

GSM-GPRS Receiver

Description

The T0701 is a bipolar integrated RF transceiver for GSM-based cellular systems (900/1800/1900 MHz) and other wireless communication applications. This integrated circuit consists of a superheterodyne receiver with a high 1st intermediate frequency (IF) of 378 MHz and an offset PLL transmitter architecture.

Receiver functions include: low-noise pre–amplifier, mixer, digitally controlled gain amplifiers, quadrature demodulator, baseband filters, and baseband amplifiers. Transmitter functions include: I/Q modulator, phase comparator, auxiliary VCO including PLL functions and down-converter. The device is controlled by a 3-wire bus.

Features

- One device for all GSM bands (900/ 1800/ 1900 MHz)
- Support of GPRS; EDGE compatible (receive path)
- Supply voltage range 2.7 V to 3.3 V
- Current consumption (continuous operation) RX mode: 43 mA, @ Vs = 3 V TX mode: 50 mA, @ Vs = 3 V Power-down mode: < 10 μA
- 100 dB of total voltage gain

The T0701 enables to build a small-sized GSM transceiver by adding a single PLL frequency synthesizer (main oscillator), a power amplifier (e.g. TST0911) and few external components.

Triple band operation is possible with a 1st IF of 378 MHz and using only a single channel raster VCO with a tuning range of approximately 8.54%.

Electrostatic sensitive device. Observe precautions for handling.

- Noise figure 4.5 dB; on-chip auxiliary VCO
- Modulation loop transmitter architecture avoids TX spurious, and exhibits excellent noise performance
- No TX duplex filter needed, longer battery life
- 3-wire bus control for RX/ TX frequencies, gain, modes, and band selection
- 64-Pin Thin Quad Flat Package (TQFP64)

Block Diagram SAW 13 MHz 378 MHz TCXO AFC im. rej RX-I/Q SYM 90ø BPF filter LNA ٨ 3-wire bus ~ bias control div. $\overline{\mathbf{v}}$ div FRI channel Main AUX VCO Baseband CPA PA loop filter PLL 13 MHz PLL 2.2 GHz VCO IC div. T0701 Loop filter TXI RX - Idiv. ΤX TX VCO PFD & $\overline{\mathbf{A}}$ 00 900 div. Σ oop filte CPM charge pump 幸 modulation PLL RX - Q

Figure 1. Block diagram

Target Specification

Ordering Information

Extended Type Number	Package	Remarks
T0701-RPT	TQFP64	Taped and reeled
T0701-RPQ	TQFP64	Tray

Detailed Block Diagram

Figure 2. Detailed block diagram

Pin Description

Pin	Symbol	Туре	Function
1	NRF9	IB	Complementary to RF9
2	RF9	IB	RF input 900 MHz
3	VSL	0	Collector-supply LNA stages
4	VB9	0	Base-supply 900 MHz LNA
5	VB18	0	Base-supply 1800 MHz LNA
6	G1	Р	GND #1, RX/TX
7	LOIN	Ι	LO input
8	VS1	Р	Positive supply #1, RX/TX
9	PAR	Ι	Unbalancing I/Q modulator
10	GCPM	Р	GND charge pump, offset PLL
11	CPM	0	Charge pump out, offset PLL
12	VSM	Р	Positive supply offset PLL
13	GP1	Р	GND #1, main PLL
14	CPP	0	Charge pump output, main PLL
15	VSP1	Р	Positive supply #1, main PLL
16	MO1	0	Prog. output, main PLL
17	MO2	I/O	Input/ output, main PLL
18	LD	0	Lock detect main PLL
19	ENP	Ι	Enable P-bus, main PLL
20	СК	Ι	Clock input 3-wire bus
21	DA	Ι	Data input 3-wire bus
22	FRP	Ι	Reference frequency input, main PLL
23	GP2	Р	GND #2, main PLL
24	VSP2	Р	Positive supply #2, main PLL
25	ENJ	Ι	Enable J-bus
26	MVCO	0	Control for power VCO
27	PUR	Ι	Power-up RX part
28	PUT	Ι	Power-up TX part
29	G2	Ι	GND #2, RX/TX
30	GD1	Р	GND #1, die pad
31	QIN	IB	Q-input, I/Q modulator

Pin	Symbol	Туре	Function
32	NOIN	IB	Complementary to OIN
33	IIN	IB	I-input. I/O modulator
34	NIIN	IB	Complementary to IIN
35	VS2	Р	Positive supply #2. RX/TX
36	GD2	Р	GND # 2. die pad
37	FRJ	Ι	Reference frequency, RX/TX
38	СРА	0	Charge pump output, AUX VCO
39	VS3	Р	Positive supply #3, RX/TX
40	GA	Р	GND, AUX VCO
41	VSA	Р	Positive supply, AUX VCO
42	G3	Р	GND #3, RX/TX
43	RES	I/O B	Resonator for AUX VCO
44	NRES	I/O B	Complementary to RES
45	NIBB	OB	Complementary to IBB
46	IBB	OB	Baseband output I channel
47	NQBB	OB	Complementary to QBB
48	QBB	OB	Baseband output Q channel
49	GD3	Р	GND #3, die pad
50	MC	0	Mode control
51	OPR	Ι	Voltage reference for base- band amp.
52	VS4	Р	Positive supply, #4, RX/TX
53	IF1	Ι	IF1 input
54	NIF1	Р	Complementary to IF1
55	G4	Р	GND #4, RX/TX
56	NIF2O	0	Complementary to IF2
57	IF2O	0	IF2 output
58	VS5	Р	Positive supply #5, RX/TX
59	G5	Р	GND #5, RX/TX
60	NIF1O	OB	Complementary to IF10
61	IF1O	0	IF1 output
62	TXIN	Ι	Input TX down-converter
63	NRF18	IB	Complementary to RF18
64	RF18	IB	RF input 1800/ 1900 MHz

input balanced I: input IB:

O: output

P: power OB: output balanced

Package Information

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com

Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423