
�����'7�:,1'2:,1*�(;$03/(6 $SSOLFDWLRQ 1RWH

 6500 Data Windowing Examples

__
Page 2 AN-0005-02 APPLICATION NOTE

Hi/fn® supplies two of the Internet’s most important raw materials:
compression and encryption. Hi/fn is also the world’s first company to put both
on a single chip, creating a processor that performs compression and
encryption at a faster speed than a conventional CPU alone could handle, and
for much less than the cost of a Pentium or comparable processor.

Hi/fn, Inc.
750 University Avenue
Los Gatos, CA 95032
info@hifn.com
http://www.hifn.com
Tel: 408-399-3500
Fax: 408-399-3501

Hi/fn Applications Support Hotline:
408-399-3544

Disclaimer

Hi/fn reserves the right to make changes to its products or to discontinue any semiconductor product
or service without notice, and advises its customers to obtain the latest version of relevant
information to verify, before placing orders, that the information being relied on is current.

Hi/fn warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Hi/fn's standard warranty. Testing and other quality
control techniques are utilized to the extent Hi/fn deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage ("Critical Applications").

HI/FN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Hi/fn products in such critical applications is understood to be fully at the risk of the
customer. Questions concerning potential risk applications should be directed to Hi/fn through a
local sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Hi/fn does not warrant that its products are free from infringement of any patents, copyrights or
other proprietary rights of third parties. In no event shall Hi/fn be liable for any special, incidental or
consequential damages arising from infringement or alleged infringement of any patents, copyrights
or other third party intellectual property rights.

“Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals,” must be validated for each customer application by customer’s technical experts.

The use of this product may require a license from Motorola. A license agreement for the right to
use Motorola patents may be obtained through Hi/fn or directly from Motorola.

AN-0005-02 (4/99) © 1997-1999 by Hi/fn, Inc. Hi/fn and LZS are
registered trademarks of Hi/fn, Inc. All other trademarks are the property
of their respective holders.

 6500 Data Windowing Examples

__
APPLICATION NOTE AN-0005-02 Page 3

Table of Contents
1 Overview ..5
2 Little-endian CPU, little-endian data in memory ..6
3 Little-endian CPU, big-endian data in memory ..7
4 Big-endian CPU, big-endian data in memory ...8
5 Big-endian CPU, little-endian data in memory...9

 6500 Data Windowing Examples

__
Page 4 AN-0005-02 APPLICATION NOTE

THIS PAGE INTENTIONALLY BLANK

 6500 Data Windowing Examples

__
APPLICATION NOTE AN-0005-02 Page 5

1 Overview
The examples in this Application Note explain in detail how the byte ordering
and word ordering windows of the 6500 Public Key Processor are used in
specific instances. The register windows of the 6500 are actually very simple,
requiring a very small amount of gates on the chip, but at first it may be bit
difficult to understand intuitively the effect of (and even the need for) these
transformations. In general, for any given system, it is likely that only a single
register window needs to be used. It is hoped that the detailed real-life examples
given here will help make it clear which window(s) should be used for a
particular system.

Internally to the 6500 engines, no windowing bits are used or needed when
accessing the data registers. The two windowing bits only affect transfers
between the internal data registers and the outside world (e.g., the host CPU).
The windowing bits do not affect CPU transfers to/from 6500 registers other
than the data registers.

Bit 13 of the register address controls whether bits 2..6 of the register address
presented to the chip are logically inverted when presented to the internal 6500
register array. This transformation has the effect of reversing the order of the
32-bit words within a register from the perspective of the outside world. Inside
the 6500, this windowing bit 13 merely is used to XOR address bits 2..6 when
the address accesses a data register.

Bit 14 of the register address controls whether the 32-bit word transferred over
the CPU bus has a byte reversal (endian conversion) applied to it. The 6500
uses little-endian byte ordering internally, so this windowing bit allows
automatic (and dynamic) endian conversion if necessary.

To keep the examples tractable, the integer values used below are smaller (e.g.,
256 bits) than public key arithmetic values of practical interest (e.g., 1024 bits),
but the same principles illustrated here can be extended to larger values in
obvious ways.

In all cases, it is assumed in the discussions below that data bus bit 0 of the 6500
is connected to the least significant bit of the CPU data bus, and that data bus bit
31 of the 6500 is connected to the most significant bit of the CPU data bus.

Example:

Suppose that we wish to transfer a 256-bit integer value

 N = 0x8F8E8D8C8B8A89888786858483828180000102030405060708090A0B0C0D0E0F

into or out of the 6500 register space. The syntax used to represent this value is
C-like;the most significant 8 bits of N are 0x8F, and the least significant byte of
N is 0x0F.

Internal to the 6500, left-aligned little-endian ordering is used for modular
arithmetic. Thus, if the register r3 (offset 0x180) holds N, the internal registers
are:

 6500 Data Windowing Examples

__
Page 6 AN-0005-02 APPLICATION NOTE

 internal register offset 0x01E0 = 0x0C0D0E0F // least significant 32-bits
 internal register offset 0x01E4 = 0x08090A0B
 internal register offset 0x01E8 = 0x04050607
 internal register offset 0x01EC = 0x00010203
 internal register offset 0x01F0 = 0x83828180
 internal register offset 0x01F4 = 0x87868584
 internal register offset 0x01F8 = 0x8B8A8988
 internal register offset 0x01FC = 0x8F8E8D8C // most significant 32-bits

Let us now see how this value may be represented in the CPU main memory for
different types of CPUs and various data value formats.

2 Little-endian CPU, little-endian data in memory
An example would be an Intel family CPU (e.g., Pentium) where data is kept in
the 'natural' CPU order. At the byte level, the value of N in memory would be, in
order of increasing memory address, starting at address X:

 X : 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08
 X+8 : 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00
 X+16 : 0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87
 X+24 : 0x88 0x89 0x8A 0x8B 0x8C 0x8D 0x8E 0x8F

At the 32-bit word level, these bytes correspond to

 X : 0x0C0D0E0F
 X+4 : 0x08090A0B
 X+8 : 0x04050607
 X+12 : 0x00010203
 X+16 : 0x83828180
 X+20 : 0x87868584
 X+24 : 0x8B8A8988
 X:28 : 0x8F8E8D8C

Note that, given this byte and word ordering in memory, the CPU can simply
perform a memory move operation of length 32 bytes from address X to register
offset 0x1E0 to register r3 in window 2. In 32-bit Intel assembly language, the
data could be moved from memory into the 6500 as follows:

 mov edi,ADDR_6500_BASE ; base address of the 6500
 mov eax,256 ; bit length
 mov [edi+100Ch],eax ; set the length tag for r3
 add edi,41E0h ; point to register r3, window 2
 ; (left justify the 256-bit value)
 cld ; incrementing addresses
 lea esi,X ; start moving dwords from X
 mov ecx,256/32 ; move 8 dwords (256 bits)
 rep movsd ; move the value from memory to r3

In other words, the sequence of operations is:

 Memory read 6500 write Internal register write
 --
 X : 0x0C0D0E0F → 0x41E0 0x0C0D0E0F → 0x01E0
 X+4 : 0x08090A0B → 0x41E4 0x08090A0B → 0x01E4
 X+8 : 0x04050607 → 0x41E8 0x04050607 → 0x01E8

 6500 Data Windowing Examples

__
APPLICATION NOTE AN-0005-02 Page 7

 X+12 : 0x00010203 → 0x41EC 0x00010203 → 0x01EC
 X+16 : 0x83828180 → 0x41F0 0x83828180 → 0x01F0
 X+20 : 0x87868584 → 0x41F4 0x87868584 → 0x01F4
 X+24 : 0x8B8A8988 → 0x41F8 0x8B8A8988 → 0x01F8
 X:28 : 0x8F8E8D8C → 0x41FC 0x8F8E8D8C → 0x01FC

3 Little-endian CPU, big-endian data in memory
In many network protocols (e.g, IPSEC), the network byte ordering for public-
key integer quantities is big-endian. In other words, the most significant byte of
integer values used for RSA or Diffie-Hellman computations is sent over the line
first, with the least significant byte last. Thus, even for a little-endian CPU such
as the Intel Pentium, the data is stored in memory in big-endian order. When the
public-key computations are performed in software, usually the first step is to
convert from big-endian to little-endian. However, the 6500 windowing scheme
allows simple transfers without any reordering in memory, as we shall see below.

At the byte level, the value of N in memory would be, in order of increasing
memory address, starting at address Y:

 Y : 0x8F 0x8E 0x8D 0x8C 0x8B 0x8A 0x89 0x88
 Y+8 : 0x87 0x86 0x85 0x84 0x83 0x82 0x81 0x80
 Y+16 : 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
 Y+24 : 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

At the 32-bit word level, these bytes appear to the CPU as

 Y : 0x8C8D8E8F
 Y+4 : 0x88898A8B
 Y+8 : 0x84858687
 Y+12 : 0x80818283
 Y+16 : 0x03020100
 Y+20 : 0x07060504
 Y+24 : 0x0B0A0908
 Y+28 : 0x0F0E0D0C

Note that these 32-bit word values would be incorrect if the CPU tried to
interpret them directly. However, given this byte and word ordering in memory,
the little-endian CPU can simply perform a memory move operation of length 32
bytes from address Y to register offset 0x180 to register r3 in window 1, without
any software transformations required. Because window 1 reverses the order of
the word registers, the first 32-bit write to offset 0x6180 actually goes to internal
data register address 0x1FC, which is the most significant word of the register.
Because window 1 reverses the byte ordering, the conversion from big-endian to
little-endian is also performed automatically by the 6500.

In 32-bit Intel assembly language, the data could be moved from memory into
the 6500 as follows:

 mov edi,ADDR_6500_BASE ; base address of the 6500
 mov eax,256 ; bit length
 mov [edi+100Ch],eax ; set the length tag for r3
 add edi,2180h ; point to register r3, window 3
 cld ; incrementing addresses
 lea esi,Y ; start moving dwords from Y

 6500 Data Windowing Examples

__
Page 8 AN-0005-02 APPLICATION NOTE

 mov ecx,256/32 ; move 8 dwords (256 bits)
 rep movsd ; move the value from memory to r3

In other words, the sequence of operations is:

 Memory read 6500 write Internal register write
 --
 Y : 0x8C8D8E8F → 0x2180 0x8F8E8D8C → 0x01FC
 Y+4 : 0x88898A8B → 0x2184 0x8B8A8988 → 0x01F8
 Y+8 : 0x84858687 → 0x2188 0x87868584 → 0x01F4
 Y+12 : 0x80818283 → 0x218C 0x83828180 → 0x01F0
 Y+16 : 0x03020100 → 0x2190 0x00010203 → 0x01EC
 Y+20 : 0x07060504 → 0x2194 0x04050607 → 0x01E8
 Y+24 : 0x0B0A0908 → 0x2198 0x08090A0B → 0x01E4
 Y+28 : 0x0F0E0D0C → 0x219C 0x0C0D0E0F → 0x01E0

4 Big-endian CPU, big-endian data in memory
On a big-endian CPU, such as the Motorola 68000 family, the IPSEC byte
ordering is very natural for software public key computations. The 6500
windowing allows very simple transfers between CPU memory and the 6500
data registers.

At the byte level, the value of N in memory would be, in order of increasing
memory address, starting at address Z:

 Z : 0x8F 0x8E 0x8D 0x8C 0x8B 0x8A 0x89 0x88
 Z+8 : 0x87 0x86 0x85 0x84 0x83 0x82 0x81 0x80
 Z+16 : 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
 Z+24 : 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

At the 32-bit word level, these bytes appear to the CPU as

 Z : 0x8F8E8D8C
 Z+4 : 0x8B8A8988
 Z+8 : 0x87868584
 Z+12 : 0x83828180
 Z+16 : 0x00010203
 Z+20 : 0x04050607
 Z+24 : 0x08090A0B
 Z+28 : 0x0C0D0E0F

Given this byte and word ordering in memory, the little-endian CPU can simply
perform a memory move operation of length 32 bytes from address Y to register
offset 0x180 to register r3 in window 3, without any software transformations
required. Because window 3 reverses the order of the word registers, the first 32-
bit write to offset 0x6180 actually goes to internal data register address 0x1FC,
which is the most significant word of the register. Note that no endian conversion
is required, since it is assumed that the CPU is wired to the 6500 data bus so that
the most (and least) significant data bits of the two chips are connected.

 6500 Data Windowing Examples

__
APPLICATION NOTE AN-0005-02 Page 9

In 68000 assembly language, the data could be moved from memory into
the 6500 as follows:

 lea (ADDR_6500_BASE),a0 ; base address of the 6500
 mov.L #256,d0 ; bit length
 mov.L d0,100Ch(a0) ; set the length tag for r3
 add.L #6180h,a0 ; point to register r3, window 1
 mov.L #(256/32)-1,d1 ; move 8 longwords (256 bits)
 lea (Z),a1 ; start moving longwords from Z

 movLp: mov.L (a1)++,(a0)++ ; move one longword
 dbra d1,movLp ; loop until done

In other words, the sequence of operations is:

 Memory read 6500 write Internal register write
 --
 Z : 0x8F8E8D8C → 0x6180 0x8F8E8D8C → 0x01FC
 Z+4 : 0x8B8A8988 → 0x6184 0x8B8A8988 → 0x01F8
 Z+8 : 0x87868584 → 0x6188 0x87868584 → 0x01F4
 Z+12 : 0x83828180 → 0x618C 0x83828180 → 0x01F0
 Z+16 : 0x00010203 → 0x6190 0x00010203 → 0x01EC
 Z+20 : 0x04050607 → 0x6194 0x04050607 → 0x01E8
 Z+24 : 0x08090A0B → 0x6198 0x08090A0B → 0x01E4
 Z+28 : 0x0C0D0E0F → 0x619C 0x0C0D0E0F → 0x01E0

5 Big-endian CPU, little-endian data in memory
This scenario could occur with a big-endian CPU using a protocol with little-
endian network ordering of public-key quantities. Since no such protocol of any
importance is known, this case is left as an exercise for the reader. Window 1 of
the 6500 would be used to re-order both bytes and words.

