






Log-periodic antennas are used extensively for high frequency communications circuits because of their wide frequency bandwidth and compact size. In applications where a single antenna is required, TCI normally supplies horizontally polarized log-periodic antennas supported by a single tower support structure. (See TCI Models 501 and 532 data sheets.)

There are many applications where a horizontally polarized logperiodic antenna supported by two tower structures is beneficial. When the co-location of several antennas is required, a smaller, compact array can be formed by horizontal antennas sharing common towers. The Model 548 antenna is designed specifically for applications of this nature.

The Model 548 is a transposed dipole horizontally polarized log-periodic antenna composed of the highest quality material. It contains high quality, exhaustively tested components and materials. All radiators, feedlines, and catenaries are of Alumoweld, a wire composed of a high strength steel core surrounded by a highly conductive, corrosion resistant welded coating of aluminum. All feedline and radiator tip insulators are made of high strength glazed alumina, a material with an extremely low loss tangent (.001) which is virtually impervious to the effects of ultraviolet radiation, dirt, and salt spray.

Fixed station log-periodic antennas traditionally have used fiberglass for the catenary and drop wire assemblies on the basis of its excellent dielectric and tensile strength properties. However, field experience has shown that minute, difficult-todetect flaws in the material, RF burning, and small nicks incurred during installation may result in catastrophic failure later on.

- Two tower design for use in arrays
- High power gain
- Wide bandwidth
- Rugged construction
- Factory preassembled

Fiberglass will also deteriorate when stored for long periods at high temperature and humidity. These facts all indicate that a material other than fiberglass should be used in antennas. The Model 548 uses Alumoweld catenaries and drop wires, segmented where necessary by high strength insulators.

Because of the compact, simplified design of the Model 548, it may be used in applications where antenna siting is difficult. The Model 548 antenna lends itself to the necessary modifications for installation in difficult situations or where stringent communication requirements occur.

# Specifications

| Polarization                 | . Horizontal                                                                                                                                                                                                                                                                                                                      |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VSWR                         | .2.0:1 Maximum                                                                                                                                                                                                                                                                                                                    |
| Azimuth Beamwidth            | .60° Minimum                                                                                                                                                                                                                                                                                                                      |
| Front-to-Back Ratio          | . 13 dB Minimum                                                                                                                                                                                                                                                                                                                   |
| Environmental<br>Performance | Designed in accordance with<br>EIA Specification RS-222C for<br>loading of 225 km/h (140 mi/h)<br>wind, no ice, 145 km/h (90<br>mi/h) wind,<br>12 mm (1/2") radial ice; or 160<br>km/h (100 mi/h), wind, no ice.<br>Also complies with EIA<br>specification EIA-222-E for the<br>indicated wind speeds at the top<br>of the mast. |

#### Gain and Pattern Data

| Take-off<br>Angle | Frequency               | Gain<br>Relative<br>to<br>Isotropic | Lower<br>Half-<br>Power<br>Point | Nominal<br>Take-off<br>Angle | Upper<br>Half-<br>Power<br>Point | Azimuthal<br>Beamwidth<br>between<br>Half-Power<br>Points |
|-------------------|-------------------------|-------------------------------------|----------------------------------|------------------------------|----------------------------------|-----------------------------------------------------------|
| Variable          | Variable 3 MHz 11.2 dBi |                                     | 18°                              | 35°                          | 67°                              | 76°                                                       |
|                   | 4 MHz 11.2 dBi          |                                     | 18°                              | ° 35°                        | 67°                              | 76°                                                       |
|                   | 9 MHz                   | 11.6 dBi                            | 16°                              | 30°                          | 53°                              | 76°                                                       |
|                   | 25 MHz                  | 12.5 dBi                            | 11°                              | 22°                          | 33°                              | 70°                                                       |
|                   | 30 MHz                  | 12.3 dBi                            | 10°                              | 20°                          | 30°                              | 70°                                                       |
| Constant          | 3-30 MHz                | 12 dBi                              | 13°                              | 27°                          | 45°                              | 70°                                                       |

### Power and Impedance Data

| Model<br>Number                              | Input<br>Impedance | Power Handling<br>Capability                                                  | Connector                                                                                      |
|----------------------------------------------|--------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 548-N-02<br>548-N-03<br>548-N-04<br>548-N-06 | 50 ohms<br>50 ohms | Receive<br>10 kW Avg /50 kW PEP<br>25 kW Avg /50 kW PEP<br>1 kW Avg /2 kW PEP | Type N Female<br>1 <sup>5/8*</sup> EIA Female<br>1 <sup>5/8*</sup> EIA Female<br>Type N Female |

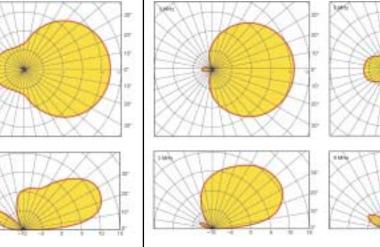
## Size and Frequency Data (Single Curtain, Two Towers)

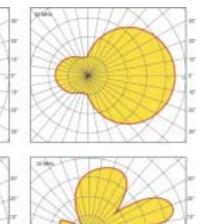
| Model    | Take-off |           | Height |      | Length* |       | Width* |       | Tower Spacing |      |
|----------|----------|-----------|--------|------|---------|-------|--------|-------|---------------|------|
| Number   | Angle    | Frequency | (m)    | (ft) | (m)     | (ft)  | (m)    | (ft)  | (m)           | (ft) |
| 548-1-N  | Variable | 4–30 MHz  | 30.5   | 100  | 85.5    | 280.4 | 106.2  | 348.6 | 64.0          | 210  |
| 548-3-N  | Variable | 3–30 MHz  | 39.6   | 130  | 110.7   | 363   | 121.5  | 398.5 | 76.2          | 250  |
| 548-1K-N | Constant | 4–30 MHz  | 48.6   | 159  | 117.7   | 386   | 127.4  | 418   | 64.0          | 210  |
| 548-3K-N | Constant | 3–30 MHz  | 61     | 200  | 155.5   | 510   | 160.7  | 527   | 76.2          | 250  |

\*measured from extreme guy points

# Shipping Weight and Volume (Single Antenna)

| Model<br>Number    | Number of<br>Boxes | Gross Weight<br>(kg) (lbs) |              | Volum<br>(m <sup>3</sup> ) | ie<br>(ft <sup>3</sup> ) |
|--------------------|--------------------|----------------------------|--------------|----------------------------|--------------------------|
| 548-1-N            | 7                  | 2100                       | 4600         | 4.8                        | 170                      |
| 546-1-N<br>548-3-N | 8                  | 2600                       | 4600<br>5710 | 4.0                        | 211                      |
| 548-1K-N           | 11                 | 3140                       | 6900         | 7.2                        | 255                      |
| 548-3K-N           | 14                 | 3910                       | 8600         | 9.1                        | 320                      |


### NOTE:


Front support poles, normally class 2, 3, or 4 Douglas Fir, are required but not supplied by TCI. Check with TCI for specific requirements.

Elevation and Azimuth Patterns (Azimuth pattern at elevation angle of beam maximum) gain

# Constant Take-off Angle









548-020401© TCI, 2001 Data and specifications subject to change without notice. www.tcibr.com