DATA SHEET

Part No.	AN18164B	
Package Code No.	LQFP048-P-0707A	

Publication date: May 2007 SDC00067AEB

Contents

■ Overview	3
■ Features	
■ Applications	3
■ Package	
■ Type	3
■ Application Circuit Example (Block Diagram)	4
■ Pin Descriptions	5
■ Absolute Maximum Ratings	7
■ Operating Supply Voltage Range	7
Allowed Voltage Ranges	7

AN18164B

Car Radio FM/AM tuner IC built-in PLL synthesizer

Overview

AN18164B is Car Radio FM/AM tuner IC built-in PLL synthesizer.

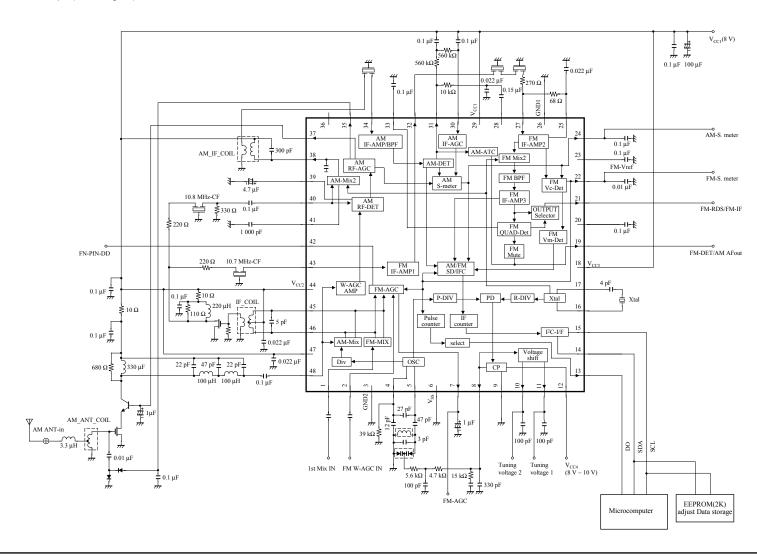
This IC is enable to adjust and change over various function by I^2C -bus, and AM up-conversion system and FM IF detection coil-less system reduce the number of parts.

■ Feature

- I²C-bus control
- Built-in PLL synthesizer
- AM up-conversion system
- IF detection coil-less

Application

• Car radio


■ Package

• 48pin Plastic Low Profile Quad Flat Package (QFP type)

■ Type

• Bi-CMOS IC

■ Application Circuit Example (Block Diagram)

■ Pin Descriptions

Pin No.	Node Name	Type	Function		
1	FM-MIX1IN	Input	FM-1st. Mix IN		
2	FM-WAGCIN	Input	FM Wide Band AGC Detection		
3	GND2	Ground	RF-GND		
4	L-OSC1	_	Local Oscillator Resonance load 1		
5	L-OSC2	_	Local Oscillator Resonance load 2		
6	VSS	Ground	VSS(Logic-GND)		
7	FM-AGCOUT	Output	FM-AGC Output		
8	CPOUT	Output	Charge pump Output		
9	GND3	Ground	PLL-GND		
10	PTCOUT	Output	Tuning Voltage Adjust 2		
11	PTBOUT	Output	Tuning Voltage Adjust 1		
12	VCC4	Power Supply	PLL-V _{CC}		
13	SDOUT	Output	SD/monitor Output		
14	SDA	Input	Serial Data Input(SDA)		
15	SCL	Input	Serial Clock Signal Input(SCL)		
16	X-OSC1	_	Crystal Oscillation 1		
17	X-OSC2	_	Crystal Oscillation 2		
18	VCC3	Power Supply	Logic-V _{CC}		
19	DETOUT	Output	AM/FM Detection Output		
20	FM-MUTE-TC	_	FM Mute Time constant setup		
21	FM-RDSOUT	Output	FM Detection Output		
22	AMFM SMETER	Output	FM Control Voltage/AM Signal Meter		
23	FM-VREF	_	FM-Vref		
24	FM-BMUTE-TC	Output	FM Band Mute time constant setup/AM Signal Meter		
25	FM-IF1-BY-PASS	_	FM 1st IF Bypass capacitor		
26	GND1	Ground	IF-GND		
27	FM-IF1IN2	Input	FM 1st IF IN		
28	AM-ATCIN	Input	AM ATC IN		
29	VCC1	Power Supply	V _{CC}		
30	AM-IFAGCIN	Input	AM IFAGC Control		
31	AM-DETOUT	Output	AM Detection Output		
32	FM-IF1OUT	Output	FM 1st IF Output		
33	FM-DET-BY-PASS	_	FM Detection Bypass capacitor		
34	AM-IFIN	Input	AM IF IN		
35	AM-PINDD	Output	AM PIN diode driver		

■ Pin Descriptions (continued)

Pin No.	Node Name	Туре	Function			
36	N.C.	_	Non connected			
37	AM-RFGC	_	AM-RF Gain Control			
38	AM-MIX2OUT	Output	AM-2nd Mixer Output			
39	AM-AGC	_	AM-RFAGC Level Detector			
40	AM-MIX2IN	Input	AM-2nd Mix IN			
41	AM-MIX2VREF	_	AM 2nd Mix Reference Voltage			
42	FM-PINDD	Output	FM PIN diode driver			
43	FM-IF1IN	Input	FM 1st IF IN			
44	VCC2	Power Supply	$RF-V_{CC}$			
45	MIXOUT1	Output	AM/FM-1st Mix Out 1			
46	MIXOUT2	Output	AM/FM-1st Mix Out 2			
47	VCC2	Power Supply	L-OSC V _{CC}			
48	AM-MIX1IN	Input	AM-1st Mix IN			

■ Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Note
1	1 Corol William	V _{CC1}	8.7	V	*1
1 Supply Voltage	Supply Voltage	V _{CC2}	11.1		
2	Supply Current	I _{CC}	70	mA	_
3	Power dissipation	P_{D}	293.6	mW	*2
4	Operating ambient temperature	T _{opr}	-40 to +85	°C	*3
5	Storage temperature	T_{stg}	-55 to +150	°C	*3

Note) *1: Show the case to be used in the situation less than absolute maximum rating and power dissipation.

*2 : Power dissipation is value in simple package and $T_a = 85$ °C.

*3 : Ta = 25°C except storage temperature, operating ambient temperature and power dissipation.

■ Operating supply voltage range

Parameter	Symbol	Rating	Unit	Note
C and a thorough	V _{CC1}	7.2 to 8.6	3.7	_
Supply voltage range	V _{CC2}	7.2 to 11.0		*

Note) *: Show the case to be used in the situation less than absolute maximum rating and power dissipation.

■ Allowable Voltage Ranges

Pin No.	Pin name	Range	Unit	Notes
12	V _{CC} 4	0 to 11.0	V	_
13	SDOUT	0 to 5.5	V	_
14	SDA	0 to 5.5	V	_
15	SCL	0 to 5.5	V	_
18	V _{CC} 3	0 to 8.6	V	_
29	V _{CC} 1	0 to 8.6	V	_
44	V _{CC} 2	0 to 8.6	V	_
47	V _{CC} 2	0 to 8.6	V	_

Note) 1. The ranges on the list are the voltages of respective pins in relation to GND.

The GND represents the voltage of GND1,GND2,GND3, and VSS. And GND1=GND2=GND3=VSS.

2. Do not apply the voltages or the currents from external into the pins which are not on the list.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support
 systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.