

SANYO Semiconductors DATA SHEET

LV8013T — Forward/Reverse Motor Driver

Overview

LV8013T is a 1ch forward/reverse motor driver IC using D-MOS FET for output stage. As MOS circuit is used, it supports the PWM input. Its features are that the on resistance $(0.3\Omega \text{ typ})$ and current dissipation are low. It also provides protection functions such as heat protection circuit and reduced voltage detection and is optimal for the

It also provides protection functions such as heat protection circuit and reduced voltage detection and is optimal for the motors that need high-current.

Functions

- 1ch forward/reverse motor driver
- Possible to respond to 3V control voltage and 6V motor voltage device
- Low power consumption
- Low-temperature resistance 0.5Ω
- Built-in charge pump circuit
- Built-in low voltage reset and thermal shutdown circuit
- Four mode function forward/reverse, brake, stop.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$, SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage (For load)	VM max		-0.5 to 16	V
Supply voltage (For control)	V _{CC} max		-0.5 to 6.0	V
Output current	I _O max	DC	1.2	А
	IO peak1	$t \le 100ms, f = 5Hz$	2.0	А
	I _O peak2	$t \le 10ms, f = 5Hz$	3.8	А
Input voltage	V _{IN} max		-0.5 to V _{CC} +0.5	V
Allowable power dissipation	Pd max	Mounted on a specified board *	800	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

*Specified board : 30mm \times 50mm \times 1.6mm, glass epoxy board.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. www.semiconductor-sanyo.com/network

LV8013T

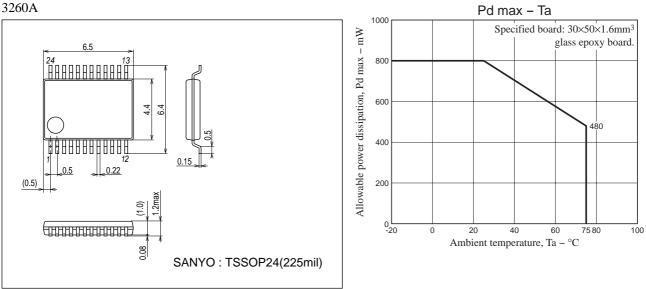
Allowable Operating Conditions at $Ta = 25^{\circ}C$, SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage (For load)	VM		2.0 to 15.0	V
Supply voltage (For control)	V _{CC}		2.7 to 5.5	V
Input signal voltage	VIN		0 to V _{CC}	V
Input signal frequency	f max	Duty = 50%	200	kHz
Capacitor for charge pump	C1, C2,		0.001 to 0.1	μF
	CVG1, CVG2			

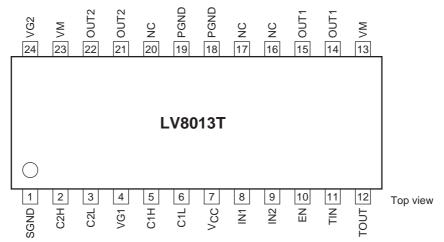
Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 5.0V$, VM = 12.0V, SGND = PGND = 0V, unless especially specified.

D	0	Symbol Conditions		Ratings			Unit
Parameter	Symbol			min	typ	max	Unit
Supply current for load at standby 1	IM1	EN = 0V	1			1.0	μΑ
Supply current for load at standby 2	IM2	$V_{CC} = 0V$, Each input = 0V	1			1.0	μΑ
Supply current for control at standby	ICO	EN = 0V, IN1 = IN2 = 0V	2	12.5	25	50	μΑ
Current drain during operatio	1 IC1	V_{CC} = 3.3V, EN = 3.3V, VG at no load	3		0.6	1.0	mA
Current drain during operatio	12 IC2	V_{CC} = 5.0V, EN = 5V, VG at no load	3		0.7	1.2	mA
H-level input voltage	VIH	$2.7V \le V_{CC} \le 5.5V$		0.6×VCC		VCC	V
L-level input voltage	VIL	$2.7V \leq V_{CC} \leq 5.5V$		0		0.2×V _{CC}	V
H-level input current (IN1, IN2, TIN)	Чн	V _{IN} = 5V	4	12.5	25	50	μA
L-level input current (IN1, IN2, TIN)	ΙIL	V _{IN} = 0V	4	-1.0			μΑ
Pull-up resistance (EN)	RUP		4	100	200	400	kΩ
Pull-down resistance (EN)	RDN		4	100	200	400	kΩ
Output ON resistance	RON	Sum of ON resistances at top and bottom	5		0.3	0.5	Ω
Charge pump voltage1	VG1	V _{CC} ×2 - 5.4V CLAMP circuit	6	5.15	5.4	5.65	V
Charge pump voltage2	VG2	VM + VG1 Voltage raising circuit	6	17.1	17.4	17.6	V
Low-voltage detection operat voltage	on VCS	V _{CC} voltage	7	2.1	2.25	2.4	V
Thermal shutdown operation temperature	Tth	Design guarantee	8	150	180	210	°C
Charge pump capacity 1	VG1LOAD	IG1 = 500μA	9	5.0	5.3		V
Charge pump capacity 2	VG2LOAD	IG2 = 500μA	9	16.0	16.5		V
IG current dissipation (Fin = 20kHz)	IG		10			350	μA
Charge pump start time	TVG	CVG = 0.1µF	11			1.0	ms
Output Turn on time	TPLH		12		0.5	1.0	μS
block Turn off time	TPHL		12		0.5	1.0	μS
TOUT Turn on time	TON	C = 500pF	12		0.5	20	μS
Turn off time	TOFF	C = 500pF	12		0.5	20	μS
TOUT output voltage H	тон	C = 500pF		VG2-0.1	VG2		V
TOUT output voltage L	TOL	C = 500pF			0.05	0.1	V

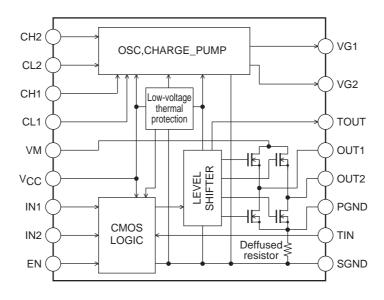
* Design guarantee : This characteristics is not measured.


Refer to next page for remarks.

Remarks


- 1. It shows current dissipation of VM pin in output OFF state.
- 2. It shows current dissipation of V_{CC} pin in stand-by state.
 - (The standard current depends on EN pin pull-down resistor.)
- 3. It shows current dissipation of V_{CC} pin in state of EN = 5V (stand-by), including current dissipation of VG pin.
- 4. IN1, IN2 and TIN pin are built-in pull-down resistor, EN pin is built-in pull-up resistor.
- 5. It shows sum of upper and lower saturation voltages of OUT pin.
- 6. It controls charge-pump oscillation and makes specified voltage.
- 7. When low voltage is detected, the lower output is turned OFF.
- 8. When thermal protection circuit is activated, the lower output is turned OFF. When the heat temperature is fallen, it is turned ON again.
- 9. IG (VG pin load current) = 500μ A
- 10. It shows VG pin current dissipation in state of PWM input for IN pin.
- 11. It specifies start-up time from 10% to 90% when VG is in non-load state (when setting the capacitor between VG and GND to 0.1μ F and V_{CC} is 5V).
- 12. It specifies 10% to 90% for start-up and 90% to 10% for shut-down.

Package Dimensions


unit : mm (typ)

Pin Assignment

Block Diagram

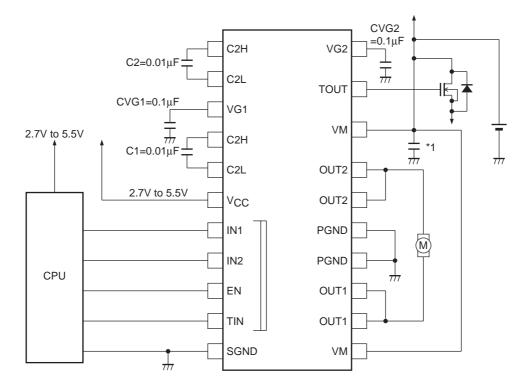
Truth Table

EN	IN1	IN2	TIN	OUT1	OUT2	TOUT	Charge Pump	Mode
	Н	Н	-	L	L	-	ON	Brake
	Н	L	-	Н	L	-		Forward
н	L	Н	-	L	н	-		Reverse
	L	L	-	Z	Z	-		Standby
	-	-	L	-	-	L		Tr-OFF
	-	-	н	-	-	н		Tr-ON
L	-	-	-	L	L	L	OFF	Standby
- : Don't care, Z : High-Impedance								

• Current drain becomes zero in the standby mode. (Leak current from EN pin is excluded)

• The output side becomes OFF, with motor drive stopped, during voltage reduction and thermal protection.

Also, the charge of VG2 is discharged with an internal circuit at decreasing voltage.


Pin No. Pin name Function Equivalent circuit 6 C1L Voltage raising capacitor connection pin. ∨сс C1L (5 C1H Voltage raising capacitor connection pin.) VG1 Ş C1H (IN1 8 · Driver output changeover. Vcc 9 IN2 11 TIN · TOUT output control pin. × (Built-in pull-down resistor) ≷200kΩ ₩

Pin Function

Continued on next page.

	from preceding		— • • • • •
Pin No.	Pin name	Function	Equivalent circuit
10	EN	Logic enable pin. (Built-in pull-up resistor)	V _{CC} 200kΩ
14 15 21 22 18 19	OUT1 OUT2 OUT2 PGND PGND	Driver output pin.	OUT1 OUT2
12	TOUT	Voltage raising output pin.	VG2
13 23	VM VM	Motor power supply. (both terminals to be connected)	
7	V _{CC}	Logic power supply.	
4	VG1	Voltage raising circuit 1. V _{CC} × 2 Clamped to 5.4V	
24 2 3	VG2 C2H C2L	 Voltage raising circuit 2. VM + VG1 Voltage raising capacitor connection pin. VG2 is discharged in abnormal. 	VM VG2 VG2 0.1µF C2H 0.01µF C2L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	SGND	Logic GND	
18 19	PGND PGND	Driver GND (both terminals to be connected)	

Application Circuit Example

- *1 : Connect a kickback absorption capacitor directly near IC. Coil kick-back may cause rise of the voltage of VM line, and the voltage exceeding the maximum rating may be applied momentarily, resulting in deterioration or damage of IC.
 - SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
 - SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
 - In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
 - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
 - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
 - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
 - Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of November, 2008. Specifications and information herein are subject to change without notice.