

Document Title

256Kx16 bit Dynamic RAM with Fast Page Mode

Revision History

Revision No History Draft Date Remark

0A Initial Draft August 11,2001

The attached datasheets are provided by ICSI. Integrated Circuit Solution Inc reserve the right to change the specifications and products. ICSI will answer to your questions about device. If you have any questions, please contact the ICSI offices.

rcuit Solution Inc.

256K x 16 (4-MBIT) DYNAMIC RAM WITH FAST PAGE MODE

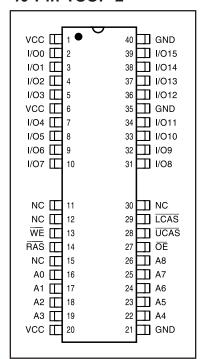
FEATURES

- · Fast access and cycle time
- TTL compatible inputs and outputs
- Refresh Interval: 512 cycles/8 ms
- Refresh Mode: RAS-Only, CAS-before-RAS (CBR), Hidden
- Self Refresh Mode: 512 cycles/64 ms (S version only)
- · JEDEC standard pinout
- Single power supply:
 - $-5V \pm 10\%$ (IC41C16257)
 - $-3.3V \pm 10\%$ (IC41LV16257)
- Byte Write and Byte Read operation via two CAS
- Available in 40-pin SOJ and TSOP-2

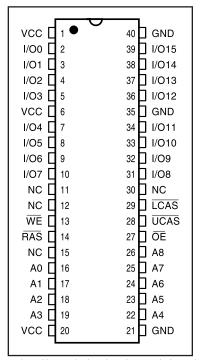
DESCRIPTION

The ICSI IC41C16257 and the IC41LV16257 are 262,144 x 16-bit high-performance CMOS Dynamic Random Access Memory. Fast Page Mode allows 512 random accesses within a single row with access cycle time as short as 12 ns per 16-bit word. The Byte Write control, of upper and lower byte, makes these devices ideal for use in 16-, 32-bit wide data bus systems.

These features make the IC41C16257 and the IC41LV16257 ideally suited for high band-width graphics, digital signal processing, high-performance computing systems, and peripheral applications.


The IC41C16257 and the IC41LV16257 are packaged in a 40-pin, 400mil SOJ and TSOP-2.

KEY TIMING PARAMETERS

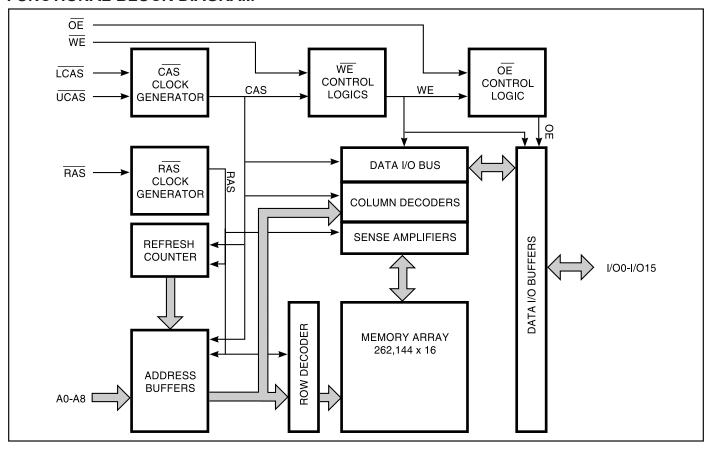

Parameter	-35	-50	-60	Unit
Max. RAS Access Time (trac)	35	50	60	ns
Max. CAS Access Time (tcac)	10	14	15	ns
Max. Column Address Access Time (taa)	18	25	30	ns
Min. Fast Page Mode Cycle Time (tpc)	12	20	25	ns
Min. Read/Write Cycle Time (trc)	60	90	110	ns

PIN CONFIGURATIONS

40-Pin TSOP-2

40-Pin SOJ

PIN DESCRIPTIONS


A0-A8	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
WE	Write Enable
ŌĒ	Output Enable
RAS	Row Address Strobe
UCAS	Upper Column Address Strobe
LCAS	Lower Column Address Strobe
Vcc	Power
GND	Ground
NC	No Connection

ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc.

www.DataSheet4U.com

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

Function	RAS	LCAS	UCAS	WE	ŌĒ	Address tr/tc	I/O
Standby	Н	Н	Н	Χ	Χ	Χ	High-Z
Read: Word	L	L	L	Н	L	ROW/COL	Dout
Read: Lower Byte	L	L	Н	Н	L	ROW/COL	Lower Byte, Dout Upper Byte, High-Z
Read: Upper Byte	L	Н	L	Н	L	ROW/COL	Lower Byte, High-Z Upper Byte, Dout
Write: Word (Early Write)	L	L	L	L	Χ	ROW/COL	Din
Write: Lower Byte (Early Write) L	L	Н	L	Х	ROW/COL	Lower Byte, DIN Upper Byte, High-Z
Write: Upper Byte (Early Write) L	Н	L	L	Х	ROW/COL	Lower Byte, High-Z Upper Byte, DIN
Read-Write ^(1,2)	L	L	L	$H{ ightarrow} L$	$L{\rightarrow}H$	ROW/COL	Dout, Din
Hidden Refresh ²⁾	Read L→H→L	L	L	Н	L	ROW/COL	Dout
	Write $L\rightarrow H\rightarrow L$	L	L	L	Χ	ROW/COL	Douт
RAS-Only Refresh	L	Н	Н	Χ	Χ	ROW/NA	High-Z
CBR Refresh ⁽³⁾	H→L	L	Ĺ	Χ	Χ	Χ	High-Z

- These WRITE cycles may also be BYTE WRITE cycles (either LCAS or UCAS active).
 These READ cycles may also be BYTE READ cycles (either LCAS or UCAS active).
 At least one of the two CAS signals must be active (LCAS or UCAS).

www.DataSheet4l

FUNCTIONAL DESCRIPTION

The IC41C16257 and the IC41LV16257 are CMOS DRAMs optimized for high-speed bandwidth, low-power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits. These are entered nine bits (A0-A8) at a time. The row address is latched by the Row Address Strobe (RAS). The column address is latched by the Column Address Strobe (CAS). RAS is used to latch the first nine bits and CAS is used to latch the latter nine bits.

The IC41C16257 and the IC41LV16257 have two CAS controls, LCAS and UCAS. The LCAS and UCAS inputs internally generate a CAS signal functioning in an identical manner to the single CAS input on the other 256K x 16 DRAMs. The key difference is that each CAS controls its corresponding I/O tristate logic (in conjunction with OE and WE and RAS). LCAS controls I/O0 - I/O7 and UCAS controls I/O8 - I/O15.

The IC41C16257/IC41LV16257 CAS function is determined by the first CAS (LCAS or UCAS) transitioning LOW and the last transitioning back HIGH. The two CAS controls give the IC41C16257 both BYTE READ and BYTE WRITE cycle capabilities.

Memory Cycle

A memory cycle is initiated by bringing RAS LOW and it is terminated by returning both RAS and CAS HIGH. To ensure proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum tras time has expired. A new cycle must not be initiated until the minimum precharge time trp, tcp has elapsed.

Read Cycle

A read cycle is initiated by the falling edge of CAS or OE, whichever occurs last, while holding WE HIGH. The column address must be held for a minimum time specified by tAR. Data Out becomes valid only when trac, taa, tcac and toe are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters.

Write Cycle

A write cycle is initiated by the falling edge of CAS and WE, whichever occurs last. The input data must be valid at or before the falling edge of CAS or WE, whichever occurs last.

Refresh Cycle

To retain data, 512 refresh cycles are required in each 8 ms period. There are two ways to refresh the memory:

- 1. By clocking each of the 512 row addresses (A0 through A8) with RAS at least once every 8 ms. Any read, write, read-modify-write or RAS-only cycle refreshes the addressed row.
- 2. Using a CAS-before-RAS refresh cycle. CAS-before-RAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In CAS-before-RAS refresh cycle, an internal 9-bit counter provides the row addresses and the external address inputs are ignored.

CAS-before-RAS is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle.

Self Refresh Cycle⁽¹⁾

The Self Refresh allows the user a dynamic refresh, data retention mode at the extended refresh period of 64 ms. i.e.. 125 µs per row when using distributed CBR refreshes. The feature also allows the user the choice of a fully static, low power data retention mode. The optional Self Refresh feature is initiated by performing a CBR Refresh cycle and holding RAS LOW for the specified trass.

The Self Refresh mode is terminated by driving RAS HIGH for a minimum time of tres. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed refresh sequence, a burst refresh is not required upon exiting Self Refresh.

However, if the DRAM controller utilizes a RAS-only or burst refresh sequence, all 512 rows must be refreshed within the average internal refresh rate, prior to the resumption of normal operation.

Power-On

After application of the Vcc supply, an initial pause of 200 µs is required followed by a minimum of eight initialization cycles (any combination of cycles containing a RAS signal).

During power-on, it is recommended that RAS track with Vcc or be held at a valid VIH to avoid current surges.

Note:

1.Self Refresh is for Sversion only.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameters		Rating	Unit	
VT	Voltage on Any Pin Relative to GND	5V	-1.0 to +7.0	V	
		3.3V	-0.5 to +4.6	V	
Vcc	Supply Voltage	5V	-1.0 to +7.0	V	
		3.3V	-0.5 to $+4.6$	V	
Іоит	Output Current		50	mA	
Po	Power DICSIpation		1	W	
TA	Operation Temperature	Com.	0 to +70	°C	
		Ind.	-40 to +85	°C	
Тѕтс	Storage Temperature		-55 to +125	°C	

Note:

RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND)

Symbol	Parameter		Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage	5V	4.5	5.0	5.5	V	
		3.3V	3.0	3.3	3.6	V	
ViH	Input High Voltage	5V	2.4	_	Vcc + 1.0	V	
		3.3V	2.0	_	Vcc + 0.3	V	
VIL	Input Low Voltage	5V	-1.0	_	0.8	V	
		3.3V	-0.3	_	0.8	V	
TA	Ambient Temperature	Com.	0	_	70	°C	
		Ind.	-40	_	85	°C	

CAPACITANCE(1,2)

Symbol	Parameter	Max.	Unit
CIN1	Input Capacitance: A0-A8	5	pF
CIN2	Input Capacitance: RAS, UCAS, LCAS, WE, OE	7	pF
Сю	Data Input/Output Capacitance: I/O0-I/O15	7	pF

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 5.0V + 10\%$, or $V_{CC} = 3.3V + 10\%$.

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect reliability.

www.DataSheet4U.com

ELECTRICAL CHARACTERISTICS(1) (Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition		Speed	Min.	Max.	Unit
lıL	Input Leakage Current	Any input $0V \le V_{IN} \le V_{CC}$ Other inputs not under test = $0V$			-10	10	μA
lio	Output Leakage Current	Output is disabled (Hi-Z) 0V ≤ Vouт ≤ Vcc			-10	10	μΑ
Vон	Output High Voltage Level	Iон = −2.5 mA			2.4	_	V
Vol	Output Low Voltage Level	IoL = +2.1 mA			_	0.4	V
lcc1	Stand-by Current: TTL	$\overline{RAS}, \overline{LCAS}, \overline{UCAS} \ge VIH$	Com.	5V 5V	_	2 3	mA mA
Icc1	Stand-by Current: TTL	RAS, LCAS, UCAS ≥ VIH	Com.	3.3V 3.3V	_	1 2	mA mA
lcc2	Stand-by Current: CMOS	\overline{RAS} , \overline{LCAS} , $\overline{UCAS} \ge Vcc - 0.2V$		5V	_	1	mA
Icc2	Stand-by Current: CMOS	\overline{RAS} , \overline{LCAS} , $\overline{UCAS} \ge Vcc - 0.2V$		3.3V	_	0.5	mA
lcc3	Operating Current: Random Read/Write ^(2,3,4) Average Power Supply Current	RAS, LCAS, UCAS, Address Cycling, trc = trc (min.)		-35 -50 -60	_	230 180 170	mA
Icc4	Operating Current: Fast Page Mode ^(2,3,4) Average Power Supply Current	RAS = VIL, LCAS, UCAS, Cycling tpc = tpc (min.)		-35 -50 -60		220 170 160	mA
Icc5	Refresh Current: RAS-Only ^(2,3) Average Power Supply Current	\overline{RAS} Cycling, \overline{LCAS} , $\overline{UCAS} \ge V_{IH}$ $trc = trc (min.)$		-35 -50 -60	_	230 180 170	mA
Icc6	Refresh Current: CBR ^(2,3,5) Average Power Supply Current	RAS, LCAS, UCAS Cycling trc = trc (min.)		-35 -50 -60	_ _ _	230 180 170	mA
Iccs	Self Refresh current ⁽⁶⁾	Self Refresh Mode		5V 3.3V	_	300 300	μA μA

^{1.} An initial pause of 200 µs is required after power-up followed by eight RAS refresh cycles (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tree refresh requirement is exceeded.

^{2.} Dependent on cycle rates.

^{3.} Specified values are obtained with minimum cycle time and the output open.

^{4.} Column-address is changed once each fast page cycle.

^{5.} Enables on-chip refresh and address counters.

^{6.} Iccs is for S version only.

AC CHARACTERISTICS(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

		-:	35	-!	50	-(60	
Symbol	Parameter		Max.		Max.		Max.	Units
trc	Random READ or WRITE Cycle Time	60		90		110		ns
trac	Access Time from RAS(6, 7)	_	35	_	50	_	60	ns
tcac	Access Time from CAS(6, 8, 15)	_	10	_	14	_	15	ns
taa	Access Time from Column-Address ⁽⁶⁾	_	18	_	25	_	30	ns
tras	RAS Pulse Width	35	10K	50	10K	60	10K	ns
trp	RAS Precharge Time	20	_	30	_	40	_	ns
tcas	CAS Pulse Width ⁽²⁶⁾	6	10K	8	10K	10	10K	ns
tcp	CAS Precharge Time ^(9, 25)	5	_	8	_	10	_	ns
tcsH	CAS Hold Time (21)	35		50		60		ns
trcd	RAS to CAS Delay Time(10, 20)	11	28	19	36	20	45	ns
tasr	Row-Address Setup Time	0	_	0	_	0	_	ns
trah	Row-Address Hold Time	6	_	8		10		ns
tasc	Column-Address Setup Time(20)	0		0		0		ns
tcah	Column-Address Hold Time(20)	6	_	8	_	10	_	ns
tAR	Column-Address Hold Time (referenced to RAS)	30	_	40	_	40	_	ns
trad	RAS to Column-Address Delay Time(11)	12	20	14	25	15	30	ns
tral	Column-Address to RAS Lead Time	18	_	25	_	30	_	ns
trpc	RAS to CAS Precharge Time	0	_	0	_	0	_	ns
trsh	RAS Hold Time ⁽²⁷⁾	8	_	14	_	15	_	ns
tclz	CAS to Output in Low-Z(15, 29)	3	_	3	_	3	_	ns
tcrp	CAS to RAS Precharge Time(21)	5	_	5	_	5	_	ns
top	Output Disable Time(19, 28, 29)	3	15	3	15	3	15	ns
toe	Output Enable Time(15, 16)	_	10	_	15	_	15	ns
toes	OE LOW to CAS HIGH Setup Time	5	_	5	_	5	_	ns
trcs	Read Command Setup Time(17, 20)	0	_	0	_	0	_	ns
trrh	Read Command Hold Time (referenced to RAS)(12)	0	_	0	_	0	_	ns
trch	Read Command Hold Time (referenced to CAS) ^(12, 17, 21)	0	_	0	_	0	_	ns
twch	Write Command Hold Time ^(17, 27)	5		8		10		ns
twcr	Write Command Hold Time (referenced to RAS) ⁽¹⁷⁾	30	_	40	_	50	_	ns
twp	Write Command Pulse Width ⁽¹⁷⁾	5		8		10		ns
trwL	Write Command to RAS Lead Time(17)	8		14		15		ns
tcwL	Write Command to CAS Lead Time(17, 21)	8	_	14	_	15	_	ns
twcs	Write Command Setup Time(14, 17, 20)	0		0		0		ns
tohr	Data-in Hold Time (referenced to RAS)	30		40		45		ns

(Continued)

AC CHARACTERISTICS(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

		-	35		50	-(60	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
tach	Column-Address Setup Time to CAS Precharge during WRITE Cycle	15	_	15	_	15	_	ns
tоен	OE Hold Time from WE during READ-MODIFY-WRITE cycle ⁽¹⁸⁾	8	_	10	_	15	_	ns
tos	Data-In Setup Time(15, 22)	0	_	0	_	0	_	ns
tон	Data-In Hold Time ^(15, 22)	6	_	8	_	10	_	ns
trwc	READ-MODIFY-WRITE Cycle Time	80	_	125	_	140	_	ns
trwd	RAS to WE Delay Time during READ-MODIFY-WRITE Cycle ⁽¹⁴⁾	45	_	70	_	80	_	ns
tcwp	CAS to WE Delay Time(14, 20)	25	_	34	_	36	_	ns
tawd	Column-Address to WE Delay Time(14)	30	_	42	_	49	_	ns
tpc	Fast Page Mode READ or WRITE Cycle Time ⁽²⁴⁾	12	_	20	_	25	_	ns
trasp	Fast Page Mode RAS Pulse Width	35	100K	50	100K	60	100K	ns
t CPA	Access Time from CAS Precharge(15)	_	21	_	27	_	34	ns
tprwc	Fast Page Mode READ-WRITE Cycle Time(24)	40	_	47	_	56	_	ns
toff	Output Buffer Turn-Off Delay from CAS or RAS (13,15,19,29)	3	15	3	15	3	15	ns
tclch	Last CAS going LOW to First CAS returning HIGH ⁽²³⁾	10	_	10	_	10	_	ns
tcsr	CAS Setup Time (CBR REFRESH)(30, 20)	8	_	10	_	10	_	ns
tchr	CAS Hold Time (CBR REFRESH)(30, 21)	8	_	10	_	10	_	ns
tord	OE Setup Time prior to RAS during HIDDEN REFRESH Cycle	0	_	0	_	0	_	ns
tref	Refresh Period (512 Cycles)	_	8	_	8	_	8	ms
tт	Transition Time (Rise or Fall)(2, 3)	1	50	1	50	1	50	ns

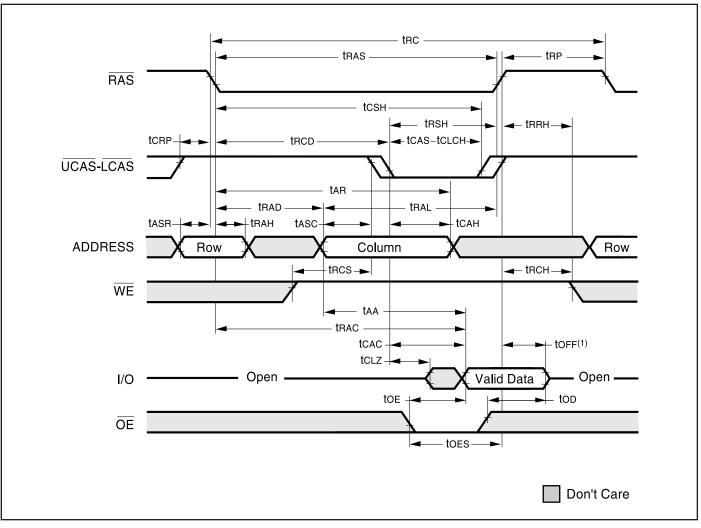
AC TEST CONDITIONS

Output load: Two TTL Loads and 50 pF ($Vcc = 5.0V \pm 10\%$)

One TTL Load and 50 pF ($Vcc = 3.3V \pm 10\%$)

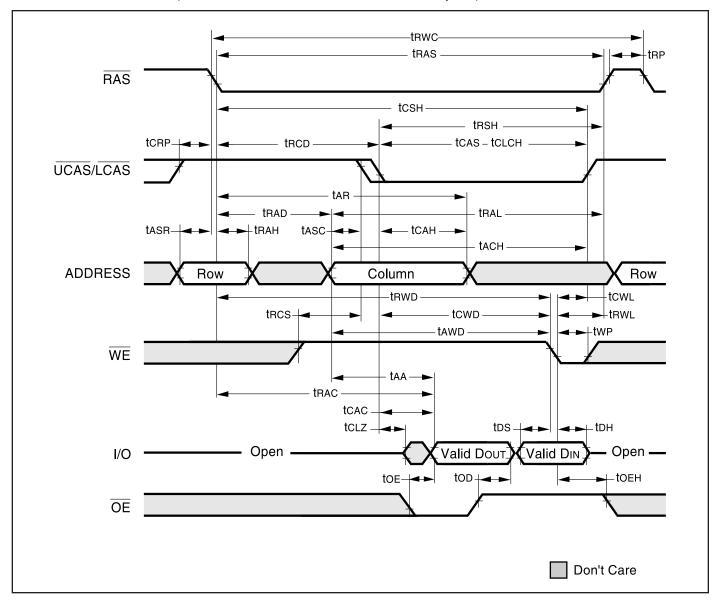
Input timing reference levels: VIH = 2.4V, VIL = 0.8V ($Vcc = 5.0V \pm 10\%$);

 $V_{IH} = 2.0V$, $V_{IL} = 0.8V$ ($V_{CC} = 3.3V \pm 10\%$)


Output timing reference levels: VOH = 2.0V, VOL = 0.8V ($VCC = 5V \pm 10\%$, $3.3V \pm 10\%$)

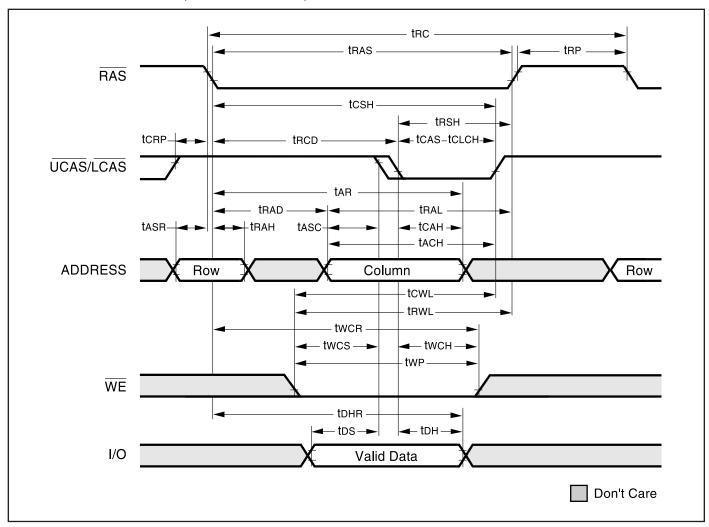
- 1. An initial pause of 200 µs is required after power-up followed by eight RAS refresh cycle (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tree refresh requirement is exceeded.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times, are measured between VIH and VIL (or between VIL and VIH) and assume to be 1 ns for all inputs.
- In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- If \overline{CAS} and $\overline{RAS} = V_{IH}$, data output is High-Z.
- 5. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 6. Measured with a load equivalent to one TTL gate and 50 pF.
- 7. Assumes that trcp ≤ trcp (MAX). If trcp is greater than the maximum recommended value shown in this table, trac will increase by the amount that tRCD exceeds the value shown.
- 8. Assumes that $trcd \ge trcd$ (MAX).
- 9. If CAS is LOW at the falling edge of RAS, data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, CAS and RAS must be pulsed for tcp.
- 10. Operation with the tRCD (MAX) limit ensures that tRAC (MAX) can be met. tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified tRCD (MAX) limit, access time is controlled exclusively by tCAC.
- 11. Operation within the trad (MAX) limit ensures that trcd (MAX) can be met. trad (MAX) is specified as a reference point only; if trad is greater than the specified trad (MAX) limit, access time is controlled exclusively by taa.
- 12. Either trch or trrh must be satisfied for a READ cycle.
- 13. toff (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol.
- 14. twcs, trwb, tawb and tcwb are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs ≥ twcs (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If tRWD ≥ tRWD (MIN), tawb ≥ tawb (MIN) and tcwb ≥ tcwb (MIN), the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until CAS and RAS or OE go back to Viii) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle.
- 15. Output parameter (I/O) is referenced to corresponding CAS input, I/O0-I/O7 by LCAS and I/O8-I/O15 by UCAS.
- 16. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, I/O goes open. If OE is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible.
- 17. Write command is defined as $\overline{\text{WE}}$ going low.
- 18. LATE WRITE and READ-MODIFY-WRITE cycles must have both top and toen met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The I/Os will provide the previously written data if CAS remains LOW and OE is taken back to LOW after toeh is met.
- 19. The I/Os are in open during READ cycles once top or toff occur.
- 20. The first $\chi \overline{CAS}$ edge to transition LOW.
- 21. The last γ CAS edge to transition HIGH.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles and $\overline{\text{WE}}$ leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. Last falling $\chi \overline{\text{CAS}}$ edge to first rising $\chi \overline{\text{CAS}}$ edge. 24. Last rising $\chi \overline{\text{CAS}}$ edge to next cycleOs last rising $\chi \overline{\text{CAS}}$ edge.
- 25. Last rising χ CAS edge to first falling χ CAS edge.
- 26. Each χCAS must meet minimum pulse width.
- 27. Last $\chi \overline{CAS}$ to go LOW.
- 28. I/Os controlled, regardless UCAS and LCAS.
- 29. The 3 ns minimum is a parameter guaranteed by design.
- 30. Enables on-chip refresh and address counters.

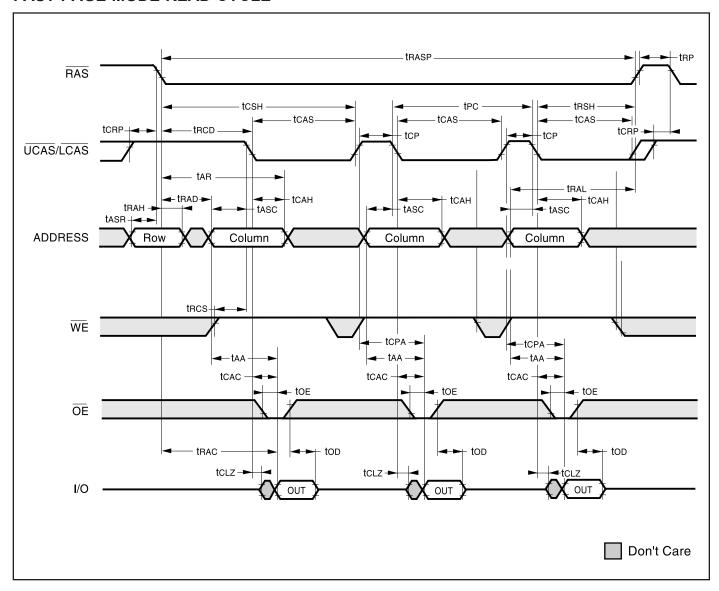
READ CYCLE



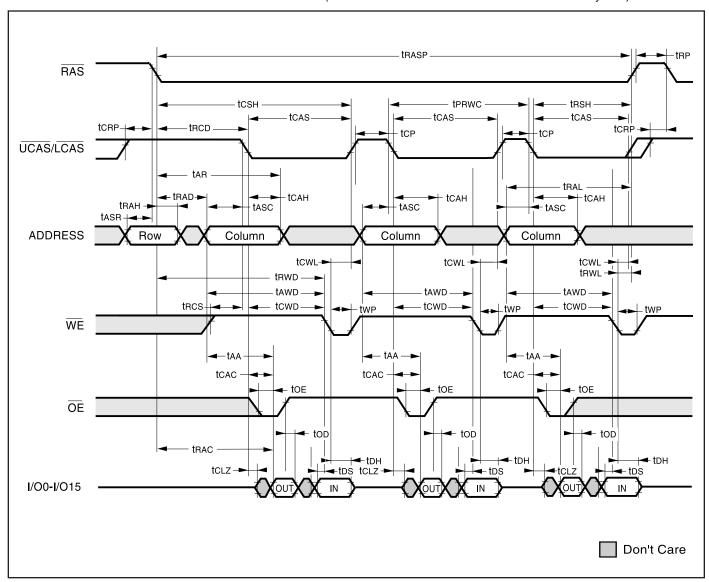
Note:

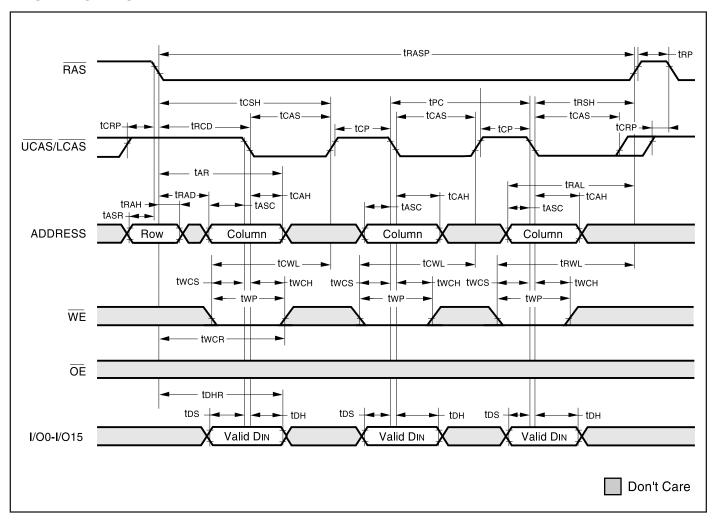
1. toff is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.


READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)

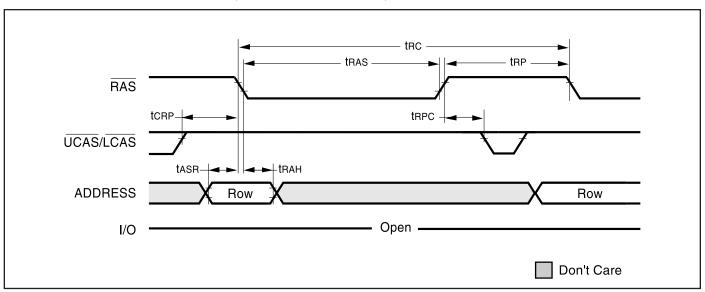

www.DataSheet4U.com

EARLY WRITE CYCLE (OE = DON'T CARE)

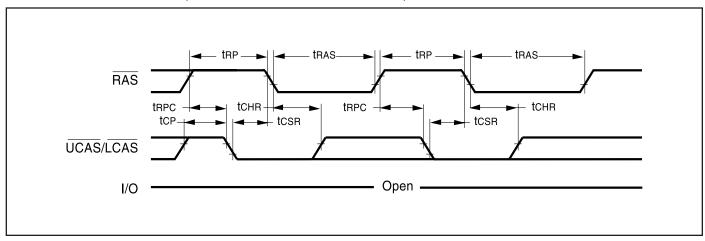

FAST PAGE MODE READ CYCLE


www.DataSheet4U.com

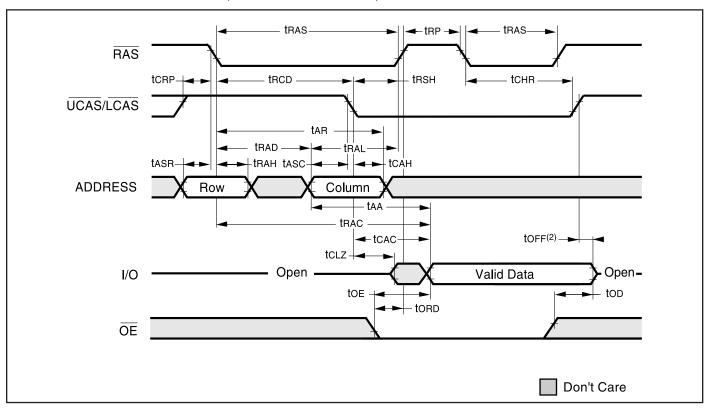
FAST PAGE MODE READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)



FAST PAGE MODE EARLY WRITE CYCLE


AC WAVEFORMS

RAS-ONLY REFRESH CYCLE (OE, WE = DON'T CARE)



CBR REFRESH CYCLE (Addresses; WE, OE = DON'T CARE)

HIDDEN REFRESH CYCLE(1) (WE = HIGH; OE = LOW)

- 1. A Hidden Refresh may also be perfor<u>med after a Write Cycle</u>. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 2. toff is referenced from rising edge of RAS or CAS, whichever occurs last.

SELF REFRESH CYCLE (Addresses : \overline{WE} and \overline{OE} = DON'T CARE)

TIMING PARAMETERS

_	-3	35	-5	50	-6	60	<u> </u>
Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Units
tchd	8	_	10	_	10	_	ns
tcp	5	_	9	_	9	_	ns
tcsr	8	_	10	_	10	_	ns
trass	100	_	100	_	100	_	μs
trp	20	_	30	_	40	_	ns
trps	64	_	84	_	104	_	ns
trpc	5	_	5	_	5	_	ns

ORDERING INFORMATION

IC41C16257

Commercial Range: 0°C to 70°C Industrial Range: -40°C to 85°C

•	Speed (ns)	Order Part No.	Package	Speed (ns)	Ord
	35	IC41C16257-35K	400mil SOJ	35	IC4
		IC41C16257-35T	400mil TSOP-2		IC4
	50	IC41C16257-50K	400mil SOJ	50	IC4
		IC41C16257-50T	400mil TSOP-2		IC4
•	60	IC41C16257-60K	400mil SOJ	60	IC4
		IC41C16257-60T	400mil TSOP-2		IC4

	Speed (ns)	Order Part No.	Package
	35	IC41C16257-35KI	400mil SOJ
		IC41C16257-35TI	400mil TSOP-2
	50	IC41C16257-50KI	400mil SOJ
		IC41C16257-50TI	400mil TSOP-2
•	60	IC41C16257-60KI	400mil SOJ
		IC41C16257-60TI	400mil TSOP-2

ORDERING INFORMATION IC41LV16257

Commercial Range: 0°C to 70°C

Speed (ns)	Order Part No.	Package
35	IC41LV16257-35K	400mil SOJ
	IC41LV16257-35T	400mil TSOP-2
50	IC41LV16257-50K	400mil SOJ
	IC41LV16257-50T	400mil TSOP-2
60	IS41LV16257-60K	400mil SOJ
	IC41LV16257-60T	400mil TSOP-2

Speed (ns) Order Part No. Package 35 IC41LV16257-35KI IC41LV16257-35KI IC41LV16257-35TI IC41LV16257-35TI IC41LV16257-50KI IC41LV16257-	
IC41LV16257-35TI 400mil TSOP-	
50 IC41LV16257-50KL 400mil SQ.I	2
00 10112110207 00111 10011111 000	
IC41LV16257-50TI 400mil TSOP-	2
60 IC41LV16257-60KI 400mil SOJ	
IC41LV16257-60TI 400mil TSOP-	2

Industrial Range: -40°C to 85°C

ORDERING INFORMATION IC41C16257S

Commercial Range: 0°C to 70°C

Speed(ns)	OrderPartNo.	Package
35	IC41C16257S-35K	400mil SOJ
	IC41C16257S-35T	400mil TSOP-2
50	IC41C16257S-50K	400mil SOJ
	IC41C16257S-50T	400mil TSOP-2
60	IC41C16257S-60K	400mil SOJ
	IC41C16257S-60T	400mil TSOP-2

Speed(ns)	Order Part No.	Package
35	IC41C16257S-35KI	400mil SOJ
	IC41C16257S-35TI	400mil TSOP-2
50	IC41C16257S-50KI	400mil SOJ
	IC41C16257S-50TI	400mil TSOP-2
60	IC41C16257S-60KI	400mil SOJ
	IC41C16257S-60TI	400mil TSOP-2

ORDERING INFORMATION

IC41LV16257S

Commercial Range: 0°C to 70°C

Speed(ns)	OrderPartNo.	Package
35	IC41LV16257S-35K	400mil SOJ
	IC41LV16257S-35T	400mil TSOP-2
50	IC41LV16257S-50K	400mil SOJ
	IC41LV16257S-50T	400mil TSOP-2
60	IS41LV16257S-60K	400mil SOJ
	IC41LV16257S-60T	400mil TSOP-2

Industrial	Range:	-40°C	to	85°C	
------------	--------	-------	----	------	--

Industrial Range: -40°C to 85°C

Speed(ns)	OrderPartNo.	Package
35	IC41LV16257S-35KI	400mil SOJ
	IC41LV16257S-35TI	400mil TSOP-2
50	IC41LV16257S-50KI	400mil SOJ
	IC41LV16257S-50TI	400mil TSOP-2
60	IC41LV16257S-60KI	400mil SOJ
	IC41LV16257S-60TI	400mil TSOP-2

Integrated Circuit Solution Inc.

HEADQUARTER:

NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK,

HSIN-CHU, TAIWAN, R.O.C.

TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD,

HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C.

TEL: 886-2-26962140 FAX: 886-2-26962252

http://www.icsi.com.tw