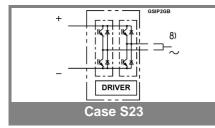

SKiiP 1213GB123-2DL

2-pack-integrated intelligent Power System

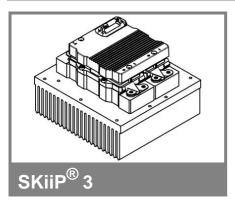

Power section

SKiiP 1213GB123-2DL

Preliminary Data

Features

- SKiiP technology inside
- Trench IGBTs
- CAL HD diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 3 power section)
- UL recognized File no, E63532 (SKiiP[®] 3 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	$T_s = 25^{\circ}C$ unless otherwise specified						
Symbol Conditions		Values	Units					
IGBT								
V _{CES} V _{CC} ¹⁾		1200	V					
V _{CC} ¹⁾	Operating DC link voltage	900	V					
V _{GES}		± 20	V					
I _C	T _s = 25 (70) °C	1200 (900)	А					
Inverse o	Inverse diode							
I _F = - I _C	T _s = 25 (70) °C	930 (700)	А					
I _{FSM}	T _j = 150 °C, t _p = 10 ms; sin.	8640	А					
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	373	kA²s					
T _i , (T _{stg})		- 40 + 150 (125)	°C					
V _{isol}	rms, AC, 1 min, main terminals to heat sink	3000	V					
I _{AC-terminal}	per AC terminal, rms, T _s = 70 °C,	400	А					
	T _{terminal} <115 °C							

Characteristics T _s = 25°C unless otherwise specifi					
Symbol Conditions		min.	typ.	max.	Units
IGBT					
V _{CEsat}	I_{C} = 600 A, T_{j} = 25 (125) °C; measured at terminal		1,7 (1,9)	2,1	V
V _{CEO}	T _i = 25 (125) °C; at terminal		0,9 (0,8)	1,1 (1)	v
r _{CE}	T _i = 25 (125) °C; at terminal		1,3 (1,8)	1,7 (2,2)	mΩ
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES} , T _i = 25 (125) °C		2,4 (72)		mA
E _{on} + E _{off}	$I_{\rm C}^{\rm J}$ = 600 A, $V_{\rm CC}$ = 600 V		221		mJ
	$T_j = 125 \text{ °C}, V_{CC} = 900 \text{ V}$		390		mJ
R _{CC+EE}	terminal chip, T _i = 25 °C		0,25		mΩ
L _{CE}	top, bottom		6		nH
C _{CHC}	per phase, AC-side		3,4		nF
Inverse	diode				
V _F = V _{EC}	I _F = 600 A, T _j = 25 (125) °C measured at terminal		1,5 (1,5)	1,8	V
V _{TO}	T _i = 25 (125) °C		0,9 (0,7)	1,1 (0,9)	v
r _T	T _i = 25 (125) °C		1 (1,3)	1,1 (1,5)	mΩ
E _{rr}	$I_{\rm C}$ = 600 A, V _{CC} = 600 V		42		mJ
	T _j = 125 °C, V _{CC} = 900 V		56		mJ
Mechan	ical data				
M _{dc}	DC terminals, SI Units	6		8	Nm
M _{ac}	AC terminals, SI Units	13		15	Nm
W	SKiiP [®] 3 System w/o heat sink		1,7		kg
w	heat sink		5,4		kg
	l characteristics (PX16 heat si e to heat sink; "r" reference to 5)				(acc. IE
R., ., .,	per IGBT			0.03	K/W

60/4/-1	5)								
R _{th(j-s)I}	per IGB	Т					0,03	K/W	
$R_{th(j-s)D}$	per diod	е					0,058	K/W	
Z _{th}	R _i (mK/\	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4	
Z _{th(j-r)I}	9,8	16,4	3,8	0	0,37	0,06	0,01	1	
Z _{th(j-r)D}	10	24	24	36	50	5	0,25	0,04	
Z _{th(r-a)}	4,3	20,3	7,1	2,3	160	53	9	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

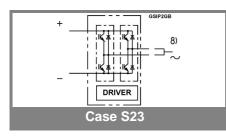
SKiiP 1213GB123-2DL

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 1213GB123-2DL

Preliminary Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 40/85/56 (SKiiP[®] 3 gate driver)

Absolute Maximum Ratings						
Symbol	Conditions	Values	Units			
V _{S2}	unstabilized 24 V power supply	30	V			
V _i	input signal voltage (high)	15 + 0,3	V			
dv/dt	secondary to primary side	75	kV/μs			
V _{isollO}	input / output (AC, rms, 2s)	3000	V			
VisoIPD	partial discharge extinction voltage, rms, $Q_{PD} \leq 10 \text{ pC}$;	1170	V			
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V			
f	switching frequency	15	kHz			
T _{op} (T _{stg})	operating / storage temperature	- 40 + 85	°C			

Characte	ristics	(T _a			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V _{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	274+25*f/	274+25*f/kHz+0,00022*(I _{AC} /A) ²		
V _{iT+}	input threshold voltage (High)	11,2			V
V _{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1000		A
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	$(I_{analog} OUT = 10 V)$		1250		А
T _{tp}	over temperature protection	110		120	°C
UDCTRIP	U _{DC} -protection (U _{analog OUT} = 9 V);	i	not mplemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com. Further questions can be placed via http://faq.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

