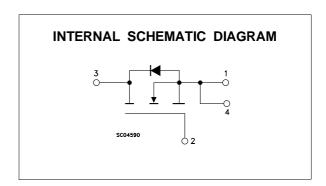


STE110NA20

N - CHANNEL ENHANCEMENT MODE **FAST POWER MOS TRANSISTOR**

PRELIMINARY DATA


TYPE	V _{DSS}	R _{DS(on)}	ΙD
STE110NA20	200 V	< 0.019 Ω	110 A

- TYPICAL $R_{DS(on)} = 0.015 \Omega$
- HIGH CURRENT POWER MODULE
- AVALANCHE RUGGED TECHNOLOGY
- VERY LARGE SOA LARGE PEAK POWER **CAPABILITY**
- EASY TO MOUNT
- SAME CURRENT CAPABILITY FOR THE TWO SOURCE TERMINALS
- EXTREMELY LOW Rth (Junction to case)
- VERY LOW INTERNAL PARASITIC **INDUCTANCE**
- ISOLATED PACKAGE UL RECOGNIZED

ISOTOP

APPLICATIONS

- SMPS & UPS
- MOTOR CONTROL
- WELDING EQUIPMENT
- OUTPUT STAGE FOR PWM, ULTRASONIC **CIRCUITS**

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	200	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	200	V
V _G s	Gate-source Voltage	± 30	V
I _D	Drain Current (continuous) at T _c = 25 °C	110	А
I _D	Drain Current (continuous) at T _c = 100 °C	73	А
I _{DM} (•)	Drain Current (pulsed)	440	А
P _{tot}	Total Dissipation at T _c = 25 °C	450	W
	Derating Factor	3.6	W/°C
T _{stg}	Storage Temperature	-55 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C
V _{ISO}	Insulation Withhstand Voltage (AC-RMS)	2500	V

^(•) Pulse width limited by safe operating area

1/8 March 1996

THERMAL DATA

	Thermal Resistance Junction-case Thermal Resistance Case-heatsink With Conductive	Max	0.27	°C/W
R _{thc-h}	Grease Applied	Max	0.05	°C/W

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	55	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	500	mJ
E _{AR}	Repetitive Avalanche Energy (pulse width limited by T_j max, δ < 1%)	175	mJ
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 ^{\circ}\text{C}, \text{pulse width limited by } T_j \text{max}, \delta < 1\%)$	32.5	А

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}$ $V_{GS} = 0$	200			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating x 0.8 T_c = 125 $^{\circ}$ C			400 200	μA mA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			± 400	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 1 \text{ mA}$	2.25	3	3.75	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V I_D = 55 \text{ A}$ $V_{GS} = 10V I_D = 55 \text{ A} T_c = 100^{\circ}\text{C}$		0.015	0.019	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	110			А

DYNAMIC

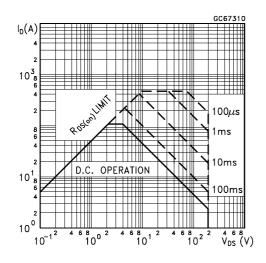
Symbol	Parameter	Test Condition	ns	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} =15 V	$I_{D} = 55 \text{ A}$	38			S
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz	V _{GS} = 0		12.9 2870 980		nF pF pF

ELECTRICAL CHARACTERISTICS (continued)

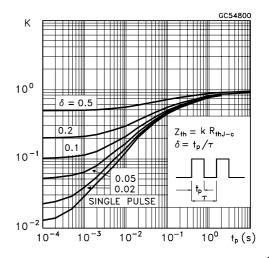
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	V_{DD} = 100 V I_D = 55 A R_G = 4.7 Ω V_{GS} = 10 V (see test circuit, figure 3)		70 95	100 125	ns ns
(di/dt) _{on}	Turn-on Current Slope	V_{DD} = 160 V I_D = 110 A R_G = 47 Ω V_{GS} = 10 V (see test circuit, figure 5)		290		A/μs
$egin{array}{c} Q_{g} \ Q_{gs} \ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 160 V I _D = 110 A V _{GS} = 10 V		470 43 226	600	nC nC nC

SWITCHING OFF

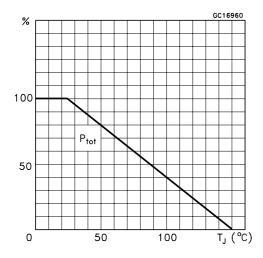

Symbol	Parameter	Test Cor	nditions	Min.	Тур.	Max.	Unit
t_f	Off-voltage Rise Time Fall Time Cross-over Time	$V_{DD} = 160 \text{ V}$ $R_G = 4.7 \Omega$ (see test circuit, fig	$I_D = 110 \text{ A}$ $V_{GS} = 10 \text{ V}$ (ure 5)		115 68 160	150 100 210	ns ns ns

SOURCE DRAIN DIODE

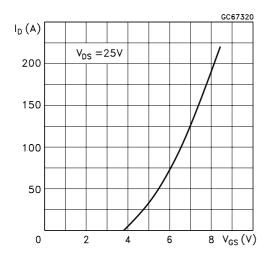

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				110 440	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 110 A V _{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 110 \text{ A}$ $di/dt = 100 \text{ A/}\mu\text{s}$ $V_R = 50 \text{ V}$ $T_i = 150 ^{\circ}\text{C}$		625		ns
Q_{rr}	Reverse Recovery Charge	(see test circuit, figure 5)		11		μC
I_{RRM}	Reverse Recovery Current			35		Α

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

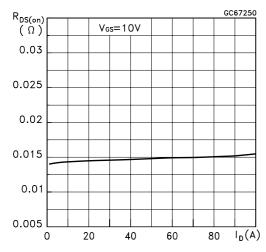
Safe Operating Area

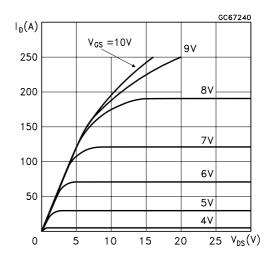


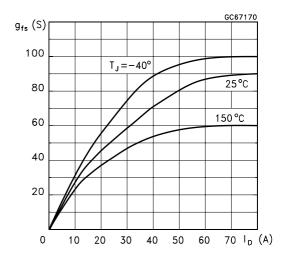
Thermal Impedance

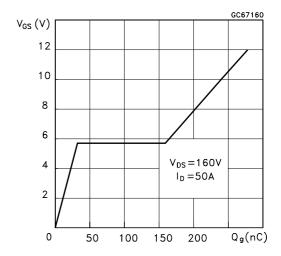


^(•) Pulse width limited by safe operating area

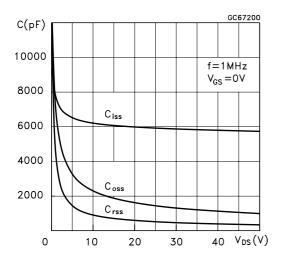

Derating Curve

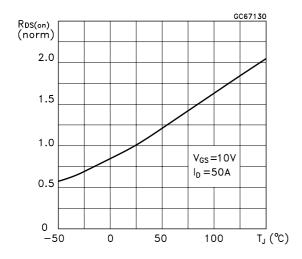

Transfer Characteristics

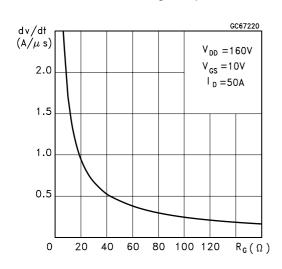

Static Drain-source On Resistance

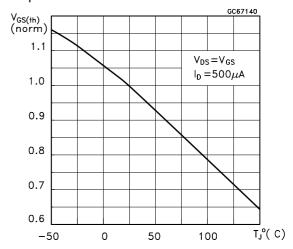

Output Characteristics

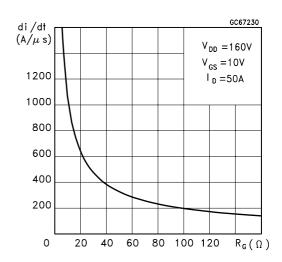
Transconductance

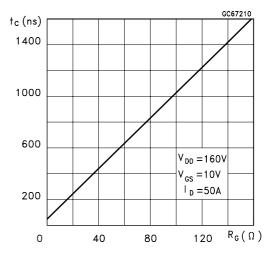

Gate Charge vs Gate-source Voltage

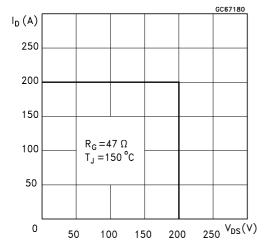

4/8


Capacitance Variations


Normalized On Resistance vs Temperature


Turn-off Drain-source Voltage Slope


Normalized Gate Threshold Voltage vs Temperature


Turn-on Current Slope

Cross-over Time

Switching Safe Operating Area

Source-drain Diode Forward Characteristics

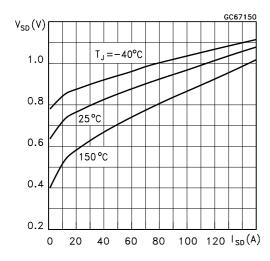
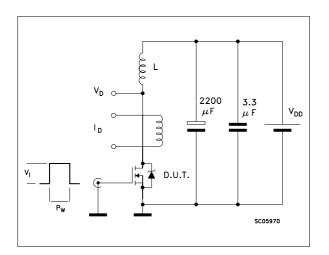



Fig. 1: Unclamped Inductive Load Test Circuit

Accidental Overload Area

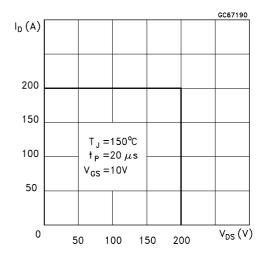


Fig. 2: Unclamped Inductive Waveform

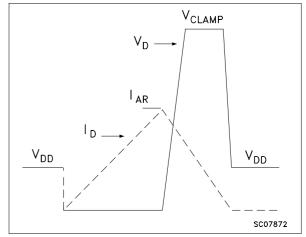
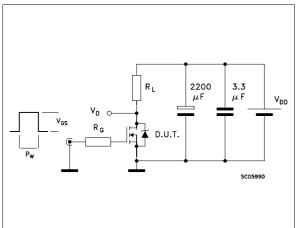



Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Dlode Recovery Times

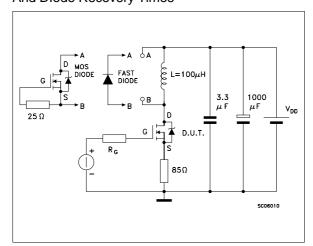
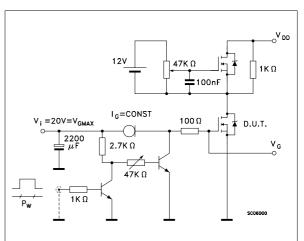



Fig. 4: Gate Charge test Circuit

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

@ 1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

