
15.11.2007

rev 03

Radiation	Туре	Technology	Case
Infrared	DDH	AlGaAs/AlGaAs	5 mm plastic lens

Description

High-power, high-speed infrared LED in standard 5 mm package, wide beam angle, housing without standoff leads

Note: Special packages with standoff available on request

Applications

Optical communications, safety equipment, automation, optical sensors

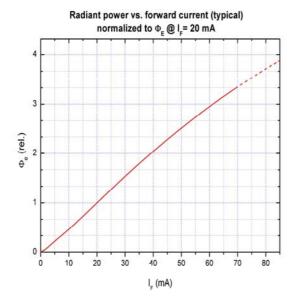
Maximum Ratings

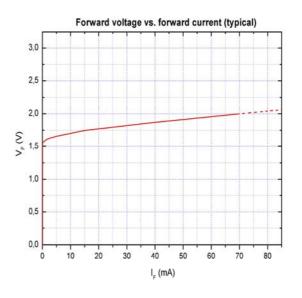
T_{amb} = 25°C, unless otherwise specified

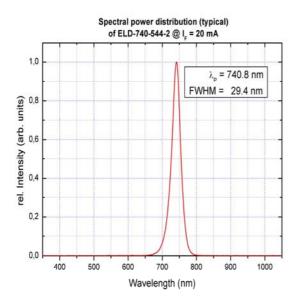
Parameter	Test conditions	Symbol	Value	Unit
Forward current (DC)		I _F	70	mA
Peak forward current	$(t_P \le 50 \mu s, t_P/T = 1/2)$	I _{FM}	200	mA
Power dissipation		P_{D}	140	mW
Operating temperature range		T_{amb}	-20 to +80	°C
Storage temperature range		T_{stg}	-55 to +100	°C
Junction temperature		T_J	100	°C

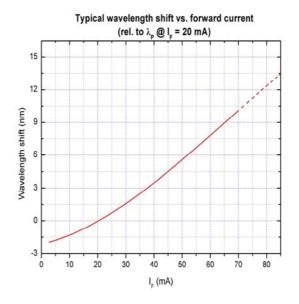
Optical and Electrical Characteristics

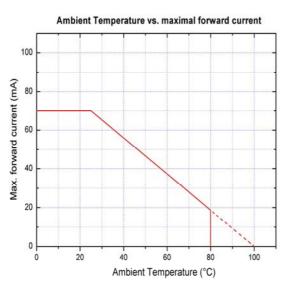
T_{amb} = 25°C, unless otherwise specified


Parameter	Test conditions	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F = 20 mA	V_{F}		1.7	2.0	V
Forward voltage*	I _F = 50 mA	V_{F}		1.9		V
Reverse voltage	I _R = 100 μA	V_{F}	5			V
Radiant power	I _F = 20 mA	Фе	3.3	4.4		mW
Radiant power*	I _F = 50 mA	Фе		11.4		mW
Radiant intensity	I _F = 20 mA	I _e	6.0	8.0		mW/sr
Radiant intensity*	I _F = 50 mA	I _e		20.5		mW/sr
Peak wavelength	I _F = 20 mA	λ_{p}	730	740	750	nm
Spectral bandwidth at 50%	I _F = 20 mA	$\Delta\lambda_{0.5}$		30		nm
Viewing angle	I _F = 20 mA	φ		40		deg.
Switching time	I _F = 20 mA	t _{r,} t _f		40		ns


^{*}measured after 30s current flow


Note: All measurements carried out on EPIGAP equipment


15.11.2007


rev. 03

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications.All operating parameters must be validated for each customer application by the customer.

15.11.2007

rev 03

Remarks concerning optical radiation safety*

Up to a forward current of 50 mA, at continuous operation, this LED may be classified as LED product *Class 1*, according to standard IEC 60825-1:A2. *Class 1* products are safe to eyes and skin under reasonably predictable conditions. This implicates a direct observation of the light beam by means of optical instruments.

If intended to operate at higher continuous current, this product should be classified as LED product *Class 1M*, according to standard IEC 60825-1:A2. *Class 1M* products are safe to eyes and skin under normal conditions, including when users view the light beam directly. *Class 1M* products produce either a highly divergent beam or a large diameter beam, so only a small part of the whole light beam can enter the eye. However, these LED products can be harmful to the retina if the beam is viewed using magnifying optical instruments. Therefore, users should not incorporate optics that could concentrate the output into the eyes.

*Note: Safety classification of an optical component mainly depends on the intended application and the way the component is being used. Furthermore, all statements made to classification are based on calculations and are only valid for this LED "as it is", and at continuous operation. Using pulsed current or altering the light beam with additional optics may lead to different safety classifications. Therefore these remarks should be taken as recommendation and guideline only.