500 MHz to 16 GHz / Octave and Multi-Octave Models / Low Loss and VSWR / Low Cost / SMA | PRINCIPAL SPECIFICATIONS | | | | | | | | | | | | |--------------------------|----------------------------|--------------------------------|--------------------------------------|---------------------------|-------------------|-----------------------|---------------|-----------------------------|--|--|--| | Model
Number | Frequency
Range,
GHz | *Coupling
Loss, dB,
Max. | Frequency
Sensitivity
dB, Max. | Isolation,
dB,
Min. | Input
CW,
W | Power,
Peak,
kW | VSWR,
Max. | Outline
Drawing
Ref # | | | | | QHM-2M75G | 0.5 - 1.0 | 3.1 ± 0.6 | ± 0.5 | 28 | 50 | 3 | 1.10:1 | 4 | | | | | QHM-2M-1.5G | 1.0 - 2.0 | 3.1 ± 0.6 | ± 0.5 | 28 | 50 | 3 | 1.10:1 | 5 | | | | | QHM-2M-3G | 2.0 - 4.0 | 3.1 ± 0.6 | ± 0.5 | 22 | 50 | 3 | 1.20:1 | 1 | | | | | QHM-2M-4G | 2.6 - 5.2 | 3.1 ± 0.6 | ± 0.5 | 20 | 50 | 3 | 1.25:1 | 2 | | | | | QHM-2M-6G | 4.0 - 8.0 | 3.2 ± 0.7 | ± 0.5 | 18 | 50 | 3 | 1.25:1 | 2 | | | | | QHM-2M-9G | 6.0 - 12.4 | 3.2 ± 0.7 | ± 0.5 | 18 | 50 | 3 | 1.30:1 | 2 | | | | | QHM-2M-12G | 7.5 - 16.0 | 3.4 ± 0.9 | ± 0.6 | 15 | 50 | 2 | 1.40:1 | 3 | | | | | QHM-3M-5G | 2.0 - 8.0 | 3.3 ± 0.8 | ± 0.4 | 17 | 30 | 3 | 1.30:1 | 6 | | | | | QHM-3M-8G | 4.0 - 12.4 | 3.3 ± 0.8 | ± 0.4 | 15 | 20 | 2 | 1.40:1 | 7 | | | | | | | OUTI | _INE | Α | В | C | D | E | WT | OZ (G) | | |--|--|---------------|----------------------|----------------|----------------|----------------------|--------------|--------------|-----|--------|--| | | | 1 | | 1.150
29 21 | 500
12 70 | 314
7 98 | 580
14 73 | 660
16 76 | .63 | (18) | | | | | 2 |) | 1.000
25 40 | 500
12 70 | 314
7 98 | 500
12 70 | 500
12 70 | .60 | (17) | | | | | 3 | 3 | 1.000
25.40 | .580
14.73 | 392
9.96 | 500
12.70 | 500
12.70 | .63 | (18) | | | FEMALE, SMA
WITH CONNEC | CONNECTOR, RECEPTACLE, FEMALE, SMA TYPE, MATES WITH CONNECTOR, PLUG, MALE PER MIL-C-39012 TYP. O75 191 B O75 191 A FF/2 D O75 191 A 195 O75 197 O75 O75 O75 O75 O75 O75 O | | | | | | | | | | | | 9.53 NOTES: 1. Tolerance on 3 place decimals ±.020(.51) except as noted. 2. Dimensions in inches over millimeters. 3. Weights are nominal on all outlines. | | | | | | | | | | | | | OUTLINE | Α | В | C | D | Е | F | WT. | 0Z. (| G) | | | | 4 | 3.060
77.72 | .500
12.70 | 840
2134 | 1370
34.80 | 2.560
65.02 | 380
9 65 | 1.20 | (34 |) | | | | 5 | 1.780
45 21 | .500
12.70 | .640
16 26 | .500
12 70 | 1.280
32.51 | <u>.380</u>
9 65 | 85 | (24) | | | | | 6 | 2.600
66.04 | .750
19 05 | <u>.670</u>
17 02 | 1.260
32.00 | 2.030
5156 | <u>.440</u>
11.18 | 1.62 | (46 |) | | | | 7 | 1.720
43 69 | .600
15.24 | .610
15 49 | .500
12 70 | 1.220
30 99 | .500
12 70 | 1.06 | (30 |) | | | ## **GENERAL SPECIFICATIONS** Impedance: 50 Ω nom. Operating Temperature: - 55° to +85°C Other frequency bands: Available options ## **General Notes:** - 1. The QHM-2M and QHM-3M series of quadrature hybrid couplers covers 500 MHz to 12.4 GHz in octave and multi-octave bands, respectively. - 2. These units have been designed using miniature stripline construction to achieve high isolation and low VSWR. They may be used in a wide variety of applications requiring -3 dB power division either in-phase or in phase quadrature (or both). Such signals are often required in mixers, modulators and phase shifters among others. 16Apr96