E-ARCHERA

TECHNICAL DATA

SPO256 NARRATOR ${ }^{\text {TM }}$ SPEECH PROCESSOR

Features

- Natural Speech
- Stand Alone Operation with Inexpensive Support Components
- Wide Operating Voltage
- Word, Phrase, or Sentence Library, ROM Expandabie
- Expandable to 491 K of ROM Directly
- Simple Interface to Most Microcomputers or Microprocessors
- Supports L.P.C. Synthesis: Formant Synthesis: Allophone Synthesis

Generel Description

The SPO256 (Speech Processor) is a single chip N-Channel MOS LSI device that is able, using its stored program, to synthesize speech or complex sounds.

The achievable output is equivalent to a flat frequency response ranging from 0 to 5 kHz , a dynamic range of 42 dB , and a signal to noise ratio of approximately 35 dB .

The SP0256 incorporates four basic functions:

- A software programable digital filter that can be made to model a VOCAL TRACT.
- A 16K ROM which stores both data and Instructions (THE PROGRAM).
- A MICROCONTROLLER which controls the data flow from the ROM to the digital filter, the assembly of the "word strings" necessary for linking speech elements together, and the amplitude and pitch information to excite the digital filter.
- A PULSE WIDTH MODULATOR that creates A digital output which is con-

TOD View		
$\mathrm{v}_{5 S} \mathrm{C} 01$	28	pose 2
RESET ${ }^{2}$	27	josc 1
ROM disable [3	26	-rom clock
ClO_{4}	25] $\overline{\text { SEY RESET }}$
$\mathrm{C2}^{5}$	24	goigital out
${ }^{2} \square^{6}$	23	V_{DI}
$\mathrm{V}_{\text {OD }}{ }^{7}$	22	-test
say 0^{8}	21	Pser in
LRO \square^{9}	20]ato
A8 10	19]se
${ }^{4} 711$	18	A1
SER OUT 12	17	A2
46113	16	Pa3
${ }^{4} 514$	15	Pa4

PIN CONFIGURATION
verted to an analog signal when filtered by an external low pass filter.

Allophone Based Speech Processor - SPO256-AL2

One example of a preprogramed SPO256 is the AL2 pattern.

Allophone Usage with a Microprocessor

The SPO256-AL2 requires the use of a processor to concatenate the speech sounds to form words.
The SPO256 is controlled using the address pins (A1-A8), ALD (Address Load), and SE (Strobe Enable). The object for controlling the chip is to load an address into It which contains the desired allophone. The speech data for the allophone set is contained within the internal 16 K ROM of the SPO256-AL2

CUSTOM PACKAGED IN U.S.A. BY RADIO SHACK A DIVISION OF TANDY CORPORATION

This particular application (Allophone Set) requires only six address Pins (A1-A6) to address all the 69 allophones plus five pauses, a total of 64 locations. For simplicity, since only six address pins are needed to address the 64 locations, pins A7 and A8 can be tied low (to ground) and now any further references to the address bus will Include $A 1-A 6$ end $A 7=A 8=0$

There are two modes available for loading an address into the chip. SE (Strobe Enable) controls the mode that will be used.

Mode $0(\mathrm{SE}=0)$ will latch is an address when any one or more of the address pins makes a low to high transition. For example, to load the address one (1), A2 to $A 6=0$ and $A 1$ is pulsed high. To load the address twelve (12 octal), $A 1=A 3=A 5=A 6=0, A 2$ and A4 are pulsed high simultaneously. (Note that an address of zero cannot be loaded using this mode).

Mode 1 ($\mathrm{SE}=1$) will latch in an address using the ALD pln. First, setup the desired address on the address bus (A1-A6) and
low. Any address can be loaded using this mode, but certain setup and hold times are then pulse ALD required (refer to the attached timing diagram for the specific times).

Two microprocessor interface pins are available for quick loading of addresses. They are LRQ and SBY. LRQ (Load Request) tells the processor when the input buffer is full. SBY (Stand By) tells the processor that the chip has stopped talking and no new address has been loaded. Either interface pin can be used when concatenating allophones. LRQ is an active low signal, when $L R Q$ goes low it is time to load a new address to the chip. If LRQ is high, then simply wait for It to go low before loading the address. SBY will stay high until an address is loaded, then it will go low and stay low until all the internal instructions (Speech Code) from that one address are completed. Once this signal goes high, It is time to load a new address. Since speech does not require very fast address loading, it would be acceptable to use SBY to interface to the processor.

To end a word using allophones it is necessary to load a pause to complete the word. For example, the word "TWO"

ELECTRICAL CHARACTERISTICS

Maximum Ratings

All pins with respect to Vss.........-0.3 to 8.0V Storage Temperature............. $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Standard Conditions
Clock - Crystal Frequency3.120 MHz Operating Temperature (Ta) $\ldots . . .0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ DC CHARACTERISTICS/SPO 256

Characteristic	Sym	Min	Typ	Max	Units	Conditions
Supply Voltage	$\begin{aligned} & V_{b D} \\ & V_{b} \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.6 \end{aligned}$	-	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	
Supply Current	IDD ld1			90 21	mA mA	$T_{A}=25^{\circ} \mathrm{C}, V_{D 1}, V_{D D}=7.0 \mathrm{~V}$ $\overline{\text { Reset } \& ~} \overline{\text { SBY }}$ Reset high. All outputs floating. Same as above.
INPUTS A1-A8, $\overline{\text { ALD }}$, SERIN, TEST, SE LOGIC 0 LOGIC 1 CAPACITANCE LEAKAGE $\overline{\text { RESET, }} \overline{\text { SBY RESET }}$ LOGIC 0 LOGIC 1	VIL VIH Cin IL VII V_{IH}	$\begin{gathered} 0.0 \\ 2.4 \\ - \\ - \\ 0.0 \\ 3.6 \end{gathered}$		$\begin{gathered} 0.6 \\ V_{\mathrm{D} 1} \\ 10 \\ +10 \\ 0.6 \\ \mathrm{~V}_{\mathrm{D} 1} \end{gathered}$		0 Volts bias, $f=3.12 \mathrm{MHz}$ $\mathrm{V}_{\text {PIN }}=7.0 \mathrm{~V}$ Other Pins $=0.0 \mathrm{~V}$
OUTPUTS SBY, Digital Out, C1, C2, C3, $\overline{\text { LRQ, ROM DIS, ROM CLK, }}$ SEROUT LOGIC 0 LOGIC 1	$\begin{aligned} & \text { Vol } \\ & \text { VoH } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 0.6 \\ & V_{D 1} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	IoL $=0.72 \mathrm{ma}$ (2LS TTL Loads) Іон $=-50 \mu \mathrm{a}$ (2LS TTL Loads)
OSCILLATOR OSC 2 (Output) LOGIC 0 LOGIC 1	$\begin{aligned} & \text { Vol } \\ & \text { Voh } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 0.6 \\ & V_{D 1} \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$	When driven from external source. $\begin{aligned} & \text { OSC } 1 \text { (Input) }=3.90 \mathrm{~V} \text { MIN } \\ & \text { OSC } 1 \text { (Input) }=0.60 \mathrm{~V} \text { MAX } \end{aligned}$

can be implemented using the following allophones, TT2-VW2-PA1. PA1 is actually not an allophone but a pause which is needed to end the word.
*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions Standard Condi-tions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Data labeled "typical" is presented for design

PIN FUNCTIONS

PIN NUMBER	N A M E	FUNCTION
1	$V_{S S}$	Ground
2	RESET	A logic 0 resets that portion of the SP powered by VDD. Must be returned to a logic 1 for normal operation.
3	ROM DISABLE	For use with an external serial speech ROM, a logic 1 disables the external ROM.
4, 5,6	CI, C2, C3	Output control lines for use with an external serial speech ROM. Refer to the SPR016 Data Sheet for details.
7	VDD	Power supply for all portions of the SP except the microprocessor interface logic.
8	SBY	STANDBY. A logic 1 output Indicates that the SP is inactive and VDD can be powered down externally to conserve power. When the SP is reactivated by an address being loaded, SBY will go to a logic 0.
B	LRQ	LOAD REQUEST. LRQ is a logic 1 output whenever the input buffer is full. When LRQ goes to a logic 0 , the input port may be loaded by placing the 8 address bits on A1-A8 and pulsing the ALD output.
$\begin{aligned} & 10,11,13,14 \\ & 15,16,17,18 \end{aligned}$	$\begin{aligned} & \text { A } 8, \mathrm{~A} 7, \mathrm{~A} 6, \mathrm{~A} 5, \\ & \text { A4. A3. A2. A } 1 \end{aligned}$	8 bit address which defines any one of 256 speech entry points.
12	SER OUT	SERIAL ADDRESS OUT. This output transfers a 16-bit address serially to an external speech ROM.
19	SE	STROBE ENABLE. Normally held in a logic 1 state. When tied to ground, ALD Is disabled and the SP will automatically latch in the address on the input bus approximately lus after detecting a logic 1 on any address line.
20	ALD	ADDRESS LOAD. A negative pulse on this input loads the 8 address bits into the input port. The negative edge of this pulse causes LRQ to go high.
21	SER IN	SERIAL IN. This is an E-bit serial data input from an external speech ROM.

Pin Functions Continued

PIN NUMBER	NAME	FUNCTION
22	TEST	This pin should be grounded for normal operation.
23	DIGITAL OUT	Power supply for the microprocessor in- terface logic and controller.
Pulse width modulated digital speech output which, when filtered by a 5KHz low pass filter and amplified, will drive a loudspeaker.		
24	SBY RESET	STANDBY RESET. A logic 0 resets the microprocessor interface logic and the address latches. Must be returned to a logic 1 for normal operation.
25	ROM CLOCK	This is a 1.56MHz clock output used to drive an external serial speech ROM.
27	OSC1	XTAL IN. Input connection for a 3.12MHz crystal.
28	OSC2	XTAL OUT. Output connection for a 3.12MHz crystal.

ALLOPHONE SPEECH SYNTHESIS

Introduction

The allophone speech synthesis technique provides the user with the ability to synthesize an unlimited vocabulary at a very low bit rate. Fifty-nine discrete speech sounds (called allophones) are five pauses are stored at different addresses in the SPO256 internal ROM. Each speech sound was excised from a word and analyzed using linear predictive coding (LPC). Any English word or phrase can be created by addressing the appropriate combination of allophones and pauses. Since there Is a total of 64 address locations each requires a 6 bit address. Assuming that speech contains 10 to 12 sounds per second, allophone synthesis requires addressing less than 100 bits per second.

Linguistics

A few basic linguistic concepts will help you start your own library of "allophone words". (See Table 1 for the General Instrument Allophone Dictionary). First, there is no one-to-one correspondence between written letters and speech sounds; secondly, speech sounds are acoustically different depending upon their position within a word; and lastly, the human ear may perceive the same acoustic signal differently in the context of different sounds.

The first point compares to the problem that a child encounters when learning to read. Each sound in a language may be represented by more than one letter and, represented by more than one letter and,
conversely each letter may represent more than one sound. (See the examples in Table 2.) Because of these spelling irregularities, it is necessary to think in terms of sounds, not letters, when using allophones.

The second, and equally important, point to understand, is that the acoustic signa of a speech sound may differ depending upon its position within a word. For example, the initial \mathbf{K} sound in coop will be acoustically different from the K's in keep and speak. The K's in coop and keep differ due to the influence of the vowels which follow them, and the final K in speak is usually not as loud as initial K'S.

Finally, a listener may identify the same acoustic signal differently depending on the context in which it is perceived. Don' be surprised, therefore, if an allophone word sounds slightly different when used in various phrases.

Phonemes Of English

The sounds of a language are called phonemes, and each language has a set which is slightly different from that of other languages. Table 3 contains a char of all the consonant phonemes of English Table 4 all the vowel phonemes

Consonants are produced by creating an occlusion or constriction in the vocal tract which produces an aperiodic sound source. If the vocal cords are vibrating at the same time, as in the case of the voiced fricatives VV, DH, ZZ, and ZH (See Table 5) there are two sound sources: one which is aperiodic and one which is periodic.

Vowels are usually produced with a relatively open vocal tract and a periodic sound source provided by the vibrating vocal cords. They are classified according to whether the front or back of the tongue is high or low (See Table 4), whether they are long or short, and whether the lips are rounded or unrounded. In English all rounded vowels are produced in or near the back of the mouth (UW, UH, OW AO, OR, AW). Speech sounds which have features in common behave in similar ways. For example, the voiceless stop consonants PP, TT, and KK (See Table 3) should be preceded by $50-80$ msec of silence, and the voiced stop consonants BB, DD, and GG by 10-30 msec of silence.

Allophones

Phoneme is the name given to a group of similar sounds in a language. Recall that a phoneme is acoustically different depending upon its position within a word. Each of these positional variants is an allophone of the same phoneme. An allophone, therefore, is the manifestation of a phoneme in true speech signal. It is for this reason that our inventory of English speech sounds is called an allophone set.

How To Use The Allophone Set

(See Table 1 for instructions on how to create all the sample words mentioned in this section.) The allophone set (Refer to Table 5) contains two or three versions of some phonemes. It may be necessary to use one allophone of a particular phoneme for word-or-syllable-final position, A detailed set of guidelines for using the allophones is given in Table 5. Note that these are suggestions, not rules.

For example, DD2 sounds good in initial position and DD1 sounds good in final position, as in "daughter" and "collide". One of the differences between the initial and final versions of a consonant is that an initial version may be longer than the final version. Therefore, to create an initial SS, you can use two SSs instead of the usual single SS at the end of a word or syllable, as in "sister". Note that this can be done with TH, and FF, and the inherently short vowels (to be discussed below), but with no other consonants. You will want to experiment with some consonants such as str, cl) to discover which version works best in the cluster. For example, KK1 sounds good before LL as in "clown", and KK2 sounds good before WW as in "square". One allophone of a particular phoneme may sound better before or after back vowels and another before or after front vowels. KK3 sounds good before UH and KK1 sounds good before IY, as in "cookie", Some sounds (PP, BB, TT, DD. $\mathrm{KK}, \mathrm{GG}, \mathrm{CH}$, and JH) require a brief duration of silence before them. For most of these, the silence has already been added but you may decide you want to add more. Therefore there are several pauses included in the allophone
set varying from $10-200 \mathrm{msec}$. To create the final sounds in the words "letter" and "little" use the allophones ER and EL.

Remember that you must always think about how a word sounds, not how it is spelled. For example, the NG sound is represented by the letter N in "uncle", And remember that some sounds may not even be represented in words by any letters, as the YY in "computer".

As mentioned earlier there are some vowels which can be doubled to make longer versions for stressed syllables These are the inherently short vowels IH $\mathrm{EH}, \mathrm{AE}, \mathrm{AX}, \mathrm{AA}$, and UH. For example, in the word "extent" use one EH in the firs syllable, which is unstressed and two EHs in the second syllable which is stressed Of the inherently long vowels there is one UW, which has a long and short version.

The short one, UW1, sounds good after YY in computer. The long version, UW2, sounds good in mono-syllabic words like "two". Included in the vowel set is a group called R-colored vowels. These are vowe $+R$ combinations. For example, the AR in "alarm" and the OR in "score". Of the Rcolored vowels there is one, ER, which has a long and short version. The shor version is good for polysyllabic words with final ER sounds like "letter", and the long version is good for monosyllabic words like "fir". One final suggestion is that you may want to add a pause of $30-50 \mathrm{msec}$ between words, when creating sen tences, and a pause of $100-200 \mathrm{msec}$ between clauses.

Note: Every utterance must be followed by a pause in order to make the chip stop talking the last allophone.

Table 1:

NUMBERS:

seventeen	SS SS EH VV TH
	NN1 PA2 PA3 TT2
eighteen	IY NN1
	EY PA2 PA3 TT2
nineteen	IY NN1
	NN1 AY NN1 PA2
twenty	PA3 TT2 IY NN1
	TT2 WH EH EH
thirty	NN1 PA2 PA3 TT2 IY
	TH ER2 PA2 PA3
forty	TT2 IY
fifty	FF OR PA3 TT2 IY
	FF FF IH FF FF
sixty	PA2 PA3 TT2 IY
	SS SS IH PA3 KK2
seventy	SS PA2 PA3 TT2 IY
	SS SS EH VV IH
eighty	NN1 PA2 PA3 TT2 IY
ninety	EY PA3 TT2 IY
	NN1 AY NN1 PA3
hundred	TT2 IY
	HH2 AX AX NN1
	PA2 DD2 RR2 IH
thousand	IH PA1 DD1
million	TH AA AW ZZ TH
	PA1 PA1 NN1 DD1
	MM IH IH LL YY1
	AX NN1

Table 1 Continued

DAY OF THE WEEK:

Sunday	SS SS AX AX NN1
Monday	PA2 DD2 EY
	MM AX AX NN1
Tuesday	PA2 DD2 EY
Wednesday	DD2 EY ZZ PA2
	WW EH EH NN1 ZZ
Thursday	PA2 DD2 EY
Friday	TH ER2 ZZ PA2
	DF EY AY PA2
Saturday	DD2 EY
	SS SS AE PA3
	TT2 PA2 DD2 EY

MONTHS:

January	JH AE AE NN1
	YY2 XR 1Y
February	FF EH EH PA1
	BR RR2 UW2 XR IY
March	MM AR PA3 CH
April	EY PA3 PP RR2
	IH IH LL
May	MM EY
June	JH UW2 NN1
July	JH UW1 LL AY
August	AO AO PA2 GG2
	AX SS PA3 TT1
September	SS SS EH PA3 PP
	PA3 TT2 EH EH
	PA1 BB2 ER1
October	AA PA2 KK2 PA3
	TT2 OW PA1 BB2
	ER1 OW VV EH EH
November	NN2 OW
	MM PA1 BB2 ER1
December	DD2 IY SS SS EH
	EH MM PA1 BB2
	ER1

LETTERS:
EY
SS SS IY
DD2 IY
IY
EH EH FF FF JH IY
EY PA2 PA3 CH
AA AY
JH EH EY

K	KK1 EH EY
L	EH EH EL
M	EH EH MM
N	EH EH NNI
0	OW
P	PP IY
Q	KK1 YY1 UW2
R	AR
S	EH EH SS SS
T	TT2 IY
U	YY1 UW2
V	DD2 AX PA2 BB2
W	EL YY1 UW2
X	EH EH PA3 KK2
X	SS SS
Y	ZZ AY
Z	

DICTIONARY:

alarm	AX LL AR MM
bathe	BB2 EY DH2
bather	BB2 EY DH2 ER1
bathing	BB2 EY DH2 IH NG
beer	BB2 YR
bread	BB1 RR2 EH EH PA1
	DD1
by	BB2 AA AY
calendar	KK1 AE AE LL
	EH NN1 PA2 DD2
	ER1
clock	KK1 LL AA AA
	PA3 KK2
clown	KK1 LL A WN1
check	CH EH EH PA3
	KK2
checked	CH EH EH PA3
	KK2 PA2 TT2
checker	CH EH EH PA3
	KK1 ER1
checkers	CH EH EH PA3
	KK1 ER1 ZZ
checking	CH EH EH PA3
	KK1 IH NG
checks	CH EH EH PA3
	KK1 SS
cognitive	KK3 AA AA GG3
	NN1 IH PA3 TT2
	IH VV
collide	KK3 AX LL AY
	DD1 AX MM PP1
computer	KK1 AX MM
	YY1 UW1 TT2 E R
cookie	KK3 UH KK1 IY

coop correct	KK3 UW2 PA3 PP	fir	FF ER2
	KK1 ER2 EH E H	freeze	FF FF RR1 IY Z Z
	PA2 KK2 PA2 TT1	freezer	FF FF RR1 IY ZZ
corrected	KK1 ER2 EH EH		ER1
	PA2 KK2 PA2 TT2	freezers	FF FF RR1 IY ZZ
	IH PA2 DDI		ER1 Z Z
correcting	KKI ER2 EH EH	freezing	FF FF RR1 IY ZZ
	PA2 KK2 PA2 TT2		IH NG
	IH NG	frozen	FF FF RR1 OW ZZ
corrects	KK1 ER2 EH EH		EH NN1
	PA2 KK2 PA2 TT1		GG1 EY PA2 JH
	Ss	gauge guaged	GG1 EY PA2 JH
crown date	KK1 RR2 AW NN1		PA2 DD1
		guager	GG1 EY PA2 JH
daughter day divided	DD2 EH EY	guager	IH Z Z
	DD2 IH VV AY	guaging	GG1 EY PA2 JH
	PA2 DD2 IH PA2		IH NG
	DD1	hello	HH EH LL AX OW
emational	IY MM OW SH AX	hour	AW ER1
	NN1 AX EL EH EH PA1 NN1	infinitive	IH NN1 FF FF IH
engage	GG1 EY PA2 JH		IH NN1 IH PA2 PA3
engagement	EH EH PA1 NN1		TT2 IH VV
	GG1 EY PA2 JH MM	intrigue	IN NN1 PA3 TT2
	EH EH NN1 PA2		RR2 IY PA1 GG3
	PA3 TT2	intrigued	IH NN1 PA3 TT2
engages	EH EH PA1 NN1		RR2 IY PA1 GG3
	GG1 EY PA2 JH IH		PA2 DD1
	Z \mathbf{Z}	intrigues	IH NN1 PA3 T-I-2
engaging	EH EH PA1 NN1		RR2 IY PA1 GG3
	GG1 EY PA2 JH IH		z \mathbf{z}
	NG	intriguing	IH NN1 PA3 TT2
enrage	EH NN1 RR1 EY		RR2 IY PA1 GG3
	PA2 JH		IH NG
enraged	EH NN1 RR1 EY	investigate	IH IH NN1 VV EH
	PA2 JH PA2 DD1		EH SS PA2 PA3
enrages	EH NN1 RR1 EY		TT2 IH PA1 GG1
	PA2 JH IH ZZ		EY PA2 TT2
enraging	EH NN1 RR1 EY	Investigated	IH IH NN1 VV EH
	PA2 JH IH NG		EH SS PA2 PA3
escape	EH SS SS PA3		TT2 IH PA1 GG1
	KK1 PA2 PA3 PP		EY PA2 TT2 IH PA2
escaped	EH SS SS PA3		DD1
	KK1 PA2 PA3 PP	Investigator	IH IH NN1 VV EH
	PA2 TT2		EH SS PA2 PA3
escapes	EH SS SS PA3 KK1		TT2 IH PA1 GG1
	PA2 PA3 PP SS		EY PA2 TT2 ER1
escaping	EH SS SS PA3 KK1	investigators	IH IH NN1 VV EH
	PA2 PA3 PP IH NG		EH SS PA2 PA3
equal	IY PA2 PA3 KK3		TT2 IH PA1 GG1
	WH AX EL		EY PA2 TT2 ER1
equals	IY PA2 PA3 KK3		z Z
	WH AX EL Z Z	investigates	IH IH NN1 VV EH
errorextent	EH XR OR		EH SS PA2 PA3
	EH KK1 SS TT2 EH		TT2 IH PA1 GG1
	EH NN1 TT2		EY PA2 TT1 SS

Table 1 Continued

investigating	IH IH NN1 VV EH EH SS PA2 PA3	pledging	PP LL EH EH PA3 JH IH NG
	TT2 IH PA1 GG1	plus	PP LL AX AX SS
	EY PA2 TT2 IH NG		SS
key legislate	KK1 IY		
	LL EH EH PA2	ray rays	
	JH JH SS SS LL EY	rays ready	$\begin{array}{lll} \text { RR1 } & \text { EH EY ZZ } \\ \text { RR1 } & \text { EH EH PA1 } \end{array}$
legislated	PA2 PA3 TT2		DD2 IY
	JH JH SS SS LL EY	red	RR1 EH FH PA1
	PA2 PA3 TT2 IH DD1		DD1
legislates	LL EH EH PA2	robot	RR1 OW PA2 BB2
	JH JH SS SS LL EY		AA PA3 TT 2
	PA2 PA3 TT1 SS	robots	RR1 OW PA2 BB2
legislating	LL EH EH PA2		AA PA3 TT1 SS
	JH JH SS SS LL EY	score	SS SS PA3 KK3 OR
	PA2 PA3 TT2 IH NG	second	SS SS EH PA3 KK1
legislature	LL EH EH PA2		IH NN1 PA2 DD1
	JH JH SS SS LL EY	sensitive	SS SS EH EH NN1
	PA2 PA3 CH ER1		SS SS IH PA2 PA3
letter	LL EH EH PA3		TT2 IH VV
	TT2 ER1	sensitivity	SS SS EH EH NN1
litter	LL IH IH PA3 TT2		SS SS IH PA2 PA3
	ER1		TT2 IH VV IH PA2
little	LL IH IH PA3 TT2		PA3 TT2 IY
	EL	sincere	SS SS IH IH NN1
memory	MM EH EH MM		SS SS YR
	ER2 IY	sincerely	SS SS IH IH NN1
memories	MM EH EH MM		SS SS YR LL IY
	ER2 IY ZZ	sincerity	SS SS IH IH NN1
minute	M M 1H NN1 IH PA3		SS SS EH EH RR1
	TT2		IH PA2 PA3 TT2 IY
month	MM AX NN1 TH	sister	SS SS IH IH SS
nip	NN1 IH IH PA2		PA3 TT2 ER1
	PA3 PP	speak	SS SS PA3 IY PA3
nipped	NN1 IH IH PA2		KK2
	PA3 PP PA3 TT2	spell	SS SS PA3 PP EH
nipping	NN1 IH IH PA2		EH EL
	PA3 PP IH NG	spelled	SS SS PA3 PP EH
nips	NN1 IH IH PA2		EH EL PA3 DD1
	PA3 PP SS	speller	SS SS PA3 PP EH
no	NN2 AX OW		EH EL ER2
physical	FF FF IH ZZ IH	spellers	SS SS PA3 PP EH
	PA3 KK1 AX EL		EH EL ER2 ZZ
pin pinned	PP IH IH NN1	spelling	SS SS PA3 PP EH
	PP IH IH NN1		EH EL IH NG
	PA2 DD1	spells	SS SS PA3 PP EH
pinning	PP IH IH NN1 IH		EH EL ZZ
	NG1	start	SS SS PA3 TT2 AR
pins pledge pledged	PP IH IH NN1 ZZ		PA3 TT2
	PP LL EH EH PA3 JH	started	SS SS PA3 TT2 AR
	PP LL EH EH PA3		PA3 TT2 IH PA1
	JH PA2 DD1		DD2
pledges	PP LL EH EH PA3	starter	SS SS PA3 TT2 AR
	JH IH ZZ		PA3 TT2 ER1

TABLE 3 - CONSONANT PHONEMES OF ENGLISH**

		LABIAL	LABIODENTAL	inter- dental	Alveo- LAR	PaLATAL	vELAR	glottal
Stops:	Voiceless Voiced	PP BB			TT DD		KK GG	
Fricatives:	Voiceless Voiced	WH	FF vv	TH DH	SS ZZ	SH ZH^{*}		HH
Affricates:	Voiceless Voiced					CH JH		
Nasals	Voiced	MM			NN		NG*	
Resonants	Voiced	ww			RR,LL	YY		

*These do not occur in word-initial position in English.

Labial :	Upper and Lower Lips Touch or Approximate	Palatal:	Body of Tongue Approx- imates Palate (roof of
Labio-Dental:	Upper Teeth and Lower Lip Touch	Velar:	mouth) Body of Tongue Touches
Inter-Dental:	Tongue Between Teeth Alveolar:	Tip of Tongue Touches or Approximates Alveolar (posterior portion	
	Ridge (just behind upper teeth)	Glottal:	of roof of mouth) Glottis (opening between vocal cords)

TABLE 4 - VOWEL PHONEMES OF ENGLISH

	FRONT	CENTRAL	BACK
High	YR		
	IY		UW\#
	$1 \mathrm{H}^{*}$		UH*\#
Mid	EY	ER	OW\#
	$E H^{*}$	$A^{*}{ }^{*}$	OY\#
	XR		
Low	AE^{*}	AW\#	AO*\#
		AY	OR\#
		AR	
		AA*	

* Short Vowels
\# Rounded Vowels

TABLE 5 - GUIDELINES FOR USEING THE ALLOPHONES

Silence		
PA1	(10 ms)	- before BB, DD, GG, and JH
PA2	(30 ms)	- before BB, DD, GG, and JH
PA3	(50 ms)	- before PP, TT, KK, and CH , and between words
PA4	(100 ms)	- between clauses and sentences
PA5	(200 ms)	- between clauses and sentences

Short Vowels
*/IH/ - sitting, stranded
*/EH/ - extent, gentlemen
*/AE/ - extract, acting
*/UH/ - cookie, full
$\begin{array}{ll}\text { */AO/ } & \text { - talking, song } \\ \text { */AX/ } & \text { - lapel, instruct }\end{array}$
*/AA/ - pottery, cotton

Long Vowels
/IY/ - treat, people, penny
/EY/ - great, statement, tray
/AY/ - kite, sky, mighty
/OY/ - noise, toy, voice
/UW1/ - after clusters with YY: computer
/UW2/ - in monosyllabic words: two, food
/OW/ - zone, close, snow
/AW/ - sound, mouse, down
/EL/ - little, angle, gentlemen

R-Colored Vowels
/ER1/ - letter, furniture, interrupt
/ER2/ - monosyllables: bird, fern, burn
/OR/ - fortune, adorn, store
/AR/ - farm, alarm, garment
/YR/ - hear, earring, irresponsible
/XR/ - hair, declare, stare

Resonants

/WW/ - we, warrant, linguist
/RR1/ - initial position: read, write, x-ray
RR2/ - initial clusters: brown,
crane, grease
/LL/ - like, hello, steel
/YY1/ - clusters: cute, beauty, computer
/YY2/ - initial position: yes, yarn, yo-yo

Voiced Fricatives
VV/ - vest, prove, even
DH1/ - word-initial position: this, then, they
DH2/ - word-final and between vowels: bathe, bathing
/ZZ/ - zoo, phase
/ZH/ - beige, pleasure
Voiceless Fricatives
\(\left.$$
\begin{array}{lll}\text { */FF/ } & -) & \begin{array}{l}\text { These may be doubled } \\
\text { for initial position and } \\
\text { used singly in final }\end{array}
$$

\& position\end{array}\right\}\)\begin{tabular}{ll}
*/TH/ \& - -)

*/SS/ \& -)

/SH/ \& -shirt, leash, nation

/HH1/ \& | - before front vowels: YR, IY, |
| :--- |
| IH, EY, EH, XR, AE |

/HH2/ \& | - before back vowels: UW, UH, |
| :--- |
| OW, OY, AO, OR, AR |

/WH/ \& - white, whim, twenty
\end{tabular}

Voiced Stops
/BB1/ - final position: rib; between vowels: fibber, in clusters: bleed, brown
/BB2/ - initial position before a vowel: beast
/DD1/ - final position: played, end
DD2/ - initial position: down; clusters: drain
/GG1/ - before high front vowels: YR, IY, IH, EY, EH, XR
/GG2/ - before high back vowels: UW, UH, OW, OY, AX; and clusters: green, glue
GG3/ - before low vowels: AE, AW, AY, AR, AA, AO, OR, ER; and medial clusters: anger; and final position: peg

Voiceless Stops

/PP/	- pleasure, ample, trip
/TT1/	- final clusters before $\mathrm{SS}:$ tests

/TT2/ - all other positions: test, street
/KK1/ - before front vowels: YR, IY, IH, EY, EH, XR, AY, AE, ER, AX; initial clusters: cute, clown, scream
/KK2/ - final position: speak; final clusters: task
/KK3/ - before back vowels: UW, UH OW, OY, OR, AR, AO; initial clusters: crane, quick, clown, scream

Affricates

/CH/	- church, feature
/JH/	- judge, injure

/MM/ - milk, alarm, ample
/NN1/ - before front and central vowels: YR, IY, IH, EY, EH, XR, AE, ER, AX, AW, AY, UW; final clusters: earn
/NN2/ - before back vowels: UH, OW, OY, OR, AR, AA
/NG/ - string, anger

* These allophones can be doubled.

TABLE 6 - ALLOPHONE ADDRESS TABLE

$\underset{\text { ADD }}{\text { HEX }}$	OCTAL	ALLO- PHONE	${ }_{\text {STAMPL }}$	duration
00	000	PA1	PAUSE	10MS
01	001	PA2	PAUSE	30MS
02	002	PA3	PAUSE	50MS
03	003	PA4	PAUSE	100MS
04	004	PA5	PAUSE	200MS
05	005	/OY/	BOY	420MS
06	006	/AY/	Sky	260MS
07	007	/EH/	End	70MS
08	010	/KK3/	Comb	120MS
09	011	/PP/	Pow	210MS
OA	012	/JH/	Dodge	140MS
OB	013	/NN1/	Thin	140MS
OC	014	/IH/	Sit	70MS
OD	015	/TT2/	To	140MS
OE	016	/RR1/	Rural	170MS
OF	017	/AX/	Succeed	70MS
10	020	/MM/	Milk	180MS
11	021	/TT1/	Part	100MS
12	022	/DH1/	They	290MS
13	023	/IY/	See	250MS
14	024	/EY/	Beige	280MS
15	025	/DD1/	Could	70MS
16	026	/UW1/	To	100MS
17	027	/AO/	Aught	100MS
18	030	/AA/	Hot	100MS
19	031	/YY2/	Yes	180MS
1A	032	/AE/	Hat	120MS
1B	033	/HH1/	He	130MS
1C	034	/BB1/	Business	80MS
1D	035	/TH/	Thin	180MS
1E	036	/UH/	Book	100MS
1F	037	/UW2/	Food	260MS

HEX	OCTAL	ALLO- PHONE	SaMPLE WORD	duration
20	040	/AW/	Out	370MS
21	041	/DD2/	Do	160MS
22	042	/GG3/	Wig	140MS
23	043	/VV/	Vest	190MS
24	044	/GG1/	Got	80MS
25	045	/SH/	Ship	160MS
26	046	/ZH/	Azure	190MS
27	047	/RR2/	Brain	120MS
28	050	/FF/	Food	150MS
29	051	/KK2/	Sky	190MS
2A	052	/KK1/	Can't	160MS
2B	053	/ZZ/	Zoo	210MS
2 C	054	/NG/	Anchor	220MS
2D	055	/LL/	Lake	110MS
2E	056	/WW/	Wool	180MS
2F	057	/XR/	Repair	360MS
30	060	/WH/	Whig	200MS
31	061	/YY1/	Yes	130MS
32	062	/CH/	Church	190MS
33	063	/ER1/	Fir	160MS
34	064	/ER2/	Fir	300MS
35	065	/OW/	Beau	240MS
36	066	/DH2/	They	240MS
37	067	/SS/	Vest	90MS
38	070	/NN2/	No	190MS
39	071	/HH2/	Hoe	180MS
3A	072	/OR/	Store	330MS
3B	073	/AR/	Alarm	290MS
3 C	074	/YR/	Clear	350MS
3D	075	/GG2/	Guest	40MS
3E	076	/EL/	Saddle	190MS
3F	077	/BB2/	Business	50MS

