基于单片机与 TC787 芯片的三相半 控整流电路设计

中国科学院研究生院 张雷

整流电路广泛应用在直流 电机调速,直流稳压电压等场 合。而三相半控整流桥电路结构 是一种常见的整流电路,其容易 控制,成本较低。本文中介绍了 一种基干 PIC690 单片机与专用 集成触发芯片 TC787 的三相半 控整流电路,它结合专用集成触 发芯片和数字触发器的优点,获 得了高性能和高度对称的触发脉

冲。它充分利用单片机内部资源,集相 序自适应、系统参数在线调节和各种保 护功能于一体,可用于对负载的恒电压 控制。主电路采用了三相半控桥结构, 直流侧采用 LC 滤波结构来提高输出的 电压质量。

同步信号取样电路得到同步信号并送集 成触发芯片 TC787, 经过零检测, 再进 行相应的延时以实现移相。单片机中的 ADC 负责采集直流母线电压,根据电压

的设定值与实际值的偏差经过PI运算来 调节给定输出。PIC单片机将电压的参 考值输出到 TC787,由 TC787实 现对晶闸管的移相触发,以实现 整流调压。硬件电路的整体框图 如图1所示。

主电路设计

主电路采用三相桥式半控整 流电路,直流测采用LC滤波电 流结构,主电流原理图如图2所 示。半控桥选择SEMIKRON公

司的 SKDH146/120-L100 模块,该模 块额定电流 140A,额定电压 1200V。直 流侧采用 LC 滤波电路结构 , 比单独电容 滤波效果好。此外,还可以提高交流输 入侧的电流 THD。直流侧主要的谐波含 量为工频的6倍及6的整数倍,设计LC

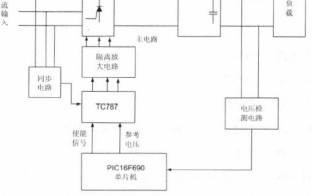


图 1 系统硬件整体框图

系统总体设计

本系统通过 PIC690 单片机作为主 控制芯片,用晶闸管作为主要开关器 件。设计的目标是保持输出的直流电压 稳定,输出电压纹波小,交流输出测电 流THD 较低,性能可靠。

系统主要电路包括:三相桥式半控 整流电路、同步信号取样电路、单片机 控制电路、晶闸管触发电路。首先,由

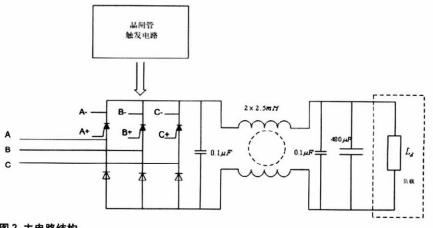


图 2 主电路结构

应用设计:电源

低通滤波时要避免含量较高的谐波引起 的谐振。在本设计中选取电感 5mH,滤 波电容 480 µ F。

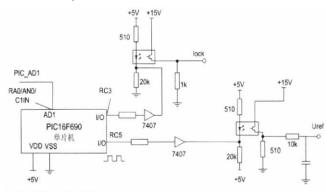


图 3 控制电路硬件结构

从电网获得的三相电压经同步电路 整形后,送给集成触发芯片 TC787 引脚 18AT、引脚 2 BT 和引脚 1CT。 TC787 内部集成有3个过零和极性检测单元、3 个锯齿波形成单元、3个比较器、1个脉 冲发生器、1个抗干扰锁定电路和1个脉 冲分配及驱动电路数字给定移相控制电 压,能进行相序自动识别。

控制电路设计

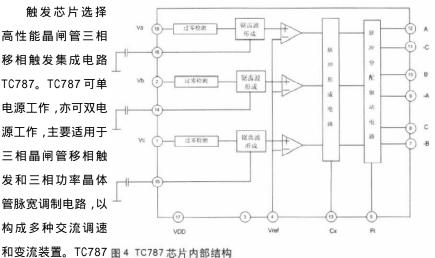
采用PIC16F690作为控制芯片。 PIC16F690 单片机内部自带 10 位 AD; 宽工作电压 (2.0~5.5V); 低功耗; 带 有 P W M 输出功能;内部自带晶振。用 芯片内部自带 10 位 AD, 对采集到的直 流侧电压进行AD转换。为了降低硬件 成本,直接采分压电阻代替电压传感器 来采集直流侧电压,分压电阻上的电压 经过两个反向比例电路到单片机。单片 机的模拟地和信号地直接相连(也可以 通过磁珠相连,以减小干扰)。 PIC16F690 单片机通过一个 IO 口使能 或禁止芯片 TC787 的输出,如图3所示。

当 PIC 单片机的 I/O 口 RC3 输出高电平 (+5V)时, Lock 口为低电平; 当单片 机 I / O 口 RC3 输出低电平时, Lock 为

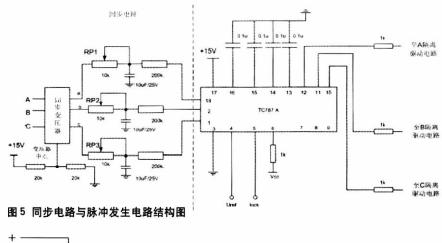
> 高电平(+15V)。选 用一个IO口作为 TC787参考电压的给 定信号,采用PWM 脉冲方式,调节占空 比来调节输出电压, P W M 波经过一个 RC低通滤波器后为 一个近似直流信号,

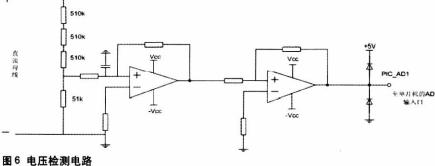
用这个信号作为参考电压给定 U,,,,,其 范围为0~5V。由于芯片TC787所需的 给定输入范围为 0-15 V , 所以 P W M 波 要经过一个光耦进行电平转换,如图3 所示。

电网电压经过同步变压器输入到 TC787, TC787的6脚输出高时双脉冲 或低时单宽脉冲。12、11、10引脚分别 为 A、B、C 的触发输出端,经过脉冲变 压器输出到晶闸管。


触发驱动电路设计

触发芯片选择 高性能晶闸管三相 移相触发集成电路 TC787。TC787 可单 电源工作,亦可双电 源工作,主要适用于 三相晶闸管移相触 发和三相功率晶体 管脉宽调制电路,以 构成多种交流调速


的内部结构如图 4 所示。


在本设计中, TC787 采用 15V 供电, 引脚4(Vr):移相控制电压输入端。该端 输入电压的高低直接决定着 TC787/ TC788 输出脉冲的移相范围,应用中接 给定环节输出。引脚5(Pi):输出脉冲禁 止端。该端用来进行故障状态下封锁 TC787/TC788的输出,高电平有效,应 用中,接保护电路的输出。同步电压输 入端:引脚1(Vc)、引脚2(Vb)及引脚18 (Va)为三相同步输入电压连接端。应用 中,分别接输入滤波后的同步电压,同 步电压的峰值应不超过TC787/TC788 的工作电源电压VDD。

触发驱动电路主要由电网电压同步 电路、TC787集成触发电路和脉冲放大 隔离驱动电路组成。图 5 中给出了同步 电路和 TC787 的外围电路。其前半部分 为电压同步电路,采用这种设计方法需 要加较多辅助元件。而对RP1~RP3三 个电位器进行不同调节,可实现0~ 60°的移相,从而适应不同主变压器连 接的需要。图5中,直接将同步变压器 的中点接到(1/2)电源电压上,使所用元

应用设计:电源

件得以简化。TC787的引脚4输出单片机的给定电压(0~+15V),引脚6为触发脉冲封锁引脚。引脚10~12为触发脉冲输出引脚,分别接到C、B、A相的隔离放到电路。

电压检测电路设计

为了降低硬件成本,设计直流母线电压检测电路时采用了分压电阻的方法,而没有采用电压传感器。采用这种分压电阻的方法结构简单,易于调试。电路如图 6 所示。通过分压电阻得到的电压为直流母线电压的 1/31,该电压通过两个反向比例放大电路输入到 PIC 单片机的 AD 转换处理为数字量。

(上接第78页)

C相序变化时矢量分析(L3、L2、L1)

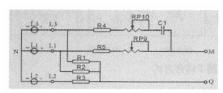


图8变化相序||

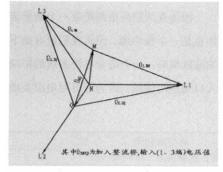


图 9 变化相序矢量图 ||

通过分析可知,当相应相序发生变化后,整流桥输入电压值U_{MQ}也随之变化,并使得IC3A反相输入端的Vcc电

压随其变化。

当保护器所加相序为L1、L2、L3时,IC3A中同相输入端 端电压 V > V (Vcc),此时IC2手动复位控制端MR为"1",计时器呈自动复位导通状态,如出现过压、欠压等状态,吸合触点进入延时保护状态。待完成延时保护状态后,吸合触点断开,直到工作电压L1、L2、L3又重归至安全电压工作带。

保护器所加相序发生变化后,整流桥输入电压值 U_{MQ}增大,从而使 Vcc 随之增大,IC3A中同相输入端 的电压 V < V ,IC2 手动复位控制端 MR 为 "0",计时器工作延时,而 IC2 输出控制端为"1",此时计算器不在清零控制状态,则输出状态Q端(8端)输出为"0",保护继电器触点呈释放状态。

触点保护状态

保护器对所供电压进行取样检测,如电压出现异常时,保护器内部执行继电器都会先延时后释放,进行可靠的保护。为实现上述功能,需要选择可编程定时电路4541。延时部分可通过集成电路~

脚外接RTC、CTC来完成。通过集成输入、输出控制端的设定来控制输出端Q的起始电平状态,并在输出端处串接V2稳压管以保证控制输出满足要求。

保护器内部继电器线圈始终有工作电流通过,继电器吸合。如发生过压、欠压情况,V3在导通工作延时后变为截止状态,V2指示灯熄灭,继电器释放。在驱动保护电路中增加R12、R31、R30、V4,可保证产品在过压情况下起到相应的保护功能。