
16.11.2007 rev. 7

Radiation	Туре	Technology	Case
Red	DDH	AlGaAs/AlGaAs	5 mm plastic lens

Description

High-power, high-speed deep red LED in standard 5 mm package, with lens for optimal beam forming, housing without standoff leads

Note: Special packages with standoff available on request

Applications

Optical communications, safety equipment, automation

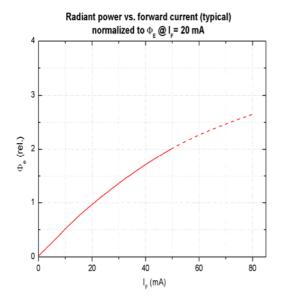
Maximum Ratings

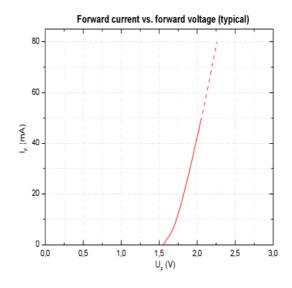
 T_{amb} = 25°C, unless otherwise specified

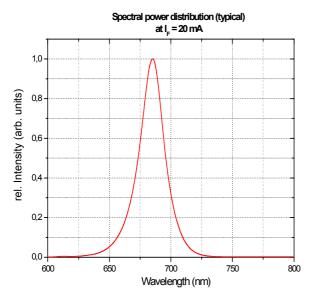
Parameter	Test conditions	Symbol	Value	Unit
Forward current (DC)		I _F	50	mA
Peak forward current	$(t_P \le 50 \ \mu s, \ t_P / T = 1/2)$	I _{FM}	100	mA
Power dissipation		P_{D}	150	mW
Operating temperature range		T_{amb}	-20 to +80	°C
Storage temperature range		T_{stg}	-30 to +100	°C
Soldering temperature	$t \le 5$ s, 3 mm from case	T_{Sd}	260	°C

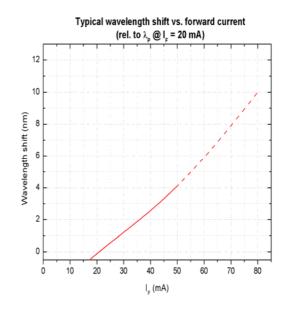
Optical and Electrical Characteristics

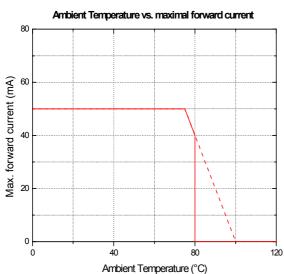
T_{amb} = 25°C, unless otherwise specified

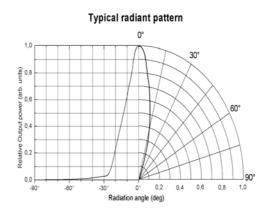

Parameter	Test conditions	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F = 20 mA	V_{F}		1.8	2.2	V
Reverse voltage	I _R = 10 μA	V_R	5			V
Radiant power	I _F = 20 mA	Фе	4	6		mW
Radiant power*	I _F = 50 mA	Фе		13		mW
Luminous intensity	I _F = 20 mA	l _v	280	400		mcd
Luminous intensity*	I _F = 50 mA	l _v		750		mcd
Peak wavelength	I _F = 20 mA	λ_{p}	675	685	695	nm
Spectral bandwidth at 50%	I _F = 20 mA	$\Delta\lambda_{0.5}$		25		nm
Viewing angle	I _F = 20 mA	φ		22		deg.
Switching time	I _F = 20 mA	t _{r,} t _f		40		ns


^{*}measured after 30s current flow


Note: All measurements carried out on EPIGAP equipment


16.11.2007


ev. 10



16.11.2007

ev. 10

Remarks concerning optical radiation safety*

At maximum forward current and continuous operation, this LED may be classified as LED product *Class 2*, according to standard IEC 60825-1:A2. *Class 2* products emit in the visible region, damaging exposure is usually prevented through avert reactions including blink reflex. It can be expected that these reactions provide sufficient protection under reasonably predictable conditions. This also implicates a direct observation of the light beam by means of optical instruments.

*Note: Safety classification of an optical component mainly depends on the intended application and the way the component is being used. Furthermore, all statements made to classification are based on calculations and are only valid for this LED "as it is", and at continuous operation. Using pulsed current or altering the light beam with additional optics may lead to different safety classifications. Therefore these remarks should be taken as recommendation and guideline only.

