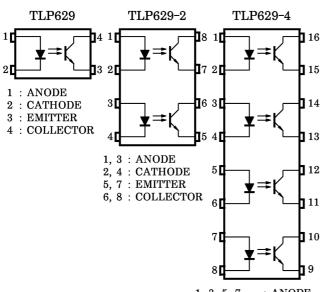
TOSHIBA Photocoupler GaAs Ired & Photo-Transistor

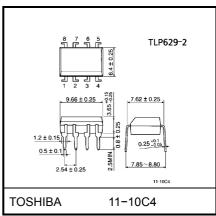
TLP629,TLP629-2,TLP629-4

Telecommunication Office Machine Telephone Use Equipment

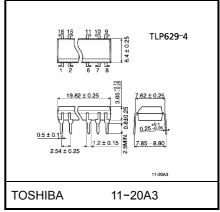
The TOSHIBA TLP629, -2, and -4 consists of a photo-transistor optically coupled to a gallium arsenide infrared emitting diode. The TLP629-2 offers two isolated channels in an eight lead plastic DIP, while the TLP629-4 provides four isolated channels in a sixteen plastic DIP. This is suitable for application of DC input current up to 150mA.


- IF maximum rating: 150mA
- Collector-emitter voltage: 55V (min.)
- Current transfer ratio: 25% (min.) (IF=20mA)
- Isolation voltage: 5000V_{rms} (min.)
- UL recognized: UL1577, file no. E67349

TLP629 TOSHIBA 11-5B2


Unit in mm

Weight: 0.26 g


Pin Configurations (top view)

1, 3, 5, 7 : ANODE 2, 4, 6, 8 : CATHODE 9, 11, 13, 15 : EMITTER 10, 12, 14, 16 : COLLECTOR

Weight: 0.54 g

Weight: 1.1 g

Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Ra	Unit	
		Symbol	TLP629	TLP629-2,4	Offic
	Forward current	l _F	150		mA
LED	Forward current derating	ΔI _F / °C	–1.5 (Ta ≥ 25°C)		mA / °C
	Pulse forward current	I _{FP}	1 (100µs pulse, 100pps)		Α
	Reverse voltage	V_{R}	5		V
	Junction temperature	Tj	125		°C
	Collector-emitter voltage	V _{CEO}	55		V
	Emitter-collector valtage	V _{ECO}	7		V
j	Collector current	I _C	80		mA
Detector	Collector power dissipation (1 circuit)	PC	150	100	mW
	Collector power dissipation derating (1 circuit, Ta ≥ 25°C)	ΔP _C / °C	-1.5	-1.0	mW / °C
	Junction temperature	Tj	125		°C
Storage temperature range		T _{stg}	−55~125		°C
Operating temperature range		T _{opr}	−55~100		°C
Lead soldering temperature		T _{sol}	260 (10s)		°C
Total package power dissipation		PT	250	200	mW
Total package power dissipation derating (Ta≥25°C)		ΔP _T / °C	-2.5	2.0	mW / °C
Isolation voltage (Note 1)		BVS	5000 (AC, 1min., RH ≤ 60%)		V _{rms}

(Note 1) Device considered a two terminal: LED side pins shorted together, and detector side pins shorted together.

Recommended Operating Conditions

Characteristics	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{CC}	_	5	24	V
Forward current	l _F	_	20	120	mA
Collector current	IC	_	1	10	mA
Operating temperature	T _{opr}	-25	_	85	°C

2

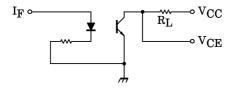
Individual Electrical Characteristics (Ta = 25°C)

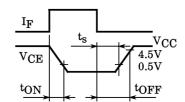
	Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
	Forward voltage	V_{F}	I _F = 100 mA	_	1.4	1.7	V
	Forward current	I _F	V _F = 0.7 V	_	2.5	20	μΑ
LED	Reverse current	I _R	V _R = 5 V	_	_	10	μΑ
	Capacitance	C _T	V = 0, f = 1 MHz	_	50	_	pF
Detector	Collector–emitter breakdown voltage	V _(BR) CEO	I _C = 0.5 mA	55	1	_	V
	Emitter-collector breakdown voltage	V _{(BR) ECO}	I _E = 0.1 mA	7	_	_	V
	Collector dark current ICEO	V _{CE} = 24 V	_	10	100	nA	
	Collector dark current	ICEO	V _{CE} = 24 V, Ta = 85°C	_	2	50	μA
	Capacitance collector to emitter	C _{CE}	V = 0, f = 1 MHz		10	_	pF

Coupled Electrical Characteristics (Ta = 25°C)

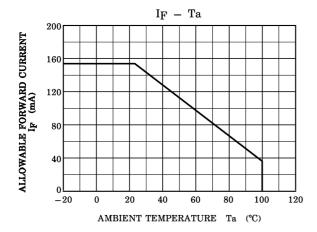
Characteristic	Symbol	Test Condition	MIn.	Тур.	Max.	Unit
	I _C / I _F	I _F = 20 mA, V _{CE} = 1 V	25	_		
Current transfer ratio	I _C / I _F (high)	I _F = 100 mA, V _{CE} = 1 V	20	_	80	%
Collector-emitter saturation voltage	VCF (sat)	I _C = 2.4 mA, I _F = 20 mA	_	_	0.4	· V
		I _C = 2.4 mA, I _F = 100 mA	_	_	0.4	
Off-state collector current	I _{C(off)}	V _F = 0.7V, V _{CEO} = 24 V		1	1.0	μA

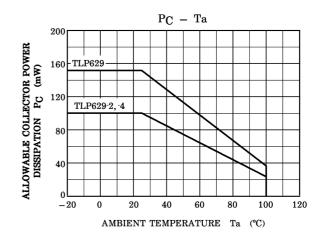
Isolation Characteristics (Ta = 25°C)

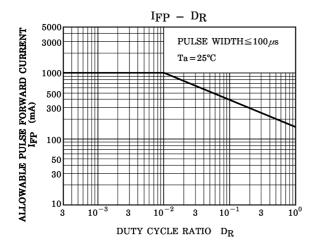

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Capacitance input to output	Cs	V _S = 0, f = 1 MHz	_	0.8	_	pF
Isolation resistance	R _S	V _S = 500 V	5×10 ¹⁰	10 ¹⁴	1	Ω
		AC, 1 minute	5000	-	_	\/
Isolation voltage	BV_S	AC, 1 second, in oil	-	10000	_	V _{rms}
		DC, 1 minute, in oil	_	10000	_	Vdc

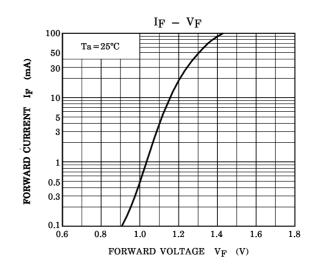


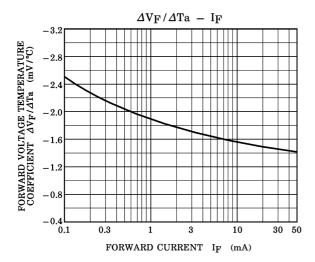
Switching Characteristics (Ta = 25°C)

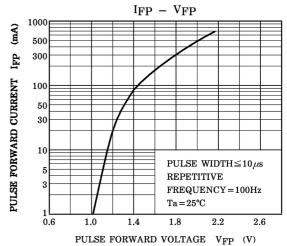

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Rise time	t _r		_	2	_	
Fall time	t _f	V _{CC} = 10 V, I _C = 2 mA	_	3	_	110
Turn-on time	t _{on}	$R_L = 100\Omega$	_	3	10	μs
Turn-off time	t _{off}		_	3	10	
Turn-on time	t _{ON}		_	2	_	
Storage time	ts	$R_L = 1.9 \text{ k}\Omega$ (Fig.1) $V_{CC} = 5 \text{ V}, I_F = 16 \text{ mA}$	_	15	_	μs
Turn-off time	toff	71	_	25	_	

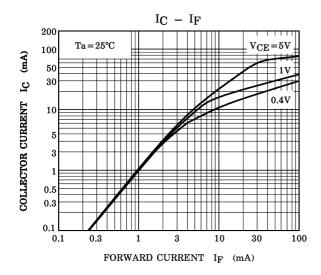

Fig. 1 Switching time test circuit

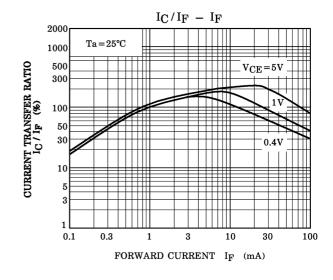


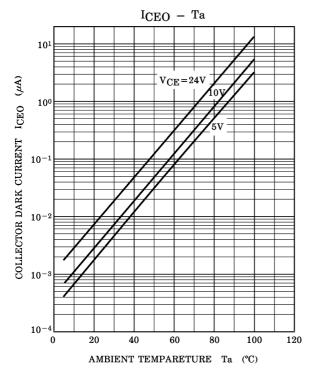



4









RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.