MP7680
5 V CMOS 12-Bit
Quad Double-Buffered Multiplying
Digital-to-Analog Converter

FEA TURES

- Exar Pioneered Segmented DAC Approach
- Four Double-Buffered 12-bit DACs on a Single Chip
- Independent Reference Inputs
- Lowest Gain Error in a Multiple DAC Chip
- Guaranteed Monotonic
- 1 TL/5 V CMOS Compatible Inputs
- Industry Standard Digital Interface
- Four Quadrant Multiplication
- Latch-Up Free

BENEFITS

- Reduced Board Space; Lower System Cost.
- Independent Control of DACs
- Excellent DAC-to-DAC Matching and Tracking

APPLICA TIONS

- Function Generators
- Automatic Test Equipment
- Precision Process Controls
- Recording Studio Control Boards

GENERAL DESCRIPTIONS

The MP7680 and the integrate four 12-bit four-quadrantmultiplying DACs with independent reference inputs and excellent matching characteristics. The MP7680 grades offer $1 / 2,1$ and 2 LSB of relative accuracy. The superior offers a low 2 LSB of gain error.

Each DAC has double-buffering (an 8 and 4-bit latch and a 12-bit latch) between the data bus (DB11-DB0) and the DAC. The internal 4-bit mux allows the use of 8 or 16-bit buses. The flexible latch control logic allows to update one or more DACs simultaneously.

ORDERING INFORMA TION

Package Type	Temperature Range	Part No.	INL (LSB)	DNL (LSB)	Gain Error (LSB)
Plastic Dip	-40 to +85 C	MP7680JN	± 2	± 4	± 16
Plastic Dip	-40 to +85 C	MP7680KN	± 1	± 2	± 16
PQFP	-40 to +85 C	MP7680JE	± 2	± 4	± 16
PQFP	-40 to +85 C	MP7680KE	± 1	± 2	± 16

Figure 1. Simplified Block Diagram

44 Pin PQFP

PIN DESCRIPTION

PIN No.	name	DESCRIPTION
1	A1	DAC Address Bit 1
2	$\overline{\text { XFER }}$	Transfer: Updates all DAC s
3	WR2	Write 2: Gates the $\overline{\text { XFER }}$ Function
4	WR1	Write 1: Gates the DAC Selection
5	$\overline{\text { CS }}$	Chip Select
6	NC	No Connection
7	$V_{\text {REFA }}$	Reference Input for DAC A
8	$\mathrm{R}_{\text {FBA }}$	Feedback Resistor for DAC A
9	lout1a	Current Output A
10	lout2a	Complement of Output A
11	Iout2b	Complement of Output B
12	loutib	Current Output B
13	$\mathrm{R}_{\text {FBB }}$	Feedback Resistor for DAC B
14	$V_{\text {REFB }}$	Reference Input for DAC B
$\begin{aligned} & 15- \\ & 26 \end{aligned}$	DB11 to DB0	Input Data Bits 11 (MSB) to 0 (LSB)
27	$V_{\text {REFC }}$	Reference input for DAC C
28	$\mathrm{R}_{\text {FBC }}$	Feedback Resistor for DAC C
29	loutic	Current Output C
30	Iout2c	Complement of Output C
31	Iout2d	Complement of Output D
32	IOUT1D	Current Output D
33	$\mathrm{R}_{\text {FBD }}$	Feedback Resistor for DAC D
34	$V_{\text {REFD }}$	Reference input for DAC D
35	AGND	Analog Ground
36	DGND	Digital Ground
37	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply
38	$D V_{D D}$	Digital Power Supply
39	B1/B2	Select Input Format (8/4 or 12 bits in)
40	A0	DAC Address Bit 0

44 Pin PQFP

PIN No.	NAME	DESCRIPTION
1	NC	No Connection
2	$V_{\text {REFA }}$	Reference Input for DAC A
3	$\mathrm{R}_{\text {FBA }}$	Feedback Resistor for DAC A
4	lout1a	Current Output A
5	lout2a	Complement of Output A
6	NC	No Connection
7	I OUT2B	Complement of Output B
8	IOUT1B	Current Output B
9	$\mathrm{R}_{\text {FBB }}$	Feedback Resistor for DAC B
10	$V_{\text {REFB }}$	Reference Input for DAC B
$\begin{aligned} & 11- \\ & 16 \end{aligned}$	DB11 to DB6	Input Data Bits 11 (MSB) to 6
17	NC	No Connection
$\begin{aligned} & 18- \\ & 23 \end{aligned}$	$\begin{aligned} & \text { DB5- } \\ & \text { DB0 } \end{aligned}$	Input Data Bits 5 to 0 (LSB)
24	$V_{\text {REFC }}$	Reference input for DAC C
25	$\mathrm{R}_{\text {FBC }}$	Feedback Resistor for DAC C
26	Ioutic	Current Output C
27	loutac	Complement of Output C
28	NC	No Connection
29	IOUT2D	Complement of Output D
30	lout1D	Current Output D
31	$\mathrm{R}_{\text {FBD }}$	Feedback Resistor for DAC D
32	$V_{\text {REFD }}$	Reference input for DAC D
33	AGND	Analog Ground
34	DGND	Digital Ground
35	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply
36	$D V_{D D}$	Digital Power Supply
37	B1/ $\overline{\mathrm{B} 2}$	Select Input Format (8/4 or 12 bits in)
38	A0	DAC Address Bit 0
39	NC	No Connection
40	A1	DAC Address Bit 1
41	$\overline{\text { XFER }}$	Transfer: Updates all DAC s
42	$\overline{\text { WR2 }}$	Write 2: Gates the $\overline{\text { XFER }}$ Function
43	WR1	Write 1: Gates the DAC Selection
44	$\overline{\mathrm{CS}}$	Chip Select

Rev. 3.10

MP7680

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT} 1}=\mathrm{I}_{\mathrm{OUT} 2}=\mathrm{DGND}=\mathrm{AGND}=0 \mathrm{~V}\right.$ Unless Otherwise Noted)

ELECTRICAL CHARACTERISTICS (CONT D)

Parameter	Symbol	Min	$\begin{array}{r} 25 \mathrm{c} \\ \text { Typ } \\ \hline \end{array}$	Max	Tmin Min	Tmax Max	Units	Test Conditions/Comments
POWER SUPPL \mathbf{Y}^{4} Functional Voltage Range Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{I}_{\mathrm{DD}} \end{gathered}$	4.5		5.5 2 1	4.5	$\begin{array}{r} 5.5 \\ 2 \\ 1 \end{array}$	V mA mA	$\begin{aligned} & \text { Digital inputs }=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { Digital inputs }=0 \text { or } 5 \mathrm{~V} \end{aligned}$
TIMING CHARACTERISTICS 2,3 Write Pulse Width Chip Select Set-Up Time Address Set-Up Time Chip Select and Address Hold Time Latch Select Set-Up Time Latch Select Hold Time Data Valid Set-Up Time Data Valid Hold Time Transfer Pulse Width Write Cycle (per DAC)	$\begin{array}{r} \mathrm{t}_{\mathrm{WR}} \\ \mathrm{t}_{\mathrm{CS}} \\ \mathrm{t}_{\mathrm{AS}} \\ \mathrm{t}_{\mathrm{H}} \\ \\ \mathrm{t}_{\mathrm{BS}} \\ \mathrm{t}_{\mathrm{BH}} \\ \mathrm{t}_{\mathrm{DS}} \\ \mathrm{t}_{\mathrm{DH}} \\ \mathrm{t}_{\mathrm{XFER}} \\ \mathrm{t}_{\mathrm{WC}} \end{array}$	$\begin{array}{r} 75 \\ 100 \\ 100 \\ 0 \\ \\ 120 \\ 10 \\ 100 \\ 0 \\ 05 \\ 65 \end{array}$			$\begin{array}{r} 85 \\ 120 \\ 120 \\ 0 \\ \\ 150 \\ 15 \\ 120 \\ 0 \\ 75 \\ 200 \end{array}$		ns ns	

Notes:

1 Full Scale Range (FSR) is 10 V for unipolar mode.
2 Guaranteed but not production tested.
3 See timing diagram (Figure 2.).
$4 \quad D V_{D D}$ and $A V_{D D}$ are connected through the silicon substrate. Connect together at the package. $D C$ voltage differences will cause undesirable internal currents.

Specifications are subject to change without notice

Notes:

1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability
2 Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100 mA for less than 100 s .

Figure 2. W rite Cycle Timing (Each DAC)

Figure 3. Latches Control Logic

THEOR Y OF OPERA TION

Digital Interface

Figure 3. shows the internal control logic. The logic that controls the writing of the input latches and the one that controls the DAC latches are completely separated. It is easy to understand how the MP7680/80A works by understanding each basic operation.

W riting to Input Latches

By keeping $\mathrm{B} 1 / \overline{\mathrm{B2}}=$ high, a 12-bit bus has direct access to the 12 bits of the input latches. The condition $\overline{\mathrm{CS}}=\overline{\mathrm{WR1}}=$ 0 loads the values contained in the data bus DB11-DB0 into the input latch addresses by $\mathrm{A}_{1}, \mathrm{~A}_{0}$ (Figure 4., Table 1.).

$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	SELECTED DAC
0	0	A
0	1	B
1	0	C
1	1	D

Table 1. DAC Selection

An 8-bit bus must use two cycles. The second cycle is like the first one with the difference that $\mathrm{B} 1 / \overline{\mathrm{B} 2}=$ low
(Figure 5.) During the second cycle the condition $\mathrm{B} 1 / \overline{\mathrm{B2}}=$ low muxes DB11-DB8 to the B2 latches (Figure 3.).

Two important notes:

1) Timing diagrams show the inputs $\overline{C S}, A_{1}, A_{0}$, DB11-DB0 to be stable during the entire writing cycle. In reality all the above signals can change (Figure 4.) as long as they meet the timing conditions specified in the Electrical Characteristic Table.
2) Only 16-bit bus cycles are shown in the next few examples of interface timing. It is possible to generate an 8 -bit interface timing by replacing a single 12 -bit write cycle (Figure 4.) with a double 8-bit write cycles (Figure 5.) 8-bit applications should ground inputs DB3-DB0.

Figure
4. 12 Bit W rite Cycle

Figure 5. 8-Bit Double W rite Cycle

Figure 6. Transfer Cycles from Input Latches to DAC Latches

Transferring Data to the DAC Latches

Once one or all of the input latches have been loaded, the condition $\overline{\text { XFER }}=\overline{\mathrm{WR2}}=$ low transfers the content of ALL the input latches in the DAC latches. The output of the DAC latches (DA11-DA0) changes and the DAC current (lout) will reach a new stable value within the settling time t_{s} (Figure 6.).

Examples of DACs updating sequences:

1) Simultaneous updates of any number of DACs. The system uses from one (two) to four (eight) cycles to write from a 12 (8) bit bus into $\mathrm{B} 1 / \overline{\mathrm{B} 2}$ latches. One

Figure 7. Simultaneous Updates of DACs
transfer cycle updates the output of all DACs (Figure 7.)
2) Individual DAC update. The condition $\overline{\mathrm{WR2}}=\overline{\mathrm{XFER}}=$ low makes the DAC latches transparent. A writing to the B1/ $\overline{\mathrm{B} 2}$ latches updates the DAC outputs (Figure 8.).
3) Automatic transfer to DAC latches. An 8-bit bus can update any DAC with two cycles by connecting WR1 = $\overline{\mathrm{WR2}}$ and $\mathrm{B} 1 / \overline{\mathrm{B2}}=\overline{\mathrm{XFER}}$. This is the correct individual DAC update for 8 -bit busses (Figure 9.).
4) Transfer by a second device. A processor may load the input latches while the final XFER pulse is left to another device.

Figure 8. Individual DAC Update

Figure 9. Automatic Transfer to DAC Latches

MP7680

Figure 10. Digitally Programmable Quad Voltage Output $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$

Figure 11. Clickless Audio Attenuator/Amplifier
Figure 12. Quad DAC for Single +5 V Supply

Notes

