (unmasked). Active state software configurable. Active high on chip reset.
12-19	(8-11, 13-16)	D ₀ - D ₇	I/O	<i>Data Bus.</i> 8-bit bidirectional data bus for interface to the computer system.
20	(7, 17, 25, 34)	GND		Ground.
21-23	(18-20)	RS ₀ - RS ₂	Ι	<i>Register Select</i> . Select one of eight read (write) registers during a read (write) operation.
24	(21)	IFC	I/O	Interface Clear. IEEE 488 control line. Clears the interface functions.
25	(22)	REN	I/O	<i>Remote Enable.</i> IEEE 488 control line. Selects remote or local control of the devices.
26	(23)	ATN	I/O	Attention. IEEE 488 control line. Indicates whether data on DIO lines is an interface message or device dependent message.
27	(24)	SRQ	I/O	<i>Service Request.</i> IEEE 488 control line. Requests the service from the controller.
28-35	(26-33)	$\overline{\text{DIO}}_1 - \overline{\text{DIO}}_8$	I/O	Data Input/Output. IEEE 488 8-bit bi-directional bus for transfer of message.
36	(35)	DAV	I/O	Data Valid. IEEE 488 handshake line. Indicates that data on DIO lines is valid.
37	(36)	NRFD	I/O	<i>Ready for Data.</i> IEEE 488 handshake line. Indicates that device is ready for data.
38	(37)	NDAC	I/O	Data Accepted. IEEE 488 handshake line. Indicates completion of message reception.
39	(38)	EOI	I/O	<i>End or Identify.</i> IEEE 488 control line. Indicates the end of multiple byte transfer sequence or signals a parallel poll in conjunction with ATN.
40	(12, 39)	V _{CC}	I/O	+5V DC.

IOT7210P

T/R ₁	1	40	V _{cc}
T/R ₂	2	39	EOI
CLK [3	38	NDAC
RESET [4	37	NRFD
T/R ₃ [5	36	DAV
DRQ [6	35	DIO ₈
DACK [7	34	DIO ₇
ĊS E	8	33	DIO6
RD [9	32	DIO5
WR	10	31	DIO ₄
INT [11	30	DIO3
D ₀ [12	29	DIO2
D ₁ [13	28	DIO
D ₂ [14	27	SRQ
D ₃ [15	26	ATN
D ₄ [16	25	REN
D ₅ [17	24	IFC
D ₆ [18	23	RS ₂
D ₇ [19	22	RS ₁
GND [20	21	RS
	L		5

Functional Block Diagram

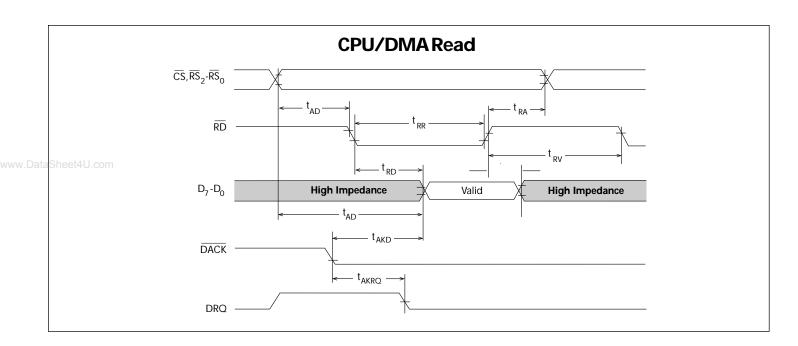
Electrical Characteristics

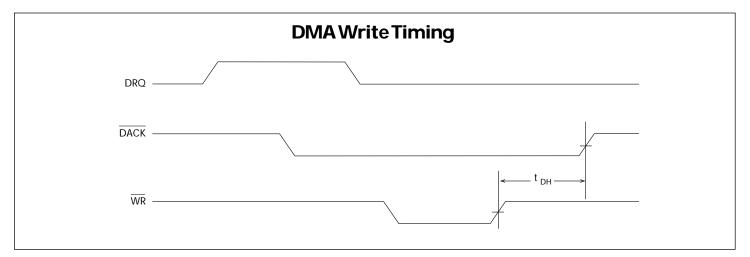
Absolute Maximum Ratings

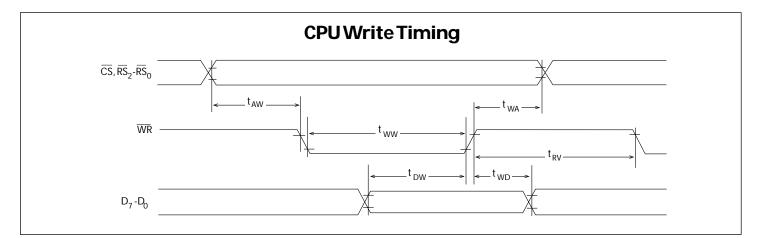
Exposing the device to stresses above those listed here could cause permanent damage to the IOT7210. The device is not meant to be operated under conditions outside the limits described in this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

T _A =	25C
Supply Voltage, V _{cc}	-0.3V to +7.0V
Input Voltage, V _I	-0.3V to V _{cc} +0.3V
Output Voltage, V _o	-0.3V to V _{cc} +0.3V
Operating Temperature, T _{OPR}	0C to +70C
Storage Temperature, T _{STG}	-55C to 125C

Capacitance


-	$T_{A} = 25C; V_{CC} = GND = 0V$									
Symbol Min Max Unit Test Conditions										
CIN		15	рF	F = 1 MHz						
C _{OUT}		15	pF	All pins except pin under test tied to AC ground						
C _{I/O}		15	pF							


AC/DC Characteristics


AC Characteristics									
$\rm T_{A}$ = 0C to 70C; $\rm V_{cc}~$ = 5V \pm 10%									
Parameter	Symbol	Min	Max	Unit	Test Conditions				
ĒOI ↓ → DIO	t _{EODI}		35	ns	PPSS→ PPAS, ATN = True				
ĒOI ↓ → T/R ₁ ↑	t _{EOTI1}		20	ns	PPSS → PPAS, ATN = True				
$\overline{EOI} \uparrow \longrightarrow T/R_1 \downarrow$	t _{EOTI2}		25	ns	PPAS \rightarrow PPSS, ATN = False				
ATN ↓ → NDAC ↓	t _{ATN0}		35	ns	AIDS → ANRS, LIDS				
$\overline{\text{ATN}} \downarrow \longrightarrow T/R_1 \downarrow$	t _{ATT1}		30	ns	TACS + SPAS → TADS, CIDS				
$\overline{\text{ATN}} \downarrow \longrightarrow T/R_2 \downarrow$	t _{ATT2}		30	ns	TACS + SPAS → TADS, CIDS				
DAV ↓ → DRQ↑	t _{DVRQ}		25	ns	ACRS → ACDS, LACS				
DAV ↓ → NRFD ↓	t _{DVNR1}		30	ns	ACRS -> ACDS				
DAV ↓ → NDAC ↑	t _{DVND1}		40	ns	$ACRS \rightarrow ACDS \rightarrow AWNS$				
DAV ↑ → NDAC ↓	t _{DVND2}		45	ns	AWNS -> ANRS				
DAV ↑ → NRFD ↑	t _{DVNR2}		35	ns	AWNS → ANRS → ACRS				
\overline{RD} \rightarrow \overline{NRFD} \uparrow	t _{RNR}		30	ns	ANRS \rightarrow ACRS \rightarrow LACS, DI register selected				
NDAC ↑ → DRQ↑	t _{NDRQ}		25	ns	STRS →SWNS →SGNS, TACS				
NDAC ↑ → DAV ↑	t _{NDDV}		25	ns	$STRS \rightarrow SWNS \rightarrow SGNS$				
$\overline{WR} \uparrow \longrightarrow \overline{DIO}$	t _{WDI}		30	ns	SGNS → SDYS BO register selected				
NRFD ↑ → DAV ↓	t _{NRDV}		30	ns	SDYS \rightarrow STRS, T ₁ = True				
$\overline{WR} \bigstar \longrightarrow \overline{DAV} \checkmark$	t _{WDV}		550 +t _{SYNC}	ns	SGNS \rightarrow SDYS \rightarrow STRS BO register selected; RFD = True; N + fc = 8MHz; T ₁ (high speed)				
TRIG Pulse Width	t _{TRIG}	50		ns					
Address Setup to RD	t _{AR}	0		ns	RS ₀ to RS ₂				
		0		ns	CS				
Address Hold from RD	t _{RA}	0		ns					
RD Pulse Width	t _{RR}	55		ns					
Data Delay from Address	t _{AD}		35	ns					
Data Delay from RD 🏼	t _{RD}		35	ns					
Output Float Delay from RD↑	t _{DF}	0	10	ns					
RD Recovery Time	t _{RV}	50		ns					
Address Setup to WR	t _{AW}	0		ns					
Address Hold from WR	t _{WA}	0		ns					
WR Pulse Width	t _{ww}	55		ns					
Data Setup to WR	t _{DW}	10		ns					
Data Hold from WR	t _{WD}	0		ns					
WR Recovery Time	t _{RV}	50		ns					
DRQ ↓ Delay from DACK ↓	t _{AKRQ}		25	ns					
Data Delay from DACK	t _{AKD}		35	ns					
DACK hold time from WR	t _{DH}	5		ns					
	D	C Charad	teristics						

DC Characteristics								
	$T_A = 0C$ to 70C; $V_{cc} = 5V \pm 10\%$							
Input Low Voltage (except RESET)	V _{IL}	-0.3	+.08	V				
Input High Voltage (except RESET)	Vін	+2.0	V _{CC} +0.3	٧				
Input Low Voltage (RESET)	-0.3	0.7	V					
Input High Voltage (RESET)	+2.1	V _{CC} +0.3	V					
Low-Level Output Voltage	V _{OL}		+0.4	V				
High-Level Output Voltage (except INT)	V _{OH1}	+2.4		v	I _{OH} = 1mA			
High-Level Output	V _{OH2}	+2.4		V	I _{OH} = 1mA			
Voltage (INT)	- 082	+3.5		V	I _{OH} = 50 μA			
Input Leakage Current	I _{IL}	-1	+1	μA	$V_{IN} = 0V \text{ to } V_{CC}$			
Output Leakage Current	I _{OL}	-10	+10	μA	$V_{OUT} = 0$ to V_{CC}			
Supply Current	I _{CC}		2	mA	Outputs Open			

Timing Waveforms

Internal Registers

The IOT7210 has 16 registers: 8 read and 8 write.

Register Name	A	dd	dre	essi	nç	J				Specif	ication			
	R	R	R	W	R	С								
	S	S	S	R	D	S								
	2	1	0											
Data In [OR]	0	0	0	1	0	0	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO
Interrupt Status 1 [1R]	0	0	1	1	0	0	CPT	APT	DET	END	DEC	ERR	DO	DI
Interrupt Status 2 [2R]	0	1	0	1	0	0	INT	SRQI	LOK	REM	CO	LOKC	REMC	ADSC
Serial Poll Status [3R]	0	1	1	1	0	0	S8	PEND	S6	S5	S4	S3	S2	S1
Address Status [4R]	1	0	0	1	0	0	CIC	ĀTN	SPMS	LPAS	TPAS	LA	TA	MJMN
Command Pass Through [5R]	1	0	1	1	0	0	CPT7	CPT6	CPT5	CPT4	CPT3	CPT2	CPT1	СРТО
Address 0 [6R]	1	1	0	1	0	0	Х	DT0	DL0	AD5-0	AD4-0	AD3-0	AD2-0	AD1-0
Address 1 [7R]	1	1	1	1	0	0	EOI	DT1	DL1	AD5-1	AD4-1	AD3-1	AD2-1	AD1-1
Byte Out [0W]	0	0	0	0	1	0	BO7	BO6	BO5	BO4	BO3	BO2	BO1	BO0
Interrupt Mask 1 [1W]	0	0	1	0	1	0	CPT	APT	DET	END	DEC	ERR	DO	DI
Interrupt Mask 2 [2W]	0	1	0	0	1	0	0	SRQI	DMAO	DMAI	CO	LOKC	REMC	ADSC
Serial Poll Mode [3W]	0	1	1	0	1	0	S8	rsv	S6	S5	S4	S3	S2	S1
Address Mode [4W]	1	0	0	0	1	0	ton	lon	TRM1	TRM0	0	0	ADM1	ADM0
Auxiliary Mode [5W]	1	0	1	0	1	0	CNT2	CNT1	CNTO	COM4	COM3	COM2	COM1	COM0
Address 0/1 [6W]	1	1	0	0	1	0	ARS	DT	DL	AD5	AD4	AD3	AD2	AD1
End of String [7W]	1	1	1	0	1	0	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0

CPT

Data Registers

The data registers are used for data and command transfers between the IEEE 488 and the computer. The Data In register holds data sent from the IEEE 488 to the computer; the Byte Out register holds information written into it for transfer to the IEEE 488 bus.

		D	ata I	n [0F	?]		
DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO

		Ву	te O	ut [0'	W]		
BO7	BO6	BO5	BO4	BO3	BO2	BO1	BO0

Interrupt Registers

The interrupt registers consist of interrupt status bits, interrupt mask bits, and some other non-interrupt bits.

In	terru		<i>ad</i> tatus	1 [1	R]	
APT	DET	END	DEC	ERR	DO	

DI

Interrupt	Status 2	[2R]
micrupi	Julius Z	נבוזן

			-			-	
INT	SRQI	LOK	REM	СО	LOKC	REMC	ADSC

0 SRQI DMAO DMAI CO LOKC REMC ADSC				•		_	_	
	0	SRQI	DMAO	DMAI	СО	LOKC	REMC	ADSC

Thirteen factors can generate an interrupt from the IOT7210, each with its own status bit and mask bit.

The interrupt status bits are always set to 1 if the interrupt condition is met. The interrupt mask bits decide whether or not the INT bit and the interrupt pin will be active for that condition.

Interrupt Status Bits

	interrupt otatao Bito
INT	OR of All Unmasked Interrupt Status Bits
CPT	Command Pass Through
APT	Address Pass Through
DET	Device Trigger
END	End (END or EOS Message Received)
DEC	Device Clear
ERR	Error
DO	Data Out
DI	Data In
SRQI	Service Request Input
LOKC	Lockout Change
REMC	Remote Change
ADSC	Address Status Change
CO	Command Output

Noninterrupt Related Bits

LOK	Lockout
REM	Remote/Local
DMAO	Enable/Disable DMA Out
DMAI	Enable/Disable DMA In

Serial Poll Registers

The serial poll mode register holds the STB (status byte: S8, S6-S1) sent over the IEEE 488 bus and the local message rsv (request service). The serial poll mode register may be read through the serial poll status register. The PEND is set by rsv = 1 and cleared by NPRS•rsv = 1 (NPRS = negative poll response state).

	Read								
	Serial Poll Status [3R]								
	S8	PEND	S6	S5	S4	S3	S2	S1	
_				Wi	rite				
С	Serial Poll Mode [3W]								
	S8	rsv	S6	S5	S4	S3	S2	S1	

Address Status/Address Mode Registers

The address mode register selects the address mode of the device and also sets the mode for the transceiver control lines, T/R_3 and T/R_2 .

Address Status [4R]

Address Mode [4W]

ton lon TRM1 TRM0 0 0 AMD1 ADM0

The TRM1 and TRM0 values of the address mode register determine the functions of the T/R_2 and T/R_3 pins.

T/R ₂	T/R ₃	TRM1	TRM0
EOIOE	TRIG	0	0
CIC	TRIG	0	1
CIC	EOIOE	1	0
CIC	PE	1	1

EOIOE = TACS + SPAS + CIC • CSBS EOI pin output enable. When 1: output When 0: input

$CIC = \overline{CIDS + CADS}$

Controller in charge. When 1: \underline{ATN} = output, \overline{SRO} = input When 0: \overline{ATN} = input, SRO = output

PE = CIC + PPAS

Pull-up enable for DIO₈ - DIO₁ and DAV lines. When 1: Three-state When 0: Open-collector

TRIG

Pulses high when DTAS state is initiated or when a trigger auxiliary command is issued.

Upon reset, TRM0 and TRM1 become 0 (TRM0 = TRM1 = 0) so that T/R_2 and T/R_3 both become low.

Address Status Bits

ATN	Data Transfer Cycle (Device in CSBS)
LPAS	Listener Primary Addressed State
TPAS	Talker Primary Addressed State
CIC	Controller Active
LA	Listener Addressed
TA	Talker Addressed
MJMN	Set = Minor T/L Address, Reset = Major T/L Address
SPMS	Serial Poll Mode State

	Address Modes								
ton	lon	ADM1	ADM0	Address Mode	Contents of Address 0 Register	Contents of Address 1 Register			
1	0	0	0	Talk only mode	Address identification necessary (no controller on the IEEE 488 bus)				
0	1	0	0	Listen only mode	Not used				
0	0	0	1	Address mode 1 ¹	Major talk address or major listen address	Minor talk address or minor listen address			
0	0	1	0	Address mode 2 ²	Primary address (talk or listen)	Secondary address (talk or listen)			
0	0	1	1	Address mode 3 ³	Primary address (major talk or major listen)	Primary address (minor talk or minor listen)			

Notes: Combinations other than those indicated are prohibited.

1 Either MTA or MLA reception is indicated by coincidence of either address with the received address; interface function T or L

2 Address register 0 = primary: address register 1 = secondary; interface function TE or LE

3 CPU must read secondary address via Command Pass Through register; interface function (TE or LE)

Address Registers

The IOT7210 is able to automatically detect two addresses that are held in address registers 0 and 1, as specified by the address mode register.

Address 0 [6R]

х	DT0	DL0	AD5-0	AD4-0	AD3-0	AD2-0	AD1-0
---	-----	-----	-------	-------	-------	-------	-------

Addre	ess 1	[7R]

	EOI	DT1	DL1	AD5-1	AD4-1	AD3-1	AD2-1	AD1-1
--	-----	-----	-----	-------	-------	-------	-------	-------

Address 0/1 [6W]

ARS	DT	DL	AD5	AD4	AD3	AD2	AD1
-----	----	----	-----	-----	-----	-----	-----

The addresses are set by writing into the address 0/1 register.

Address 0/1 Register Bit Selections

ARS	Selects either address register 0 or 1
DT	Permits or prohibits address to be detected as Talk
DL	Permits or prohibits address to be detected as Listen
AD ₅ -AD ₁	Device address value
EOI	Holds the value of EOI line when data is received

Command Pass Through Register

The CPT register enables the CPU to read the DIO lines in the cases of undefined command, secondary address, or parallel poll response.

Command Pass Through [5R]

End of String Register

This register holds either a 7- or 8- bit EOS message byte used in the IEEE 488 system to detect the end of a data block. Auxiliary Mode register A controls the specific use of this register.

	End of String [7W]							
www.Data	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0

Auxiliary Mode Register

This is a multipurpose register.

Auxiliary Mode [5W]

CNT2 CNT1 CNT0 COM4 C0M3 COM2 COM1 COM0

A write to this register generates one of the following operations according to the values of the CNT bits.

С	N	Т		С	ON	1		Function
2	1	0	4	3	2	1	0	runction
0	0	0	C ₄		C ₂	C ₁	C ₀	Issues an auxiliary command specified by C_4 to C_0
0	0	1	0	F ₃	F ₂	F ₁	Fo	The reference clock frequency determines T_1 , T_6 , T_7 , & T_9
0	1	1	U	S	Р ₃	P ₂	P ₁	Sets the parallel poll register
1	0	0	A ₄	А ₃	A ₂	A ₁	A ₀	Sets the auxiliary A register
1	0	1	В ₄	B ₃	В ₂	В ₁	B ₀	Sets the auxiliary B register
1	1	0	0	0	0	E ₁	Ε _Ο	Sets the auxiliary E register

Auxiliary Commands

Auxiliary Commands

			-				
0	0	0	C ₄	C3	C ₂	C ₁	C ₀

		nm C ₂		-	Aux Comm	Function
0	0	0	0	0	iepon	Immediate Execute pon, Generate Local pon message
0	0	0	1	0	crst	Chip Reset (Same as External Reset)
0	0	0	1	1	rrfd	Release RFD
0	0	1	0	0	trig	Trigger
0	0	1	0	1	rtl	Return to Local
0	0	1	1	0	seoi	Send EOI message
0	0	1	1	1	nvld	Nonvalid (OSA Reception), Release DAC Holdoff
0	1	1	1	1	vld	Valid (MSA Reception, CPT, DEC, DET), Release DAC Holdoff
0	Х	0	0	1	sppf	Set/Reset Parallel Poll Flag
1	0	0	0	0	gts	Go To Standby
1	0	0	0	1	tca	Take Control Asynchronously
1	0	0	1	0	tcs	Take Control Synchronously
1	1	0	1	0	tcse	Take Control Synchronously on End
1	0	0	1	1	ltn	Listen
1	1	0	1	1	Itnc	Listen with Continuous Mode
1	1	1	0	0	lun	Local Unlisten
1	1	1	0	1	epp	Execute Parallel Poll
1	Χ	1	1	0	sifc	Set/Reset IFC
1	Х	1	1	1	sren	Set/Reset REN
1	0	1	0	0	dsc	Disable System Control

Auxiliary A Register

Of the 5 bits that may be specified as part of its access word, two bits control the IEEE 488 data receiving modes of the IOT7210 and 3 bits control how the EOS message is used.

Auxiliary A Register

1	0	0	A_4	A ₃	A ₂	A ₁	A ₀

A ₁	A ₀	C	Data Receiving Mode					
0	0	No	Normal Handshake Mode					
0	1		RFD Holdoff on All Data Modes					
1	0	RF	D Holdoff on End Mode					
1	1	Co	ntinuous Mode					
A ₂	0 Proh 1 Peri	nibit mit	Permits (prohibits) the setting of the END bit by reception of the EOS message					
A ₃	0 Prohibit 1 Permit		Permits (prohibits) automatic transmission of END message simul- taneously with the transmission of EOS message (TACS)					
A ₁	07-bit 08-bit	<u>EOS</u> EOS	Makes the 8 bits (7 bits) of the EOS register the valid EOS message					

Internal Counter

The internal counter generates the state change prohibit times (T_1, T_6, T_7, T_9) specified in the IEEE Standard 488-1978 with reference to the clock frequency. F_3 - F_0 specify the clock frequency from 1 to 8 MHz.

Internal Counter

0	0	1	0	F ₃	F_2	F ₁	F ₀
---	---	---	---	----------------	-------	----------------	----------------

Auxiliary BRegister

The auxiliary B register is much like the A register in that it controls the special operating features of the device.

Auxiliary B Register

1	0	1	B_4	B ₃	B ₂	B ₁	B ₀	
a _b a		ermit ohibit	setti rece	Permits (prohibits) the setting of the CPT bit on receipt of an undefined command				
B ₁		ermit ohibit	tran mes	Permits (prohibits) the transmission of the END message when in serial poll active state (SPAS)				
B		igh- eed)	function of se	tion a	ce har fter tra byte i missic	ansmi: follow	ssion	
B ₂	1 T ₁ (low- speed)		Sets	Sets T ₁ in all cases				
B ₃	<u>1</u> 0	INT INT		cifies t INT pi	he act in	ive lev	vel of	
B ₄	1 <i>is</i> S	st = RQS	the (the	ist leve value flag is SRQS	cates t el loca of the s ignor = 1	il mes e para red) .ist = 1	sage llel I	
4		f = Irallel II Flag	poll		of the taker sage			

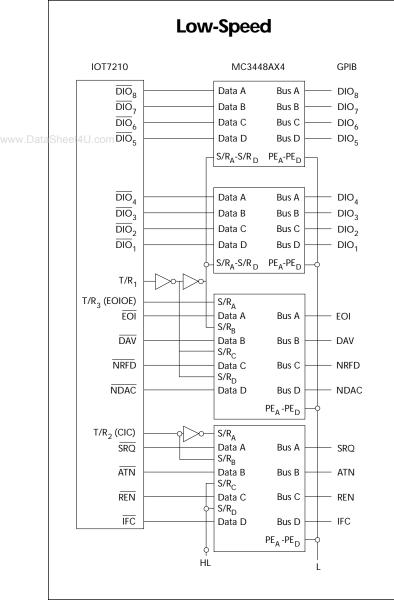
Auxiliary E Register

The register controls the IOT7210's Data Acceptance modes.

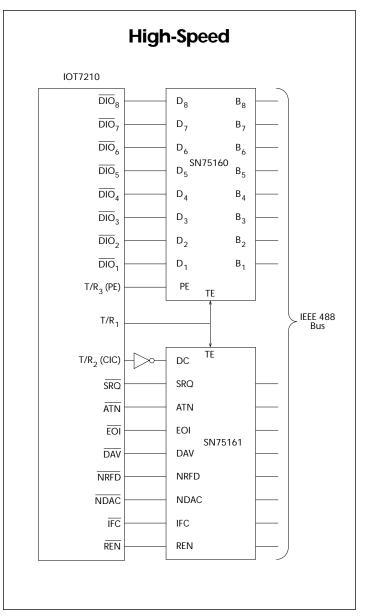
Auxiliary E Register

1	1	0	0	0	0	E ₁	Ε _Ο
E _O		Enable Disable		C hold DCAS	doff b	y initi	ation
E ₁		Enable Disable		C hold DTAS	doff b	y initi	ation

Parallel Poll Register

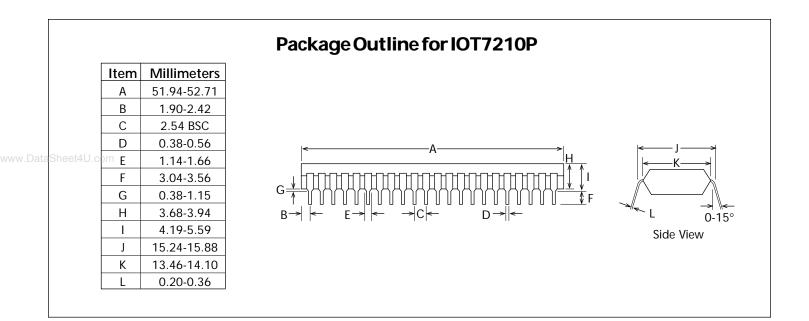

The Parallel Poll register defines the IOT7210's parallel poll response.

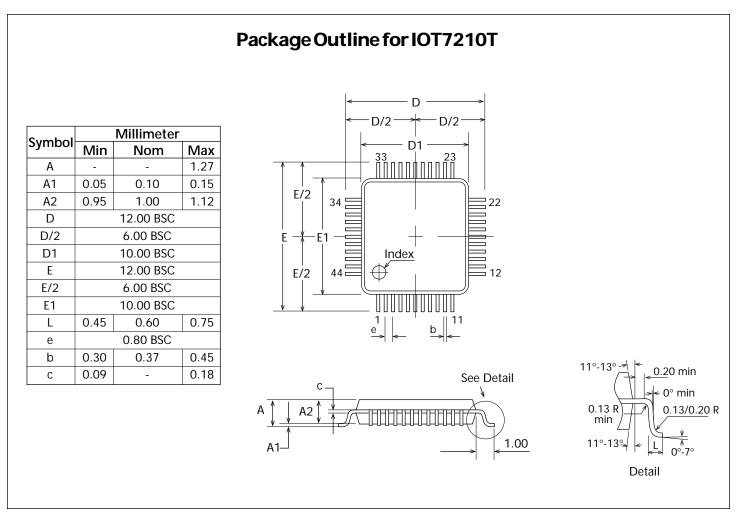
Parallel Poll Register


					-		
0	1	1	U	S	P ₃	Ρ ₂	Р ₁

U	1 = No Parallel Poll Response 0 = Parallel Poll Response
S	Specify Status Bit Polarity 1 = In Phase 0 = Reverse Phase
P ₃	
P ₂	Specify Status Bit Output Line (DIO ₁ -DIO ₈)
P ₁	(2.012.08)

IEEE 488 Transceiver Examples




In this example, a high-speed data transfer cannot be made since the bus transceiver is of the open-collector type (set $B_2 = 0$)

In the case of low-speed data transfer ($B_2 = 0$), the TR_3 pin can be used as a TRIG output; the PE input of SN75160 should be cleared to 0

Package Outlines

Ordering Information

Ordering Information

Description	Part No.
Low-power CMOS IEEE 488 controller device	
in a 40-pin plastic DIP	IOT7210P
Low-power CMOS IEEE 488 controller device	
in a 44-pin plastic TQFP	IOT7210T

ww.DataSheet4U.com

Printed in the U.S.A.