Preliminary Technical Data

FEATURES
Operates from 1.65 V to 3.6 V Supply Rails
Bidirectional Level Translation, Unidirectional Signal Path
8 lead SOT23 and MicroSOIC Packages
Bypass or Normal Operation
Short Circuit Protection*
LVTTL/CMOS-Compatible Inputs

APPLICATIONS

J TAG Chain Bypassing
Daisychain Bypassing
Digital Switching

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Level Translation.
2. The Bypass Switch offers high performance and is fully guaranteed from 1.65 V to 3.6 V supply range.
3. Short Circuit Protection
4. Tiny 8 lead SOT 23 package, $8.26 \mathrm{~mm}^{2}$ board area, or 8 lead MicroSOIC.

Table I. Truth Table

$\mathbf{E} \mathbf{N}$	Function	
\mathbf{L}	A1-Y2, Y1 = Hi-Z	Enable Bypass Function
H	$A 1-Y 1, A 2-Y 2$	Disable Bypass Function

The Bypass Switch is packaged in two of the smallest footprints available for its required pin count. The 8 lead SOT 23 package requires only $8.26 \mathrm{~mm}^{2}$ board space, while the MicroSOIC package occupies approximately $15 \mathrm{~mm}^{2}$ board area.

*Patent Pending

REV. PrE October 2002

[^0]
GENERAL DESCRIPTION

The ADG3233 is a bypass switch designed on a sub micron process which operates from supplies as low as 1.65 V . The device is guaranteed for operation over the supply range 1.65 V to 3.6 V . It operates from two supply voltages allowing bi-directional level translation, i.e. it translates low voltages to higher voltages and vice versa. The signal path is uni-directional, data may only flow from A to Y.

This type of device may be used in applications that require a bypassing function. It is ideally suited to bypassing devices in a JTAG chain or bypassing devices in a daisychain loop. One switch could be used for each device or a number of devices thus allowing easy bypassing of one or more devices in a chain. This may be particularly useful in reducing the time overhead in testing devices in the JTAG chain or in daisy chain applications where the user does not wish to change the settings of a particular device.

One Technology Way, P.O. Box 9106, Nonwood, MA 02062-9106, U.S.A. Tel: 781/ 329-4700 Fax: 781/326-8703

World Wide Web Site: http://www.analog.com Analog Devices, Inc., 2002

ADG3233- SPECIFICATIONS ${ }^{1}$

$\left(\mathrm{V}_{C C 1}=\mathrm{V}_{\mathrm{CC} 2}=+1.65\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted)

$\left(V_{C C 1}=V_{C C 2}=+1.65 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Typ ${ }^{2}$	Max	Units
Input Leakage Current Output Leakage C urrent Input C apacitance ${ }^{3}$ Output C apacitance ${ }^{3}$ M ax D ata Rate Jitter	$\begin{aligned} & I_{1} \\ & I_{0} \\ & C_{\text {IN }} \\ & C_{0} \end{aligned}$	$\begin{aligned} & 0 \leq V_{\text {IN }} \leq 3.6 \mathrm{~V} \\ & 0 \leq \mathrm{V}_{\text {IN }} \leq 3.6 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \\ & \mathrm{f}=1 \mathrm{MHz} \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ pF pF M bps ps
POWER REQUIREMENTS Power Supply Voltages Quiescent Power Supply Current Increase in $I_{\text {CC }}$ per input	$\mathrm{V}_{\mathrm{CC1}}$ $V_{C C 2}$ $\mathrm{I}_{\mathrm{CC} 1}$ $\mathrm{I}_{\mathrm{CC} 2}$ $\Delta I_{\mathrm{CC} 12}$	Digital Inputs $=0 \mathrm{~V}$ or V_{CC} D igital Inputs $=0 \mathrm{~V}$ or V_{Cc} $\mathrm{V}_{\mathrm{cc}}=+3.6 \mathrm{~V}$, One input at 3.0 V ; Others at V_{Cc} or GND	$\begin{aligned} & 1.65 \\ & 1.65 \end{aligned}$		$\begin{aligned} & 3.6 \\ & 3.6 \\ & 5 \\ & 5 \\ & 100 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

NOTES
${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ All typical vlaues are at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated.
${ }^{3} V_{I L}$ and $V_{I H}$ levels are specified with respect to $V_{C C 1}$, while $V_{O H}$ and $V_{O L}$ levels for $Y 1$ are specfied with respect to $V_{C C 1}$ and for $Y 2$ with respect to $\mathrm{V}_{\mathrm{CC} 2}$
${ }^{4}$ Guaranteed by design, not subject to production test.
${ }^{5}$ See Test Circuits and Waveforms.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
$\mathrm{V}_{C C}$ to GND -0.5 V to +4.6 V
Digital Inputs to GND - 0.5 V to +4.6 V
DC Input Voltage 0.5 V to +4.6 V
DC Output Current 50 mA
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$
8 Lead microSOIC,
θ_{JA} Thermal Impedance $206^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc} Thermal Impedance $43^{\circ} \mathrm{C} / \mathrm{W}$
8 Lead SOT 23,
θ_{JA} Thermal Impedance $211^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10seconds) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 seconds) $+235^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this speci \cdot cation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

PIN CONFIGURATIONS

8 Lead SOT23 Package (RJ-8)

8 Lead MicroSOIC Package (RM-8)

ORDERING GUIDE

Model Option	Temperature Range	Package Description	Branding	Package
AD G 3233BRJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT 23	W 1B	RJ-8
AD G 3233BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	M icroSO IC	W 1B	RM -8

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG3233 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of
 functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

TPC 1. ICC vs. Input Signal Frequency.

TPC 4. Propagation Delay vs Temperature

TPC 2. V ${ }_{C C}$ Supply vs temperature

TPC 5. Propagation Delay vs Split Supply.

TPC 3. Rise/Fall time vs capacitive load

TPC 6. Propagation delay vs capacitive load

Figure 1. Propagation Delay

DESCRIPTION

The ADG 3233 is a bypass switch designed on a sub micron process which operates from supplies as low as 1.65 V . The device is guaranteed for operation over the supply range 1.65 V to 3.6 V . It operates from two supply voltages allowing bi-directional level translation, i.e. it translates low voltages to higher voltages and vice versa. The signal path is uni-directional, data may only flow from A to Y.

A1 \& EN Input

The A1 and enable (EN) inputs have $V_{I L} N_{\text {IH }}$ logic levels so that it can accept logic levels of $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ from Device 0 or the controlling device independent of the value of the supply being used by the controlling device. These inputs (A1, EN) are capable of accepting inputs outside the $\mathrm{V}_{\mathrm{CC1}}$ supply range. For example, the $\mathrm{V}_{\mathrm{CC1}}$ supply applied to the Bypass switch could be 1.8 V while Device 0 could be operating from a 2.5 V or 3.3 V supply rail, there are no internal diodes to the supply rails, so the device can handle inputs above the supply, but inside the absolute maximum ratings.

Normal Operation

Figure 4 shows the Bypass switch being used in Normal Mode. In this mode, the signal paths are from A1 to Y1 and A2 to Y2. The device will level translate the signal applied to A1 to a $\mathrm{V}_{\mathrm{CC1}}$ logic level (this level translation can be either to a higher or lower supply) and route the signal to the Y 1 output, which will have standard $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ levels for $\mathrm{V}_{\mathrm{CC1}}$ supplies. The signal is then passed through

Figure 2. Y1 Enable and Disable Times

Figure 3. Y2 Enable and Disable Times

Figure 4. Bypass Switch in Normal Mode

Figure 5. Bypass Switch in Bypass Mode

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead μ SOIC
 (RM-8)

8-Lead SOT 23
(RJ-8)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

