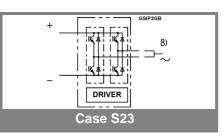

SKiiP 1013GB122-2DL


2-pack-integrated intelligent Power System

Power section SKiiP 1013GB122-2DL

Data

Power section features

- SKiiP technology inside
- SPT (Soft Punch Trough) IGBTs
- · CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal
- AC connection busbars must be connected by the user; copper busbars available on request

Absolute	Maximum Ratings	s = 25°C unless otherwise specified				
Symbol Conditions		Values	Units			
IGBT						
V _{CES} V _{CC} 1)		1200	V			
V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1000 (750)	Α			
Inverse diode						
I _F = - I _C	$T_s = 25 (70) ^{\circ}C$	880 (670)	Α			
I _{FSM}	$T_j = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	6900	Α			
I ² t (Diode)	Diode, T _j = 150 °C, 10 ms	238	kA²s			
T _i , (T _{stq})		- 40 + 150 (125)	°C			
V _{isol}	rms, AC, 1 min, main terminals to heat sink	3000	V			
I _{AC-terminal}	per AC terminal, rms, T _s = 70 °C,	400	Α			
	T _{terminal} <115 °C					

Characte	Characteristics				T _s = 25°C unless otherwise specified			
Symbol Conditions			min.	typ.	max.	Units		
IGBT	•							
V _{CEsat}	I _C = 600 measured a	A, T _j = 25 (1 at terminal	25) °C;			2,3 (2,5)	2,6	V
V_{CEO}		125) °C; at te				1,1 (1)	1,3 (1,2)	V
r_{CE}		125) °C; at te				1,9 (2,5)	2,3 (2,8)	mΩ
I _{CES}	$V_{GE} = 0$ $T_i = 25$ (V, V _{CE} = V _{CE} 125) °C	≣S [,]			2,4 (72)		mA
E _{on} + E _{off}		A, $V_{CC} = 60$	0 V			180		mJ
	T _j = 125	°C, V _{CC} = 90	00 V			318		mJ
R _{CC+EE}	terminal	chip, T _i = 25	°C			0,25		mΩ
L _{CE}	top, botto	om [°]				6		nΗ
C _{CHC}	per phas	se, AC-side				3,4		nF
Inverse o								
$V_F = V_{EC}$	I _F = 600 measured a	A, T _j = 25 (1 at terminal	25) °C			1,95 (1,7)	2,1	V
V_{TO}	T _i = 25 (125) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	$T_i = 25$ (1,4 (1,5)	1,5 (1,8)	mΩ
E _{rr}	$I_{\rm C} = 600$	A, V_{CC} = 60	0 V			48		mJ
	$T_j = 125$	$^{\circ}$ C, $V_{CC} = 90$	00 V			61		mJ
Mechani	cal data	3						
M_{dc}		inals, SI Uni			6		8	Nm
M _{ac}		inals, SI Unit			13		15	Nm
W		System w/o	heat sink			1,7		kg
W	heat sink					5,4		kg
Thermal characteristics (PX16 heat sink with fan SKF16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)								
$R_{th(j-s)l}$	per IGB1	Γ					0,03	K/W
R _{th(j-s)D}	per diode	е					0,058	K/W
Z _{th}	R _i (mK/W) (max. values)							
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	9,8	16,4	3,8	0	0,37	0,06	0,01	1
$Z_{th(j-r)D}$	10	24	24	36	50	5	0,25	0,04
$Z_{th(r-a)}$	4,3	20,3	7,1	2,3	160	53	9	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1013GB122-2DL

2-pack-integrated intelligent Power System

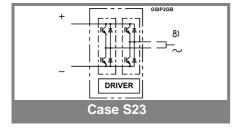
2-pack integrated gate driver SKiiP 1013GB122-2DL

Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	3000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	15	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	15	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25 °C			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	278+20*f/kHz+0,00022*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
$t_{d(off)IO}$	input-output turn-off propagation time		1,3		μs
$t_{pERRRESET}$	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1000		А
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		1250		Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not mplemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

