

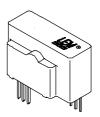
Current Transducer LAH 25-NP

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

l _{PN}	Primary nominal r.m.s. cu Primary current, measurin			25 0	55		At At
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance @					= 85°C	
			R _{M min}	\mathbf{R}_{Mmax}	K _{M min}	R _{Mmax}	
	with ± 12 V	@ I _{PN} [± At _{DC}]	0	257	0	252	Ω
		@ I _{PN} [At _{RMS}] ²⁾	0	155	0	150	Ω
	with ± 15 V	$\mathbb{I}_{PN} [\pm At_{DC}]$	67	371	70	366	Ω
		@ I _{PN} [At _{RMS}] ²⁾	67	236	70	231	Ω
		$@ I_P < I_{PN}^{3)}$					

I _{sn}	Secondary nominal r.m.s. current	25	mΑ
K	Conversion ratio	1 - 2 - 3 : 100	00
	Supply voltage (± 5 %)	± 12 15	V
I _C	Current consumption	10 (@ ± 15V)	$+ I_s m A$
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	5	kV
V _b	R.m.s. rated voltage 4)	600	V
d	Current consumption R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	10 (@ ± 15V)	0


Accuracy - Dynamic performance data

X	Accuracy 5) @ I _{PN} , T _A = 25°C		± 0.3		%
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity error		< 0.2		%
			Тур	Max	
I _o	Offset current @ $T_A = 25$ °C			± 0.15	mΑ
I _{OM}	Residual current @ $I_p = 0$, after an	overload of 5 x I _{PN}	± 0.20	± 0.25	mΑ
I _{OT}	Thermal drift of I _o	0°C + 70°C	± 0.10	± 0.60	mΑ
0.	Ç	- 25°C + 85°C	± 0.10	± 0.70	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}		< 200		ns
t,	Response time 6 @ 90 % of I _{PN}		< 500		ns
di/dt	di/dt accurately followed		> 200		A/μs
f	Frequency bandwidth (- 1 dB)		DC 2	00	kHz

eneral data			
Ambient operating temperature		- 25 + 85	°C
Ambient storage temperature		- 40 + 90	°C
Secondary coil resistance	@ $T_A = 70^{\circ}C$	99	Ω
	@ $T_A = 85^{\circ}C$	104	Ω
Mass		20	g
Standards		EN 50178 : 1	997
	Ambient operating temperature Ambient storage temperature Secondary coil resistance Mass	Ambient operating temperature Ambient storage temperature Secondary coil resistance	Ambient operating temperature Ambient storage temperature Secondary coil resistance

Notes: 1)During 10 s, with $R_{\rm M} \le 109~\Omega$ ($V_{\rm C} = \pm~15~V$) - 2) 50 Hz Sinusoidal - 3) The measuring resistance $R_{\rm M~min}$ may be lower (see "LAH Technical Information" leaflet) - 4) Pollution class 2, cat. III - 5) Without $I_{\rm O}$ & $I_{\rm OM}$ - 6) With a di/dt of 100 A/ μ s - 7)

$I_{PN} = 8-12-25 A$

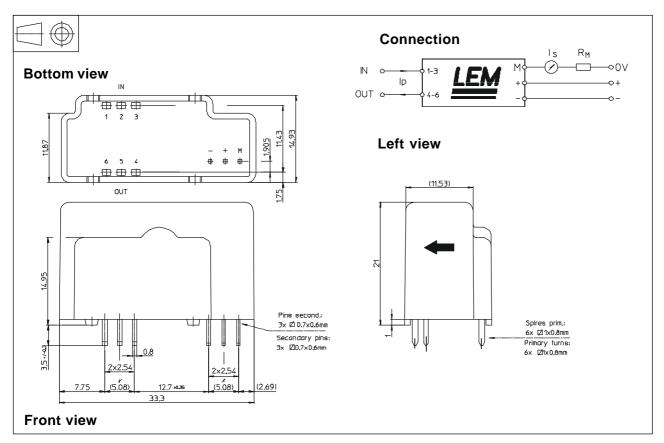
Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060213/5

page 1/2

Dimensions LAH 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal A A A A A A A A A	current maximum \mathbf{I}_{P} [A]	Nominal output current I _{SN} [mA]	Turns ratio K _N	Primary resistance \mathbf{R}_{P} [m Ω]	Primary insertion inductance L _P [µH]	Recommended PCB connections
1	25	55	25	1 : 1000	0.18	0.012	3 2 1 IN O-O-O O-O-O OUT 4 5 6
2	12	27	24	2 : 1000	0.81	0.054	3 2 1 IN O-Q O O-O O OUT 4 5 6
3	8	18	24	3 : 1000	1.62	0.110	3 2 1 IN Q Q Q O Q Q OUT 4 5 6

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm 6 pins 1 x 0.8 mm 1.5 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

Remarks

- I_s is positive when I_p flows from terminals 1, 2, 3 (IN) to terminals 6, 5, 4 (OUT).
- The jumper temperature and PCB should not exceed 100°C.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060213/5

page 2/2