MUR420 and MUR460 are Preferred Devices

SWITCHMODE [™] **Power Rectifiers**

These state-of-the-art devices are a series designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 25 ns, 50 ns and 75 ns Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 V
- Shipped in Plastic Bags, 500 per Bag
- Available in Tape and Reel, 1500 per Reel, by Adding a "RL" Suffix to the Part Number
- Pb-Free Packages are Available*

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.1 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode indicated by Polarity Band

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 4.0 AMPERES, 50–600 VOLTS

AXIAL LEAD CASE 267 STYLE 1

MARKING DIAGRAM

A = Assembly Location

MUR4xx = Device Number

x = 05, 10, 15, 20, 40, 60

YY = Year WW = Work Week ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

		MUR						
Rating	Symbol	405	410	415	420	440	460	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	400	600	V
Average Rectified Forward Current (Square Wave) (Mounting Method #3 Per Note 2)	I _{F(AV)}	4.0 @ T _A = 80°C		4.0 @ T _A = 40°C		Α		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	I _{FSM}	125		110		Α		
Operating Junction Temperature & Storage Temperature	T _J , T _{stg}	-65 to +175				°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

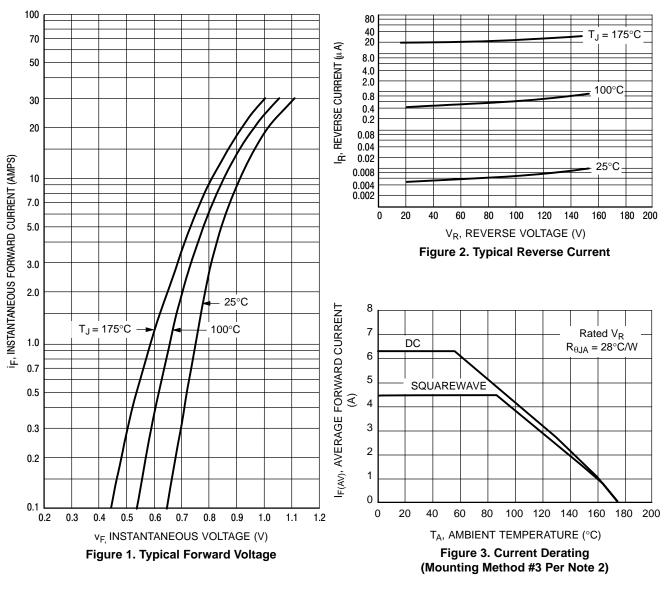
THERMAL CHARACTERISTICS

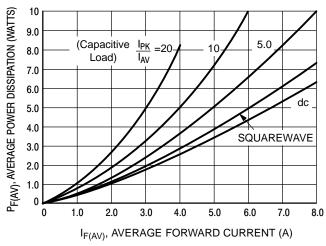
		MUR						
Rating	Symbol	405	410	415	420	440	460	Unit
Maximum Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	See Note 2		°C/W				

ELECTRICAL CHARACTERISTICS

		MUR						
Rating	Symbol	405	410	415	420	440	460	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 3.0 \text{ A}, T_J = 150^{\circ}\text{C}$) ($i_F = 3.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 4.0 \text{ A}, T_J = 25^{\circ}\text{C}$)	VF	0.71 0.88 0.89		1.05 1.25 1.28		V		
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	150 5		250 10		μΑ		
Maximum Reverse Recovery Time $(I_F=1.0~A,~di/dt=50~A/\mu s)$ $(I_F=0.5~A,~i_R=1.0~A,~I_{REC}=0.25~A)$	t _{rr}	35 25		75 50		ns		
Maximum Forward Recovery Time $(I_F = 1.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, \text{ Recovery to } 1.0 \text{ V})$	t _{fr}	25		25 50		0	ns	
Controlled Avalanche Energy (Maximum)	W _{aval}				5			mJ

^{1.} Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.


ORDERING INFORMATION


Device	Package	Shipping [†]
MUR405	Axial Lead*	
MUR405G	Axial Lead*	FOO Haite / Page
MUR410	Axial Lead*	500 Units / Bag
MUR410G	Axial Lead*	
MUR410RL	Axial Lead*	4500 / Tong 0 Paul
MUR410RLG	Axial Lead*	1500 / Tape & Reel
MUR415	Axial Lead*	FOO Heite / Pare
MUR415G	Axial Lead*	500 Units / Bag
MUR415RL	Axial Lead*	4500 / Torre 0 Paul
MUR415RLG	Axial Lead*	1500 / Tape & Reel
MUR420	Axial Lead*	FOO Heite / Pare
MUR420G	Axial Lead*	500 Units / Bag
MUR420RL	Axial Lead*	4500 / Tana 9 Baal
MUR420RLG	Axial Lead*	1500 / Tape & Reel
MUR440	Axial Lead*	FOO Heite / Pare
MUR440G	Axial Lead*	500 Units / Bag
MUR440RL	Axial Lead*	4500 / Torre 0 Park
MUR440RLG	Axial Lead*	1500 / Tape & Reel
MUR460	Axial Lead*	FOOLISTS / Para
MUR460G	Axial Lead*	500 Units / Bag
MUR460FF	Axial Lead*	500 Heite / Berr
MUR460FFG	Axial Lead*	500 Units / Bag
MUR460RL	Axial Lead*	AFOO / Town O. Book
MUR460RLG	Axial Lead*	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}These packages are inherently Pb-Free.

MUR405, MUR410, MUR415, MUR420

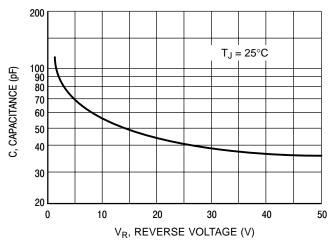
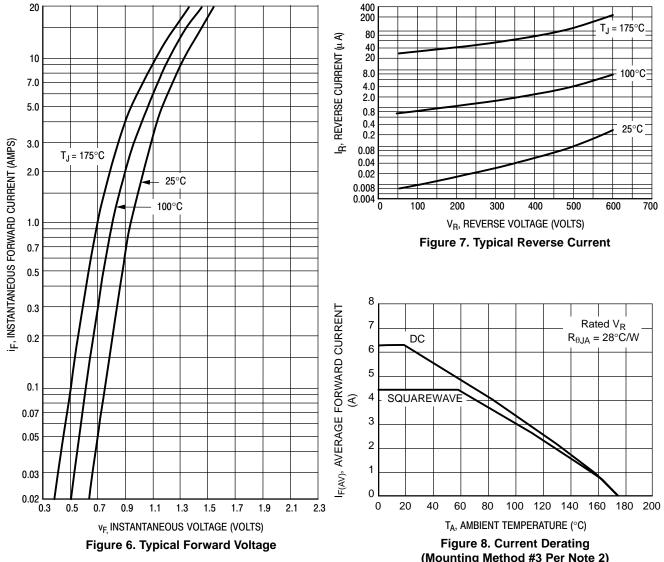



Figure 5. Typical Capacitance

MUR440, MUR460

(Mounting Method #3 Per Note 2)

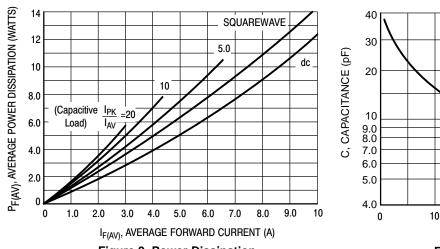


Figure 9. Power Dissipation

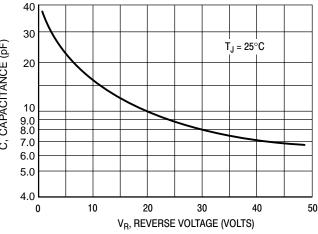
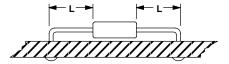


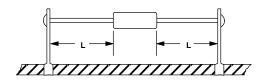
Figure 10. Typical Capacitance

NOTE 2 — AMBIENT MOUNTING DATA

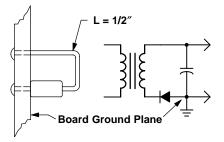

Data shown for thermal resistance junction—to—ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\theta \text{JA}}$ IN STILL AIR

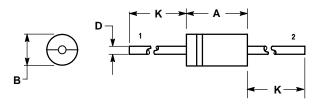
Mounti	Lea						
Metho	Method		1/4	1/2	3/4	Units	
1		50	51	53	55	°C/W	
2	$R_{\theta JA}$	58	59	61	63	°C/W	
3			°C/W				


MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small.


MOUNTING METHOD 2

Vector Push-In Terminals T-28


MOUNTING METHOD 3

P.C. Board with 1–1/2" x 1–1/2" Copper Surface

PACKAGE DIMENSIONS

AXIAL LEAD CASE 267-05 (DO-201AD) **ISSUE G**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES MIL			IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.287	0.374	7.30	9.50
В	0.189	0.209	4.80	5.30
D	0.047	0.051	1.20	1.30
K	1.000		25.40	

PIN 1. CATHODE (POLARITY BAND)

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative