32-bit Microcontroller

CMOS

FR60 MB91305

MB91305

■ DESCRIPTION
MB91305 is a single-chip microcontroller that has a 32-bit high-performance RISC CPU as well as built-in I/O resources for embedded controllers requiring high-performance and high-speed CPU processing.
The FR family is the most suitable for embedded applications, for example, DVD player, printer, TV, and PDP control, that require a high level of CPU processing power.

MB91305 is an FR60 model that is based on the FR30/40 of CPUs. It has enhanced bus access and is optimized for high-speed use.

- FEATURES

1. FR CPU

- 32-bit RISC, load/store architecture, 5 stages pipeline
- With USB function ($\mathrm{MOD}=0000$ в) : operating frequency of 64 MHz [original oscillation at 48 MHz] 48 MHz / 3 -divided $\times 4$ multiplication
(Continued)

PACKAGE

MB91305

(Continued)

- With no USB function (MOD = 0010в) : operating frequency of 64 MHz [original oscillation at 16 MHz] $16 \mathrm{MHz} \times 4$ multiplication
- 16 -bit fixed-length instructions (basic instructions), one instruction per cycle
- Memory-to-memory transfer, bit processing, instructions including barrel shift, etc. : instructions appropriate for embedded applications
- Function entry and exit instructions, multi load/store instructions of register contents : instructions compatible with high-level languages
- Register interlock function to facilitate assembly-language coding
- Built-in multiplier/instruction-level support
- Signed 32-bit multiplication : 5 cycles
- Signed 16-bit multiplication: 3 cycles
- Interrupts (saving of PC and PS) : 6 cycles, 16 priority levels
- Harvard architecture enabling simultaneous execution of both program access and data access
- 4-word queues in the CPU provided to add an instruction prefetch function
- Instructions compatible with the FR family

2. Bus Interface

This bus interface is used for external bus and internal macro USB function.

- Maximum operating frequency of 32 MHz
- 16-bit data input-output
- Totally independent 8 -area chip select outputs that can be defined in the minimum units of 64 K bytes. The $\overline{\mathrm{CS} 2}$ and $\overline{\mathrm{CS} 3}$ areas are reserved as shown below. $\overline{\mathrm{CS0}}, \overline{\mathrm{CS} 1}$, and $\overline{\mathrm{CS} 4}$ to $\overline{\mathrm{CS} 7}$ can be used only.
- $\overline{\mathrm{CS}} 2 \mathrm{area}$: USB function
- CS3 area : Unused
- Basic bus cycle (2 cycles)
- Automatic wait cycle generator that can be programmed for each area and can insert waits because $\overline{\mathrm{CS} 2}$ and $\overline{\mathrm{CS3}}$ are reserved, the setting is fixed.
- 24-bit address can be fully outputted
- 8- and 16-bit data I/O
- Prefetch buffer installed
- Unused data and address pins can be used as general-purpose I/O and resource function.
- Support of interfaces for various memory modules Asynchronous SRAM, asynchronous ROM/Flash memory Page-mode ROM/Flash memory (a page-size of 1, 2, 4, or 8 can be selected) Burst-mode ROM/Flash memory (MBM29BL160D/161D/162D etc.) SDRAM (or FCRAM type, CAS Latency 1 to Latency8, 2/4 bank product) Address/data multiplexed bus (8-bit/16-bit width only)
- Basic bus cycle : 2 cycles
- Automatic wait cycle generator (Max 15 cycles) that can be programmed for each area
- External wait cycles due to RDY input
- Endian setting of byte ordering (big/little)

Note : $\overline{\mathrm{CSO}}$ area is only big endian.

- Write disable setting (read only area)
- Enable/disable set of capturing to the built-in cache
- Enable/disable set of prefetch function
- External bus arbitration using BRQ and $\overline{\text { BGRNT }}$ is enabled

3. Built-in Memory

64 K bytes RAM of built-in F-bus

4. Instruction Cache Memory

-Instruction cache : 4 K bytes

- 2 way set associative
- 128 block/way, 4 entry (4 words) /block
-Lock function allows specific program codes to stay resident in cache.
-Instruction RAM function : A part of the instruction cache not in use can be used as RAM for instruction execution

5. DMAC (DMA Controller)

- 5 channels (channels 1 and 2 are connected to the USB function.)
- 3 transfer sources (internal peripherals, software)
-Addressing mode with 32-bit full address specifications (increase, decrease, fixed)
-Transfer modes (demand transfer, burst transfer, step transfer, block transfer)
-Transfer data size that can be selected from 8, 16, and 32 bits

6. Bit Search Module (Used by REALOS)

Searches for the position of the first bit varying between 1 and 0 in the MSB of a word

7. 16-bit Reload Timer (Including One Channel for REALOS)

-16-bit timer; 3 channels
-Internal clock that can be selected from those resulting from frequency divided by 2,8 , and 32
8. UART
-Full-duplex double buffer
-5 channels
-Parity or no parity can be selected.
-Either asynchronous (start-stop synchronization) or CLK synchronous communication can be selected.
-Built-in timer for dedicated baud rates
-An external clock can be used as the transfer clock.
-Plentiful error detection functions (parity, frame, overrun)
9. ${ }^{1}{ }^{2} \mathrm{C}$ Interface*
-4 channels (bridge function and pin function for 5 channels)
-Master/slave transmission and reception
-Clock synchronization function

- Transfer direction detection function
-Bus error detection function
-Supports standard mode (Max 100 Kbps) and high-speed mode (Max 400 Kbps) .
-Built-in FIFO function : each 16-byte sending/receiving
- Arbitration function
- Slave address/general call address detection function
-Start condition repetitious occurrence and detection function
-10-bit/7-bit slave address

10.Interrupt Controller

-Total of 17 external interrupts (one unmaskable interrupt pin ($\overline{\mathrm{NMI}}$) and 16 regular interrupt pins (INT15 to INTO))

- Interrupts from internal peripherals
-Priority level can be defined as programmable (16 levels) except for the unmaskable interrupt pin.
-Can be used for wake-up during stop.

11.10-bit A/D Converter

-10-bit resolution, 10 channels
-Sequential comparison and conversion type (conversion time : about $8.18 \mu \mathrm{~s}$)
-Conversion modes (single conversion mode and scan conversion mode)
-Causes of startup (software and external triggers)

MB91305

12. PPG

- 4 channels
- 16-bit data register with 16 -bit down counter and cycle setting buffer
- Internal clock : Frequency-divide-by number selectable from 1, 4, 16, and 64

13. PWC

- 1 channel (1 input)
- 16-bit up counter
- Simple Low-pass digital filter

14. 16-bit Free-run Timer

- 16-bit 1channel
- Input capture 4 channels

15. USB Function (Enabling/Disabling Function Can Be Selected by Mode Pin)

- USB2.0 full-speed, double buffer
- Configuration of FIFO for End point CONTROL IN/OUT, BULK IN/OUT, and INTERRUPT IN

16. Other Interval Timers

Watchdog timer

17. I/O Ports

Maximum of 98 ports
18. Other Features

- Has a built-in oscillation circuit as a clock source.
- INIT is provided as a reset pin.
- Additionally, a watchdog timer reset and software resets are provided.
- Stop mode and sleep mode supported as low-power consumption modes
- Gear function
- Built-in timebase timer
- Package : LQFP-176, 0.5 mm pitch, and $24 \mathrm{~mm} \times 24 \mathrm{~mm}$
- CMOS technology : $0.18 \mu \mathrm{~m}$
- Power supply voltage : two sources $(0.18 \mu \mathrm{~m})$ of $3.3 \mathrm{~V}(-0.3 \mathrm{~V}$ to $+0.3 \mathrm{~V})$ and $1.8 \mathrm{~V}(-0.15 \mathrm{~V}$ to $+0.15 \mathrm{~V})$
* : LICENSE

Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

PIN ASSIGNMENT

PIN DESCRIPTION

- Function pins

Pin no.	Pin name	$\begin{array}{\|l} \hline \text { I/O } \\ \text { Type }^{*} \end{array}$	Function
169 to 176	D16 to D23	C	External data bus bit16 to bit23. It is available in the external bus mode.
	P20 to P27		Can be used as ports in 8-bit external bus mode.
4 to 11	D24 to D31	C	External data bus bit24 to bit31. It is available in the external bus mode.
15	$\overline{\mathrm{RD}}$	H	External bus read strobe output. This pin is enabled at external bus mode.
16	WRO /DQMUU	H	External bus write strobe output. This pin is enabled at external bus mode. When $\overline{W R}$ is used as the write strobe, this becomes the byte-enable pin (DQMUU) .
17	$\overline{\text { WR1 }}$ /DQMUL	D	External bus write strobe output. The pin is enabled when WR1 output is enabled in the external bus mode. When $\overline{W R}$ is used as the write strobe, this becomes the byte-enable pin (DQMUL) .
	P30		General-purpose input/output port. The pin is enabled when the external bus write-enable output is disabled.
18	CSO	D	Chip select 0 output. This pin is enabled at external bus mode.
	P31		General-purpose input/output port. This pin is enabled in the single-chip mode.
19	CS1	D	Chip select 1 output. This function is enabled when chip select 1 output is enabled.
	P32		General-purpose input/output port. This function is enabled when chip select 1 output is disabled.
20	CS4	D	Chip select 4 output. This function is enabled when chip select 4 output is enabled.
	P33		General-purpose input/output port. This function is enabled when chip select 4 output is disabled.
21	$\overline{\text { CS5 }}$	D	Chip select 5 output. This function is enabled when chip select 5 output is enabled.
	P34		General-purpose input/output port. This function is enabled when chip select 5 output is disabled.
22	$\overline{\text { CS6 }}$	D	Chip select 6 output. This function is enabled when chip select 6 output is enabled.
	P35		General-purpose input/output port. This function is enabled when chip select 6 output is disabled.
23	$\overline{\text { CS7 }}$	D	Chip select 7 output. This function is enabled when chip select 7 output is enabled.
	P36		General-purpose input/output port. This function is enabled when chip select 7 output is disabled.

(Continued)

Pin no.	Pin name	$\begin{gathered} \text { I/O } \\ \text { Type* }^{*} \end{gathered}$	Function
24	RDY	D	External ready input. This function is enabled when external ready input is enabled.
	P37		General-purpose input/output port. This function is enabled when external ready input is disabled.
25	BGRNT	D	Acceptance output for external bus release. Outputs "L" when the external bus is released. This function is enabled when output is enabled.
	P40		General-purpose input/output port. This function is enabled when external bus release acceptance is disabled.
26	BRQ	D	External bus release request input. Input "1" to request release of the external bus. The function is enabled when input is enabled.
	P41		General-purpose input/output port. This function is enabled when the external bus release request is disabled.
27	SYSCLK	D	System clock output. This function is enabled when system clock output is enabled. This outputs the same clock as the external bus operating frequency. (Output halts in stop mode.)
	P42		General-purpose input/output port. This function is enabled when system clock output is disabled.
28	MCLKE	D	Clock enable signal for SDRAM.
	P43		General-purpose input/output port. This function is enabled when memory clock output is disabled.
29	MCLK	D	Memory clock output. This function is enabled when memory clock output is enabled. This outputs the same clock as the external bus operating frequency. (Output halts in sleep mode.)
	P44		General-purpose input/output port. This function is enabled when memory clock output is disabled.
30	$\overline{\text { AS }}$	D	Address strobe output. This function is enabled when address strobe output is enabled.
	$\overline{\text { LBA }}$		Address load output for burst flash memory. This function is enabled when address load output is enabled.
	SRAS		RAS strobe single for SDRAM.
	P45		General-purpose input/output port. This function is enabled when address load output is disabled.
31	$\overline{\text { BAA }}$	D	Address advance output for burst flash memory. This function is enabled when address advance output is enabled.
	$\overline{\text { SCAS }}$		CAS strobe signal for SDRAM.
	P46		General-purpose input/output port. This function is enabled when address advance output is disabled.

(Continued)

Pin no.	Pin name	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { Type }^{*} \end{gathered}$	Function
32	$\overline{W R}$	D	Memory write strobe output. This function is enabled when write strobe output is enabled.
	SWE		Write output for SDRAM.
	P47		General-purpose input/output port. This function is enabled when write strobe output is disabled.
36 to 51	A0 to A15	H	External address bus bit0 to bit15.
55 to 62	A16 to A23	D	External address bus bit16 to bit23.
	P50 to P57		Can be used as ports when external address bus is not used.
64	X0	A	Clock (oscillation) input.
66	X1		Clock (oscillation) output.
68	$\overline{\text { INIT }}$	B	External reset input (Reset to initialize settings)
69 to 71	$\begin{aligned} & \text { MD0 to } \\ & \text { MD2 } \end{aligned}$	1	These pins set the basic operating mode. Connect Vcc or VSS.
72	MD3	J	These pins set the basic operating mode. Connect Vcc or VSS.
76, 77	AN0, AN1	M	Analog input pin.
78 to 85	$\begin{aligned} & \text { AN2 to } \\ & \text { AN9 } \end{aligned}$	F	Analog input pin.
	PF0 to PF7		Can be used as ports when analog input pin is not used.
86 to 88	$\begin{aligned} & \text { ICS0 to } \\ & \text { ICS2 } \end{aligned}$	C	Status output pin for development tool.
89 to 92	$\begin{aligned} & \hline \text { ICD0 to } \\ & \text { ICD3 } \end{aligned}$	L	Data input/output pin for development tool.
93	IBREAK	J	Break pin for development tool.
94	ICLK	D	Clock pin for development tool.
95	TRST	B	Reset pin for development tool.
99	SIN0	D	UARTO data input pin. This input is used continuously when UARTO is performing input. In this case, do not output to this port unless doing so intentionally.
	P60		General-purpose input/output port.
100	SOUT0	D	UARTO data output pin. This function is enabled when UARTO data output is enabled.
	P61		General-purpose input/output port.
101	SCK0	D	UARTO clock input/output pin. This function is enabled when UART0 clock output is enabled.
	P62		General-purpose input/output port.

(Continued)

Pin no .	Pin name	$\begin{gathered} \text { I/O } \\ \text { Type* } \end{gathered}$	Function
102	SIN1	D	UART1 data input pin. This input is used continuously when UART1 is performing input. In this case, do not output to this port unless doing so intentionally.
	P63		General-purpose input/output port.
103	SOUT1	D	UART1 data output pin. This function is enabled when UART1 data output is enabled.
	P64		General-purpose input/output port.
104	SCK1	D	UART1 clock input/output pin. This function is enabled when UART1 clock output is enabled.
	P65		General-purpose input/output port.
105	SIN2	D	UART2 data input pin. This input is used continuously when UART2 is performing input. In this case, do not output to this port unless doing so intentionally.
	P70		General-purpose input/output port.
106	SOUT2	D	UART2 data output pin. This function is enabled when UART2 data output is enabled.
	P71		General-purpose input/output port.
107	SCK2	D	UART2 clock input/output pin. This function is enabled when UART2 clock output is enabled.
	P72		General-purpose input/output port.
108	SIN3	D	UART3 data input pin. This input is used continuously when UART3 is performing input. In this case, do not output to this port unless doing so intentionally.
	P73		General-purpose input/output port.
109	SOUT3	D	UART3 data output pin. This function is enabled when UART3 data output is enabled.
	P74		General-purpose input/output port.
110	SCK3	D	UART3 clock input/output pin. This function is enabled when UART3 clock output is enabled.
	P75		General-purpose input/output port.
111	SIN4	D	UART4 data input pin. This input is used continuously when UART4 is performing input. In this case, do not output to this port unless doing so intentionally.
	P80		General-purpose input/output port.
112	SOUT4	D	UART4 data output pin. This function is enabled when UART4 data output is enabled.
	P81		General-purpose input/output port.

(Continued)

Pin no.	Pin name	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { Type* } \end{gathered}$	Function
113	SCK4	D	UART4 clock input/output pin. This function is enabled when UART4 clock output is enabled.
	P82		General-purpose input/output port.
114	SCLO	D	Clock I/O pin for ${ }^{12} \mathrm{C}$ bus. This function is enabled when typical operation of ${ }^{12} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P83		General-purpose input/output port.
115	SDA0	D	Data I/O pin for ${ }^{2} \mathrm{C}$ bus. This function is enabled when typical operation of $I^{2} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P84		General-purpose input/output port.
116	SCL1	D	Clock I/O pin for ${ }^{12} \mathrm{C}$ bus. This function is enabled when typical operation of ${ }^{12} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P90		General-purpose input/output port.
117	SDA1	D	Data I/O pin for $I^{2} \mathrm{C}$ bus. This function is enabled when typical operation of ${ }^{1}{ }^{2} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P91		General-purpose input/output port.
118	SCL2	K	Clock I/O pin for ${ }^{12} \mathrm{C}$ bus. This function is enabled when typical operation of ${ }^{12} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P92		General-purpose input/output port.
119	SDA2	K	Data I/O pin for $\mathrm{I}^{2} \mathrm{C}$ bus. This function is enabled when typical operation of ${ }^{12} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P93		General-purpose input/output port.
120	SCL3	K	Clock I/O pin for ${ }^{12} \mathrm{C}$ bus. This function is enabled when typical operation of ${ }^{12} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P94		General-purpose input/output port.
121	SDA3	K	Data I/O pin for ${ }^{2} \mathrm{C}$ bus. This function is enabled when typical operation of $1^{12} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P95		General-purpose input/output port.
122	SCL4	K	Clock I/O pin for $I^{2} \mathrm{C}$ bus. This function is enabled when typical operation of ${ }^{12} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P96		General-purpose input/output port.

(Continued)

Pin no.	Pin name	$\begin{gathered} \text { I/O } \\ \text { Type* } \end{gathered}$	Function
123	SDA4	K	Data I/O pin for $I^{2} \mathrm{C}$ bus. This function is enabled when typical operation of $\mathrm{I}^{2} \mathrm{C}$ is enabled. The port output must remain off unless intentionally turned on. (pseudo open drain output)
	P97		General-purpose input/output port.
127	$\overline{\mathrm{NMI}}$	B	NMI (Non Maskable Interrupt) input
128 to 131	INTO to INT3	G	External interrupt inputs. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	PA0 to PA3		General-purpose input/output port.
132	INT4	G	External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally. When USB function is enabled (MD3, MD2, MD1, MD0 $=0000_{\mathrm{B}}$), INT4 function is used only for the USB interrupt. Therefore, it is not possible to use it as an external interrupt pin.
	PA4		General-purpose input/output port.
133 to 135	INT5 to INT7	G	External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	PA5 to PA7		General-purpose input/output port.
136	INT8	G	External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	PB0		General-purpose input/output port.
137	INT9	G	External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	PB1		General-purpose input/output port.
138	INT10	G	External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	ATRG		A/D converter external trigger input. These inputs are used continuously when using as A/D start trigger. In this case, do not output to these ports unless doing so intentionally.
	PB2		General-purpose input/output port.
139	INT11	G	External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	FRCK		External clock input pin of free-run timer. These inputs are used continuously when using as external clock input pin of free-run timer. In this case, do not output to these ports unless doing so intentionally.
	PB3		General-purpose input/output port.

(Continued)

Pin no.	Pin name	$\begin{gathered} \text { I/O } \\ \text { Type* } \end{gathered}$	Function
140 to 143	INT12 to INT15	G	External interrupt input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	ICUO to ICU3		Input capture input pins. These inputs are used continuously when selected as input capture inputs. In this case, do not output to these ports unless doing so intentionally.
	$\begin{aligned} & \hline \text { PB4 to } \\ & \text { PB7 } \end{aligned}$		General-purpose input/output port.
145	UDP	USB	+ pin of USB.
146	UDM		- pin of USB.
149 to 152	$\begin{aligned} & \hline \text { PPG0 to } \\ & \text { PPG3 } \end{aligned}$	D	PPG ch. 0 to PPG ch. 3 timer output.
	$\begin{aligned} & \text { PC0 to } \\ & \text { PC3 } \end{aligned}$		General-purpose input/output port.
153	TOUTO	D	Data output of reload timer 0 . This function is enabled when data output of reload timer 0 is enabled using port function register.
	TRG0		External trigger input for PPG0 timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally.
	PC4		General-purpose input/output port.
154	TOUT1	D	Data output of reload timer 1. This function is enabled when data output of reload timer 1 is enabled using port function register.
	PC5		General-purpose input/output port.
155	TOUT2	D	Data output of reload timer 2. This function is enabled when data output of reload timer 2 is enabled using port function register.
	IOWR		Write strobe output for DMA fly-by transfer. This function is enabled when outputting a write strobe for DMA fly-by transfer is enabled.
	PC6		General-purpose input/output port.
156	RIN	D	PWC input. These inputs are used continuously when the corresponding external interrupt is enabled. In this case, do not output to these ports unless doing so intentionally.
	$\overline{\text { ORD }}$		Read strobe output for DMA fly-by transfer. This function is enabled when outputting a read strobe for DMA fly-by transfer is enabled.
	PC7		General-purpose input/output port.
157	DREQ0	D	External input for DMA transfer requests. This input is used continuously when the corresponding external input for DMA transfer requests are enabled. In this case, do not output to this port unless doing so intentionally.
	PD0		General-purpose input/output port.

(Continued)

Pin no.	Pin name	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { Type }^{*} \end{gathered}$	Function
158	$\overline{\text { DACKO }}$	D	DMA external transfer request acceptance output. This function is enabled when DMA external transfer request acceptance output is enabled.
	PD1		General-purpose input/output port.
159	$\overline{\text { DEOPO }}$	D	Completion output for DMA external transfer. This function is enabled when completion output for DMA external transfer is enabled.
	PD2		General-purpose input/output port.
160	DREQ1	D	External input for DMA transfer requests. This input is used continuously when external input for DMA transfer request is enabled. In this case, do not output to this port unless doing so intentionally. When using USB, this function (DMAC ch.1) cannot be used because it is used as USB data transfer. DREQ2 input is disabled.
	TINO		Reload timer input. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally.
	PD3		General-purpose input/output port.
161	$\overline{\text { DACK1 }}$	D	DMA external transfer request acceptance output. This function is enabled when DMA transfer request acceptance output is enabled. When using USB, this function (DMAC ch.1) cannot be used because it is used as USB data transfer. External transfer ACK output of DMA should be disabled.
	TIN1		Reload timer input. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally.
	PD4		General-purpose input/output port.
162	$\overline{\text { DEOP1 }}$	D	Completion output for DMA external transfer. This function is enabled when completion output for DMA external transfer is enabled. When using USB, this function (DMAC ch.1) cannot be used because it is used as USB data transfer. External transfer EOP output of DMA should be disabled.
	TIN2		Reload timer input. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally.
	PD5		General-purpose input/output port.
163	DREQ2	D	External input for DMA transfer requests. This input is used continuously when external input for DMA transfer request is enabled. In this case, do not output to this port unless doing so intentionally. When using USB, this function (DMAC ch.2) cannot be used because it is used as USB data transfer. DREQ2 input is disabled.
	TRG1		External trigger input for PPG1 timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally.
	PE0		General-purpose input/output port.

(Continued)

MB91305

(Continued)

Pin no.	Pin name	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { Type }^{*} \end{gathered}$	Function
164	$\overline{\text { DACK2 }}$	D	DMA external transfer request acceptance output. This function is enabled when DMA transfer request acceptance output is enabled. When using USB, this function (DMAC ch.2) cannot be used because it is used as USB data transfer. External transfer ACK output of DMA should be disabled.
	TRG2		External trigger input for PPG2 timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally.
	PE1		General-purpose input/output port.
165	$\overline{\text { DEOP2 }}$	D	Completion output for DMA external transfer. This function is enabled when completion output for DMA external transfer is enabled. When using USB, this function (DMAC ch.2) cannot be used because it is used as USB data transfer. External transfer EOP output of DMA should be disabled.
	TRG3		External trigger input for PPG3 timer. This input is used continuously when the corresponding timer input is enabled. In this case, do not output to this port unless doing so intentionally.
	PE2		General-purpose input/output port.

*: For I/O circuit type, refer to "■ I/O CIRCUIT TYPES".

- Power supply and GND pins

Pin no.	Pin name	Function
$2,13,34,53,65,97$, $125,147,167$	VSS	GND pins. Connect all pins at the same potential.
$3,14,35,54,67,98$, $126,148,168$	VDDI	1.8 V power supply pins. Connect all pins at the same potential.
$1,12,33,52,63,96$, $124,144,166$	VDDE	lis V power supply pins. Connect all pins at the same potential.
73	AVCC	Analog power supply pin for A/D converter
74	AVRH	Reference power supply pin for A/D converter
75	AVSS	Analog GND pin for the A/D converter

I/O CIRCUIT TYPES

Type	Circuit	Remarks
A		Oscillation feedback resistance approx. $1 \mathrm{M} \Omega$
B		- With pull-up resistor - CMOS level hysteresis input
C		- CMOS level I/O - With standby control - lol $=4 \mathrm{~mA}$

(Continued)

MB91305

Type	Circuit	Remarks
D		- CMOS level output - CMOS level hysteresis input - With standby control - $\mathrm{loL}=4 \mathrm{~mA}$
E		- CMOS level input - No standby control
F		- CMOS level output - CMOS level hysteresis input - With standby control - With analog input - $\mathrm{loL}=4 \mathrm{~mA}$

(Continued)

Type	Circuit	Remarks
G		- With pull-up control - CMOS level output - CMOS level hysteresis input - No standby control - loL $=4 \mathrm{~mA}$
H		CMOS level output
1		- CMOS level hysteresis input - No standby control

MB91305

Type	Circuit	Remarks
J		- CMOS level hysteresis input - With pull-down resistor
K		- 3 ports for $\mathrm{I}^{2} \mathrm{C}$ - CMOS level hysteresis input - CMOS level output - With stop control

(Continued)
(Continued)

Type	Circuit	Remarks
L		- CMOS I/O - With pull-down control
M		Analog pin

MB91305

- HANDLING DEVICES

- Preventing a Latch-up

A latch-up can occur on a CMOS IC under following conditions. A latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating.

- When a voltage higher than VDDE or VDDI or a voltage lower than VSS is applied to an input or output pin.
- When a voltage higher than the rating is applied between VDDE or VDDI and VSS.

- Handling of Unused Input Pins

Do not leave an unused input pin open since it may cause a malfunction. Handle by, for example, using a pullup or pull-down resistor.

- Power Supply Pins

If more than one VDDE or VDDI or VSS pin exists, those that must be kept at the same potential are designed to be connected to one other inside the device to prevent malfunctions such as latch-up. Be sure to connect the pins to a power supply and ground external to the device to minimize undesired electromagnetic radiation, prevent strobe signal malfunctions due to an increase in ground level, and conform to the total output current rating. Given consideration to connecting the current supply source to VDDE or VDDI and VSS pin of the device at the lowest impedance possible.
It is also recommended that a ceramic capacitor of around $0.1 \mu \mathrm{~F}$ be connected between VDDE or VDDI and VSS pin at circuit points close to the device as a bypass capacitor.

- Quartz Oscillation Circuit

Noise near the X0 or X1 pin may cause the device to malfunction. Design printed circuit boards so that $\mathrm{X} 0, \mathrm{X} 1$, the quartz oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as near to one another as possible.
It is strongly recommended that printed circuit board artwork that surrounds the X 0 and X 1 pins with ground be used to increase the expectation of stable operation.

Please ask the Oscillation maker to evaluate the oscillational characteristics of the crystal and this device.

- Mode Pins (MD0 to MD3)

In order to prevent mistakes due to noise, and sending them into test mode, connect these pins as close to VDDE and VSS pins, and at as low an impedance as possible.

- Tool Reset Pins (TRST)

Be sure to input the same signal as the INIT when this pin is not used for the tool. The same processing is executed for the mass product.

- Power-on

Immediately after power-on, be sure to apply setting initialization reset (INIT) with $\overline{\text { INIT }}$ pin.
Also immediately after power-on, keep the INIT pin at the "L" level until the oscillator has reached the required oscillation stabilization wait time. (For initialization by INIT from the INIT pin, the oscillation stabilization wait time is set to the minimum value.)

- Source Oscillation Input at Power-on

At power-on, be sure to input a source clock until the oscillation stabilization wait time is reached.

- Precautions at Power-On/Power-Off

- Precautions when turning on and off VDDI pin and VDDE pin

To ensure the reliability of LSI devices, do not continuously apply only VDDE pin for about a minute when VDDI is off.
When VDDE pin is changed from off to on, the power noise may make it impossible to retain the internal state of the circuit.

Power-on : Supply voltage of VDDI pin \rightarrow analog \rightarrow Supply voltage of VDDE pin \rightarrow signal
Power-off : Signal \rightarrow Supply voltage of VDDE pin \rightarrow analog \rightarrow Supply voltage of VDDI pin

- Indeterminate Output when the Power is Turned On

When turning on the power, the output pin may remain indeterminate until internal power supply becomes stable.

- Clocks
- Notes on using external clock

When the external clock is used, in principle, supply a clock signal to the X0 pin and an opposite-phase clock signal to the X1 pin at the same time. However, in this case the STOP mode (oscillation stop mode) must not be used (This is because, in the STOP mode, the X1 pin stops at "H" output).
Example of using an external clock is illustrated in the following figure.
Example of using external clock (normal)

The STOP mode (oscillation stop mode) cannot be used.

- Limitations

- Clock controller

Secure the stabilization wait time while " L " is input to $\overline{\mathrm{N} I T}$ pin.

- Bit search module

Only word access is permitted for data register for detection 0 (BSD0), data register for detection 1 (BSD1), and data register for change point detection (BSDC).

- I/O port

Only byte access is permitted for ports.

MB91305

- Low-power Consumption Mode

To switch to standby mode, use synchronous standby mode (set by the SYNCS bit, that is bit8 of the TBCR, timebase counter control register) and be sure to use the following sequence :
(LD1 \#value_of_stanby, R0)
(LD1 \#_STCR, R12)
STB R0, @R12 : Writing into the standby control register (STCR)
LDUB @R12, R0 : STCR read for synchronous standby
LDUB @R12, R0 : Dummy re-read of STCR
NOP : NOP $\times 5$ for timing adjustment
NOP
NOP
NOP
NOP

- When using the monitor debugger, do not:
- Set a break point within the above sequence of instructions.
- Step of the instructions within the above sequence of instructions.

- Prefetch

When allowing prefetch in the little endian area, only word access (32-bit) should be used to access the area. Byte access and halfword access are not working properly.

- Notes on using PS register

PS register is processed by some instructions in advance so that exception operations as stated below may cause breaks during interruption handling routine when using debugger and may cause updates to the display contents of PS flags.
In either case, this device is designed to carry out reprocessing properly after returning from such EIT events. The operations before and after EIT events are performed as prescribed in the specification.

1. The following operations may be performed when the instruction immediately followed by a DIVOV/DIVOS instruction is acceptance of a user interrupt/NMI, single-stepped, or breaks in response to an emulator menu.
(1) D0 and D1 flags are updated in advance.
(2) EIT handling routine (user interrupt/NMI, or emulator) is executed.
(3) After returning from the EIT, a DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as in (1) .
2. The following operations are performed if each instruction from ORCCR, STILM, MOV Ri, and PS is executed to allow an interruption while user interrupt/NMI trigger exists.
(1) PS register is updated in advance.
(2) EIT handling routine (user interrupt/NMI) is executed.
(3) After returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1).

- Watchdog Timer Function

The watchdog timer equipped in this model operates to monitor programs to ensure that they execute reset defer function within a certain period of time, and to reset the CPU if the reset defer function is not executed due to the program runaway. For that reason, once the watchdog timer function is enabled, it keeps its operation until it is reset.
By way of exception, the watchdog timer automatically defers a reset under the condition where the CPU program executions are stopped. For more detail, refer to the description section of the watchdog timer function in "Hardware Manual".
If the system gets out of control and the situation becomes as mentioned above, watchdog reset may not be generated. In that case, please reset (INIT) from the external INIT pin.

- Note on using A/D

The MB91305 has a built-in A/D converter. Do not supply a voltage higher than VDDE to the AVCC.

- Software reset in synchronous mode

When software reset in the synchronous mode is used, the following two conditions must be satisfied before setting the SRST bit of the STCR (standby control register) to 0 .

- Set the interrupt enable flag (I-Flag) to the interrupt disabled (I-Flag =0).
- Do not use NMI.
- Simultaneous occurrences of software break and user interrupt/NMI

If software break and user interrupt/NMI occur together, emulator debugger may:

- Stop at a point other than the programmed break points.
- Not reexecute properly after halting.

If such failures occur, use hardware break instead of software break. When using monitor debugger, do not set any break points within the corresponding instructions.

- Stepping of the RETI Instruction

In the environment where interruptions occur frequently during stepping, the RETI is executed repeatedly for the corresponding interrupt process routines after the stepping. As the result of it, the main routine and low interrupt- level programs are not executed. To avoid this situation, do not step the RETI instruction. Otherwise, perform debugging by disabling the interruptions when the debug on the corresponding interrupt routines becomes unnecessary.

- Operand Break

Do not set the access to the areas containing the address of stack pointer as a target of data event break.

- Sample Batch File for Configuration

When a program is downloaded to internal RAM to execute debug, be sure to execute the following batch file after reset.
\#-
\# Set MODR (0x7fd) = Enable In memory + 16-bit External Bus
set mem/byte $0 x 7 \mathrm{fd}=0 \times 5$
\#-

MB91305

BLOCK DIAGRAM

CPU AND CONTROL UNIT

Internal Architecture

The FR family is a high-performance core based on RISC architecture and advanced instructions for embedded applications.

1. Features

- RISC architecture used

Basic instruction : One instruction per cycle

- 32-bit architecture

General-purpose register : 32 bits $\times 16$

- 4G bytes linear memory space
- Multiplier installed

32-bit by 32-bit multiplication : 5 cycles
16 -bit by 16 -bit multiplication : 3 cycles

- Enhanced interrupt processing function

Quick response speed : 6 cycles
Support of multiple interrupts
Level mask function : 16 levels

- Enhanced instructions for I/O operations

Memory-to-memory transfer instruction
Bit-processing instructions

- Efficient code

Basic instruction word length : 16 bits

- Low-power consumption Sleep and stop modes
- Gear function

MB91305

2. Internal Architecture

The FR family CPU uses the Harvard architecture, which has separate buses for instructions and data. A 32bit $\leftrightarrow 16$-bit bus converter is connected to the 32 -bit bus (F-bus), providing an interface between the CPU and peripheral resources. A Harvard \leftrightarrow Princeton bus converter is connected to both the I-bus and D-bus, providing an interface between the CUP and bus controllers.

3. Programming Model

- Programming Model

General-purpose register					Initial value xxxxxxxxh
	$\left\{\begin{array}{c} \mathrm{R} 0 \\ \mathrm{R} 1 \\ \\ \ldots \\ \ldots \\ \mathrm{R} 12 \end{array}\right.$				
					...
					...
					...
	R13				\ldots
	R14				xxxx xxxx $^{\text {¢ }}$
	R15				00000000 H
Program counter	PC				
Program status	PS	ILM	SCR	CCR	
Table base register	TBR				
Return pointer	RP				
System stack pointer	SSP				
User stack pointer	USP				
Multiply and	MDH				
divide registers	MDL				

MB91305

4. Registers

- General-purpose Registers

Registers R0 to R15 are general-purpose registers. These registers are used as an accumulator in an operation or a pointer in a memory access.

Of these 16 registers, the following are intended for special applications and therefore enhanced instructions are provided for them :

- R13:

Virtual accumulator (AC)

- R14:

Frame pointer (FP)

- R15:

Stack pointer (SP)
The initial value upon reset is undefined for R0 through R14 and is "00000000h" (SSP value) for R15.

- PS (Program Status)

The program status register (PS : Program Status) holds the program status. The PS register consists of three parts : ILM, SCR, and CCR. All undefined bits are reserved. During reading, "0" is always read. Writing is disabled.

- CCR (Condition Code Register)

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value
-	-	S	1	N	Z	V	C	

S: Stack flag

- This bit is cleared to " 0 " by a reset.
- Set this bit to " 0 " when the RETI instruction is executed.

I : Interrupt enable flag
This bit is cleared to " 0 " by a reset.
N: Negative flag
The initial state of this bit upon reset is undefined.
Z : Zero flag
The initial state of this bit upon reset is undefined.
V : Overflow flag
The initial state of this bit upon reset is undefined.
C : Carry flag
The initial state of this bit upon reset is undefined.

- SCR (System Condition code Register)

bit10	bit9	bit8	Initial value
D1	D0	T	

D1, D0 : Step division flag
These bits hold the intermediate data obtained when step division is executed.
T : Step trace trap flag
This bit specifies whether the step trace trap is to be enabled.
The step trace trap function is used by an emulator. When an emulator is used, this function cannot be used in a user program.

- ILM (Interrupt Level Mask Register)

bit20
bit19
bit18
bit bit17 bit16 \quad Initial value

The interrupt level mask (ILM) register holds an interrupt level mask value. The value held in ILM register is used as a level mask.

This register is initialized to $15\left(01111_{\mathrm{B}}\right)$ by a reset.

MB91305

- PC (Program Counter)

The program counter indicates the address of the instruction being executed.
The initial value upon reset is undefined.

- TBR (Table Base Register)
\square
The table base register holds the first address of the vector table to be used during EIT processing.
The initial value upon reset is "000FFCOOH".

- RP (Return Pointer)

\square
The return pointer holds the return address from a subroutine.
When the CALL instruction is executed, the value of the PC is transferred to the RP.
When the RET instruction is executed, the contents of the RP are transferred to the PC.
The initial value upon reset is undefined.

- SSP (System Stack Pointer)

\square
The SSP is the system stack pointer.
This register is used as an R15 general-purpose register if the S flag of the condition code register (CCR) is " 0 ".
The SSP can also be specified explicitly.
This register is also used as a stack pointer that specifies a stack on which the contents of the PS and PC are to be saved if an EIT occurs.
The initial value upon reset is " 00000000 h ".

- USP (User Stack Pointer)

The USP is the user stack pointer.
This register is used as an R15 general-purpose register if the S flag of the condition code register (CCR) is " 1 ".
The USP can also be specified explicitly.
The initial value upon reset is undefined.
This register cannot be used by the RETI instruction.

- MDH/MDL (Multiply \& Divide register)

MDH and MDL are the multiply and divide registers. Each register is 32 bits long.
The initial value upon reset is undefined.

MB91305

MODE SETTINGS

For the FR family, set the operating mode using the mode pins (MD3, MD2, MD1 and MD0) and the mode register (MODR) .

1. Mode pins

Use the four mode pins (MD3, MD2, MD1, and MD0) to specify mode vector fetch. shows the specification related to the mode vector fetch.

Mode pin				Mode name	Reset vector access area	Remarks
MD3	MD2	MD1	MDO			
0	0	0	0	External ROM mode vector	External	With USB. Used at 48 MHz source oscillation.
0	0	1	0	External ROM mode vector	External	Without USB. Used at 16 MHz source oscillation.

Note : The setting other than that shown is prohibited. The single-chip mode is not supported.

2. Mode Register (MODR)

- Detailed explanation of the register

MODR Address 07FD	bit23	bit22	bit21	bit20	bit19	bit18	bit17	bit16	Initial value
	0	0	0	0	0	ROMA	WTH1	WTH0	
Operation mode setting bit									

Mode data is data written to the mode register by a mode vector fetch.
After setting to the mode register (MODR) is completed, perform with the operation mode according to this register.
The mode register is set by all reset sources. Accordingly, user program cannot write data to the mode register.

- Detailed explanation of the mode data.
- In the save way of the reset vector, set the mode vector in the vector area.
- Details of the mode data which sets to the mode vector is shown below.

Address FFFF8	bit31	bit30	bit29	bit28	bit27	bit26	bit25	bit24	Initial value
	0	0	0	0	0	ROMA	WTH1	WTHO	XXXXXXXXв
Operation mode setting bit									

[bit31 to bit27] Reserved bits
Be sure to set "00000в" to these bits.
Operation when value other than "00000B" is set cannot guarantee.
[bit26] ROMA (Internal ROM enable bit)
This bit sets whether to enable internal ROM areas.

ROMA	Function	Remarks
0	External ROM mode *	Internal F-bus region (40000 to 100000 H$)$ becomes an external region.
1	Internal ROM mode	Internal F-bus region $\left(4000 \mathrm{H}_{\mathrm{H}}\right.$ to 100000 H$)$ becomes access prohibited (setting disabled).

* : MB91305 does not contain internal ROM. Use as external ROM mode (setting ROMA = 0) .
[bit25, bit24] WTH1, WTH0 (Bus width specification bit)
Set the bus width specification in external bus mode.
This value is set by DBW1 and DBW0 bits of ACR0 (CS0 area) in the external bus mode.

WTH1	WTH0	Function	Remarks
0	0	8-bit bus width	External bus mode
0	1	16-bit bus width	External bus mode
1	0	32-bit bus width	External bus mode (setting disabled)
1	1	Single-chip mode *	Single-chip mode (setting disabled)

*: not supported.

Note : Mode data set in mode vector must be allocated to "0x000FFFF84" as a byte data. In the FR family, since big endian is used as byte endian, the data must be allocated to the most significant byte in bit31 to bit24 as shown below.

MB91305

MEMORY SPACE

1. Memory Space

The FR family has a logical address space of 4G bytes (2^{32} addresses) , which the CPU accesses linearly.

- Direct addressing area

The areas in the address space listed below are used for input-output.
These areas are called the direct addressing area. The address of an operand can be directly specified in an instruction.

The size of the direct addressing area varies according to the size of data to be accessed :

- Byte data access : 000н to 0FFн
- Halfword data access: 000н to 1 FF
- Word data access : 000н to 3FF

2. Memory Map

Note : Internal RAM area of the MB91305 is "0003 0000н" to "0003 FFFFн".

I/O MAP

Shows the correspondence between the memory space area and the peripheral resource registers.

Reading the table

Address	Register				Block
	+0	+1	+2	+3	
$\underset{\sim}{000000 \mathrm{H}}$	PDR0 [R/W] XKXXXXX	PDR1 [R/W] XXXXXXXX	PDR2 [R/W] XXXXXXXX	PDR3 [R/W] XXXXXXXX	T-unit Port Data Register
		Read/write attrib nitial value of Register name column 2 is at Leftmost regis column 1 of the	ute gister after res column 1 of the ddress $4 n+2$ r address (For register beco	register is at word-length a s the MSB of	4n, ta.)

Note : The initial value of bits in a register are indicated as follows :
" 1 ": Initial value " 1 "
" 0 ": Initial value " 0 "
" X " : Initial value " X "
"-" : A physical register does not exist at the location.

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} \hline 000000_{\mathrm{H}} \\ \text { to } \\ 00000 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	-	-	-	-	Reserved
000010 ${ }_{\text {H }}$	PDRO[R/W] XXXXXXXX	$\begin{aligned} & \text { PDR1[R/W] } \\ & \mathrm{XXXXXXXX} \end{aligned}$	PDR2[R/W] XXXXXXXX	PDR3[R/W] XXXXXXXX	R-bus Port Data Register
000014 ${ }_{\text {H }}$	PDR4[R/W] XXXXXXXX	$\begin{aligned} & \hline \text { PDR5[R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { PDR6[R/W] } \\ & \text {--XXXXXX } \end{aligned}$	PDR7[R/W] $--X X X X X X$	
000018 ${ }^{\text {H }}$	PDR8[R/W] XXXXXXX	PDR9[R/W] XXXXXXXX	PDRA[R/W]	PDRB[R/W] XXXXXXXX	
00001CH	PDRC[R/W] XXXXXXXX	$\begin{aligned} & \hline \text { PDRD[R/W] } \\ & \text {--XXXXXX } \end{aligned}$	$\begin{gathered} \hline \text { PDRE[R/W] } \\ \text {.----XXX } \end{gathered}$	PDRF[R/W] XXXXXXXX	
000020 ${ }^{\text {H }}$	$\begin{gathered} \text { ADCTH[R/W] } \\ \text { XXXXXX00 } \end{gathered}$	$\begin{gathered} \text { ADCTL[R/W] } \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \mathrm{ADCH}[\mathrm{R} / \mathrm{W}] \\ 000000000000000 \end{gathered}$		
000024	$\begin{gathered} \text { ADATO[R] } \\ \text { XXXXXX00 } 00000000 \end{gathered}$		ADAT1[R] XXXXXX00 00000000		
000028 +	ADAT2[R]$\text { XXXXXX00 } 00000000$		ADAT3[R] XXXXXX00 00000000		
00002CH	ADAT4[R] XXXXXX00 00000000		ADAT5[R] XXXXXX00 00000000		10-bit A/D converter
000030н	ADAT6[R]$\text { XXXXXX00 } 00000000$		ADAT7[R] XXXXXX00 00000000		
000034	ADAT8[R] XXXXXX00 00000000		ADAT9[R] XXXXXX00 00000000		
000038	TEST [R/W] 00000000	-	-	-	
00003CH	-	-	-	-	Reserved
000040 ${ }^{\text {H }}$	$\begin{gathered} \hline \text { HEIRRO [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ENIRO [R/W] } \\ 00000000 \end{gathered}$			External interrupt
000044	$\begin{gathered} \hline \text { DICR [R/W] } \\ \hline-----0 \end{gathered}$	$\begin{gathered} \hline \text { HRCL [R/W] } \\ 0--11111 \end{gathered}$			DLYI/I-unit
000048 ${ }^{\text {+ }}$	TMRLRO [W] XXXXXXXX XXXXXXXX		TMRO [R] XXXXXXXX XXXXXXXX		16-bit
00004CH	-		$\begin{aligned} & \text { TMCSR0 [R/W] } \\ & ----000000000000 \end{aligned}$		Reload Timer 0
000050н	TMRLR1 [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \text { TMR1 [R] } \\ X X X X X X X X X X X X X X \end{gathered}$		16-bit
000054	-		$\begin{aligned} & \text { TMCSR1 [R/W] } \\ & ---000000000000 \end{aligned}$		Reload Timer 1

(Continued)

Address	Register				Block
	+0	+1	+2	+3	
000058н	TMRLR2 [W] XXXXXXXX XXXXXXXX		TMR2 [R] XXXXXXXX XXXXXXXX		16-bit Reload Timer 2
00005Сн	-		$\begin{gathered} \hline \text { TMCSR2 [R/W] } \\ ----000000000000 \end{gathered}$		
000060н	SSRO [R/W] 00001000	SIDRO [R]/ SODRO [W] XXXXXXXX	$\begin{aligned} & \text { SCRO [R/W] } \\ & 00000100 \end{aligned}$	$\begin{aligned} & \text { SMRO [R/W] } \\ & 00--0-0- \end{aligned}$	UARTO
000064H	UTIM0 [R] (UTIMRO [W]) 0000000000000000		$\begin{gathered} \text { DRCLO }[\mathrm{W}] \\ ------- \end{gathered}$	$\begin{gathered} \hline \text { UTIMC0 [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 0
000068н	SSR1 [R/W] 00001000	SIDR1 [R]/ SODR1 [W] XXXXXXXX	$\begin{aligned} & \text { SCR1 [R/W] } \\ & 00000100 \end{aligned}$	$\begin{aligned} & \text { SMR1 [R/W] } \\ & 00--0-0- \end{aligned}$	UART1
$00006 \mathrm{CH}_{\text {H }}$	UTIM1 [R] (UTIMR1 [W]) 0000000000000000		DRCL1 [W]	UTIMC1 [R/W] 0--00001	U-TIMER 1
000070н	$\begin{aligned} & \text { SSR2 [R/W] } \\ & 00001000 \end{aligned}$	SIDR2 [R]/ SODR2 [W] XXXXXXXX	$\begin{aligned} & \text { SCR2 [R/W] } \\ & 00000100 \end{aligned}$	$\begin{aligned} & \text { SMR2 [R/W] } \\ & 00--0-0- \end{aligned}$	UART2
000074 ${ }_{\text {H }}$	UTIM2 [R] (UTIMR2 [W]) 0000000000000000		DRCL2 [W]	$\begin{gathered} \hline \text { UTIMC2 [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 2
000078н	$\begin{aligned} & \text { SSR3 [R/W] } \\ & 00001000 \end{aligned}$	SIDR3 [R]/ SODR3 [W] XXXXXXXX	SCR3 [R/W] 00000100	$\begin{aligned} & \text { SMR3 [R/W] } \\ & 00--0-0- \end{aligned}$	UART3
$00007 \mathrm{CH}_{\mathrm{H}}$	UTIM3 [R] (UTIMR3 [W]) 0000000000000000		DRCL3 [W]	$\begin{gathered} \hline \text { UTIMC3 [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 3
000080н	$\begin{aligned} & \text { SSR4 [R/W] } \\ & 00001000 \end{aligned}$	SIDR4 [R]/ SODR4 [W] XXXXXXXX	$\begin{aligned} & \text { SCR4 [R/W] } \\ & 00000100 \end{aligned}$	$\begin{aligned} & \text { SMR4 [R/W] } \\ & 00--0-0- \end{aligned}$	UART4
000084H	UTIM4 [R] (UTIMR4 [W]) 0000000000000000		DRCL4 [W]	$\begin{gathered} \text { UTIMC4 [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 4
000088н	-		-		Reserved
00008CH	-		-		
000090н	$\begin{gathered} \hline \text { PWCCL[R/W] } \\ 0000--00 \end{gathered}$	$\begin{gathered} \text { PWCCH[R/W] } \\ 00-00000 \end{gathered}$	-		PWC
000094H	PWCD[R] XXXXXXXX XXXXXXXX				
000098н	$\begin{gathered} \text { PWCC2[R/W] } \\ 000----- \end{gathered}$	Reserved			
00009С ${ }_{\text {H }}$	PWCUD[R] XXXXXXXX XXXXXXXX		-		

(Continued)

MB91305

Address	Register				Block
	+0	+1	+2	+3	
0000AOH	-		-		Reserved
0000A4н	-				
0000A8H	-		-		
0000ACH	-		-		
0000B0н	$\begin{gathered} \text { IFN0 [R] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { IFRNO [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { IFCRO [R/W] } \\ & 00-00000 \end{aligned}$	$\begin{gathered} \text { IFDR0 [R/W] } \\ 00000000 \end{gathered}$	$\mathrm{I}^{2} \mathrm{C}$ interface ch. 0
0000B44	$\begin{gathered} \hline \text { IBCR0 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { IBSR0 [R] } \\ & 00000000 \end{aligned}$	ITBAO [R, R/W] 0000000000000000		
0000B8н	$\begin{gathered} \hline \text { ITMK0 [R/W] } \\ 001111111111111 \end{gathered}$		$\begin{gathered} \hline \text { ISMKO [R/W] } \\ 01111111 \end{gathered}$	$\begin{gathered} \text { ISBA0 [R/W] } \\ 00000000 \end{gathered}$	
0000BCH	-	$\begin{gathered} \text { IDAR0 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ICCRO [R/W] } \\ 00011111 \end{gathered}$	-	
0000C0н	$\begin{gathered} \hline \text { IFN1 [R] } \\ 00000000 \end{gathered}$	IFRN1 [R/W] 00000000	$\begin{gathered} \text { IFCR1 [R/W] } \\ 00-00000 \end{gathered}$	IFDR1 [R/W] 00000000	$\mathrm{I}^{2} \mathrm{C}$ interface ch. 1
0000C4н	$\begin{gathered} \text { IBCR1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { IBSR1 [R] } \\ & 00000000 \end{aligned}$	ITBA1 [R, R/W] 0000000000000000		
0000С8н	$\begin{gathered} \hline \text { ITMK1 [R/W] } \\ 001111111111111 \end{gathered}$		$\begin{gathered} \hline \text { ISMK1 [R/W] } \\ 01111111 \end{gathered}$	$\begin{gathered} \text { ISBA1 [R/W] } \\ 00000000 \end{gathered}$	
0000СС ${ }_{\text {¢ }}$	-	$\begin{aligned} & \text { IDAR1 [R/W] } \\ & 00000000 \end{aligned}$	ICCR1 [R/W] 00011111	-	
0000D0н	$\begin{gathered} \hline \text { IFN2 [R] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IFRN2 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { IFCR2 [R/W] } \\ 00-00000 \end{gathered}$	$\begin{gathered} \text { IFDR2 [R/W] } \\ 00000000 \end{gathered}$	${ }^{12} \mathrm{C}$ interface ch. 2
0000D4н	$\begin{gathered} \text { IBCR2 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { IBSR2 [R] } \\ & 00000000 \end{aligned}$	ITBA2 [R, R/W] 0000000000000000		
0000D8н	$\begin{gathered} \text { ITMK2 [R/W] } \\ 001111111111111 \end{gathered}$		$\begin{gathered} \text { ISMK2 [R/W] } \\ 01111111 \end{gathered}$	$\begin{aligned} & \text { ISBA2 [R/W] } \\ & 00000000 \end{aligned}$	
0000DCH	-	$\begin{aligned} & \hline \text { IDA2R [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { ICCR2 [R/W] } \\ & 00011111 \end{aligned}$	-	
0000E0н	$\begin{gathered} \hline \text { IFN3 [R] } \\ 00000000 \end{gathered}$	IFRN3 [R/W] 00000000	$\begin{gathered} \hline \text { IFCR3 [R/W] } \\ 00-00000 \end{gathered}$	IFDR3 [R/W] 00000000	
0000E4н	$\begin{gathered} \text { IBCR3 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { IBSR3 [R] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ITBA } \\ & 000000 \end{aligned}$	R/W] 000000	
0000E8н	$\begin{array}{r} \text { ITM } \\ 001111 \end{array}$	$\begin{aligned} & 2 / W] \\ & 111111 \end{aligned}$	$\begin{gathered} \text { ISMK3 [R/W] } \\ 01111111 \end{gathered}$	$\begin{aligned} & \text { ISBA3 [R/W] } \\ & 00000000 \end{aligned}$	
0000ECH	-	$\begin{gathered} \text { IDAR3 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ICCR3 [R/W] } \\ 00011111 \end{gathered}$	-	
0000FOH	-	-	-	-	Reserved
0000F4н	$\begin{array}{r} \text { TCD } \\ 000000 \end{array}$	$\begin{aligned} & \text { /W] } \\ & 000000 \end{aligned}$	-	TCCS [R/W] 00000000	16-bit free-run timer

(Continued)

Address	Register				Block
	+0	+1	+2	+3	
0000F8н	IPCP1 [R] XXXXXXXX XXXXXXXX		IPCP0 [R] XXXXXXXX XXXXXXXX		16-bit input capture
0000FCH	IPCP3 [R] XXXXXXXX XXXXXXXX		IPCP2 [R] XXXXXXXX XXXXXXXX		
000100н	-	$\begin{gathered} \hline \text { ICS23 [R/W] } \\ 00000000 \end{gathered}$	-	$\begin{gathered} \hline \text { ICS01 [R/W] } \\ 00000000 \end{gathered}$	
000104	-	-	-	-	Reserved
000108н	-	-	-	-	
00010С ${ }_{\text {H }}$	-	-	-	-	
000110н	$\begin{gathered} \text { EIRR1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ENIR1 [R/W] } \\ 00000000 \end{gathered}$	ELVR1 [R/W] 0000000000000000		External interrupt
$\begin{gathered} 000114 \mathrm{H} \\ \text { to } \\ 00011 \mathrm{FH} \end{gathered}$	-		-		Reserved
000120н	$\begin{gathered} \text { PTMRO [R] } \\ 111111111111111 \end{gathered}$		$\begin{gathered} \text { PCSR0 [W] } \\ X X X X X X X X X X X X X \end{gathered}$		PPG0
000124H	PDUTO [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \hline \text { PCNHO [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNLO [R/W] } \\ 00000000 \end{gathered}$	
000128	$\begin{gathered} \text { PTMR1 [R] } \\ 111111111111111 \end{gathered}$		PCSR1 [W] XXXXXXXX XXXXXXXX		PPG1
00012CH	PDUT1 [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \hline \text { PCNH1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL1 [R/W] } \\ 00000000 \end{gathered}$	
000130н	$\begin{gathered} \text { PTMR2 [R] } \\ 111111111111111 \end{gathered}$		$\begin{gathered} \text { PCSR2 [W] } \\ X X X X X X X X X X X \end{gathered}$		PPG2
00134н	PDUT2 [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \hline \text { PCNH2 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL2 [R/W] } \\ 00000000 \end{gathered}$	
000138	PTMR3 [R]111111111111111		PCSR3[W] XXXXXXXX XXXXXXXX		PPG3
00013CH	PDUT3 [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \text { PCNH3 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PCNL3 [R/W] } \\ 00000000 \end{gathered}$	
$\begin{gathered} 000140 \mathrm{H} \\ \text { to } \\ 0001 \text { FС } \end{gathered}$	-				Reserved
000200н	DMACA0 [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				DMAC
000204H	DMACB0 [R/W]00000000000000000000000000000000				

(Continued)

MB91305

Address	Register				Block
	+0	+1	+2	+3	
000208н	DMACA1 [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				DMAC
00020Сн	DMACB1 [R/W]00000000000000000000000000000000				
000210н	DMACA2 [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
000214H	DMACB2 [R/W]00000000000000000000000000000000				
000218н	DMACA3 [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
00021拓	DMACB3 [R/W]00000000000000000000000000000000				
000220н	DMACA4 [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
000224H	DMACB4 [R/W]00000000000000000000000000000000				
000228н	-				
$\begin{gathered} \hline 00022 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 00023 \mathrm{C}_{\mathrm{H}} \end{gathered}$	-				
000240н	DMACR [R/W] $0 \times X 00000$ XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{gathered} \text { 000244н } \\ \text { to } \\ 0002 \mathrm{FC} \end{gathered}$	-				Reserved
000304H	-	-	-	$\begin{gathered} \text { ISIZE[R/W] }----10 \end{gathered}$	I-Cache
$\begin{gathered} \hline 000308 \mathrm{H} \\ \text { to } \\ 0003 \mathrm{E} 0_{\mathrm{H}} \end{gathered}$	-	-	-	-	Reserved
0003E4н	-	-	-	$\begin{gathered} \text { ICHCR[R/W] } \\ 0-000000 \end{gathered}$	I-Cache
0003Е8н to 0003EC	-	-	-	-	Reserved

(Continued)

(Continued)

MB91305

Address	Register				Block
	+0	+1	+2	+3	
00045Сн	$\begin{gathered} \hline \text { ICR28 [R/W] } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR29 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR30 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR31 [R/W] } \\ ---11111 \end{gathered}$	Interrupt Controller
000460н	$\begin{gathered} \hline \text { ICR32 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR33 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR34 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR35 [R/W] } \\ ---11111 \end{gathered}$	
000464н	$\begin{gathered} \hline \text { ICR36 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39 [R/W] } \\ ---11111 \end{gathered}$	
000468н	$\begin{gathered} \text { ICR40 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR41 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR42 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR43 [R/W] } \\ ---11111 \end{gathered}$	
00046С ${ }_{\text {н }}$	$\begin{gathered} \hline \text { ICR44 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR45 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR46 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47 [R/W] } \\ ---11111 \end{gathered}$	
$\begin{gathered} \hline 000470_{\mathrm{H}} \\ \text { to } \\ 00047 \mathrm{CH}_{\mathrm{H}} \end{gathered}$	-				Reserved
000480н	$\begin{aligned} & \hline \text { RSRR [R/W] } \\ & 10000000 \div 2 \end{aligned}$	$\begin{aligned} & \hline \text { STCR [R/W] } \\ & 00110011 * 2 \end{aligned}$	$\begin{aligned} & \hline \text { TBCR [R/W] } \\ & 00 X X X X 00{ }^{11} \end{aligned}$	CTBR [W] XXXXXXXX	Clock Control
000484н	$\begin{aligned} & \hline \text { CLKR [R/W] } \\ & 00000000{ }^{* 1} \end{aligned}$	WPR [W] XXXXXXXX	DIVR0 [R/W] $00000011^{\text {¹ }}$	$\begin{aligned} & \hline \text { DIVR1[R/W] } \\ & 00000000 * 1 \end{aligned}$	
000488н	-	-	-	-	Reserved
00048Сн	-	-	-	-	
000490н	-	-	-	-	
000494н to $0005 \mathrm{FCH}_{\mathrm{H}}$	-				
$\begin{gathered} \hline 000600_{\mathrm{H}} \\ \text { to } \\ 00063 \mathrm{FH}_{\mathrm{H}} \end{gathered}$	-				
000640н	ASRO [R/W]$0000000000000000 *$		ACRO [R/W]111 XX00 $00000000 *$		T-unit
000644н	ASR1 [R/W] XXXXXXXX XXXXXXXX * ${ }^{*}$		ACR1 [R/W] XXXXXXXX XXXXXXXX *		
000648н	ASR2 [R/W] XXXXXXXX XXXXXXXX * ${ }^{*}$		ACR2 [R/W] XXXXXXXX XXXXXXXX *		
00064Сн	ASR3 [R/W] XXXXXXXX XXXXXXXX *		ACR3 [R/W] XXXXXXXX XXXXXXXX *		
000650н	ASR4 [R/W] XXXXXXXX XXXXXXXX * ${ }^{*}$		ACR4 [R/W] XXXXXXXX XXXXXXXX *		
000654н	ASR5 [R/W] XXXXXXXX XXXXXXXX*		ACR5 [R/W] XXXXXXXX XXXXXXXX*		
000658н	ASR6 [R/W] XXXXXXXX XXXXXXXX *		ACR6 [R/W] XXXXXXXX XXXXXXXX *		

(Continued)

Address	Register				Block
	+0	+1	+2	+3	
00065Сн	ASR7 [R/W] XXXXXXXX XXXXXXXX *		ACR7 [R/W] XXXXXXXX XXXXXXXX ${ }^{*}$		T-unit
000660н	AWRO [R/W] $0111111111111111^{* 1}$		AWR1 [R/W] XXXXXXXX XXXXXXXX *		
000664	AWR2 [R/W] XXXXXXXX XXXXXXXX *		AWR3 [R/W] XXXXXXXX XXXXXXXX *		
000668н	AWR4 [R/W] XXXXXXXX XXXXXXXX ${ }^{* 1}$		AWR5 [R/W] XXXXXXXX XXXXXXXX ${ }^{*}$		
00066Сн	AWR6 [R/W] XXXXXXXX XXXXXXXX *		AWR7 [R/W] XXXXXXXX XXXXXXXX*		
000670н	MCRA [R/W] XXXXXXXX	MCRB [R/W] XXXXXXXX	-	-	
000674H	-				
000678н	IOWRO [R/W] XXXXXXXX	IOWR1 [R/W] XXXXXXXX	IOWR2 [R/W] $X X X X X X X X$	-	
00067С ${ }_{\text {H }}$	-				
000680н	$\begin{aligned} & \hline \text { CSER [R/W] } \\ & 00000001 \end{aligned}$	CHER [R/W] 11111111	-	TCR [R/W] 00000000	
000684н	RCR [R/W] 00XXXXXX XXXX0XXX		-	-	
$\begin{gathered} 000688 \mathrm{H} \\ \text { to } \\ 0007 \mathrm{~F} 8 \mathrm{H} \end{gathered}$					Reserved
0007FCн	-	MODR [W] XXXXXXXX	-	-	-
					Reserved
000B00н	$\begin{gathered} \text { ESTSO [R/W] } \\ \text { X0000000 } \end{gathered}$	$\begin{aligned} & \text { ESTS1 [R/W] } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{gathered} \text { ESTS2 [R] } \\ \text { 1XXXXXXX } \end{gathered}$	-	
000B04н	$\begin{gathered} \text { ECTLO [R/W] } \\ 0 \times 000000 \end{gathered}$	$\begin{gathered} \text { ECTL1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { ECTL2 [W] } \\ & 000 \times 0000 \end{aligned}$	$\begin{gathered} \hline \text { ECTL3 [R/W] } \\ 00 \times 00 \times 11 \end{gathered}$	
000B08н	ECNTO [W] XXXXXXXX	ECNT1 [W] XXXXXXXX	EUSA [W] XXX00000	EDTC [W] 0000XXXX	DSU
000В0Сн	$\begin{array}{r} \text { EV } \\ 0000000 \end{array}$	$\begin{aligned} & {[\mathrm{R}]} \\ & \mathrm{p} 000000 \end{aligned}$			
000B10н	$\begin{array}{r} \mathrm{EDT} \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & \hline[W] \\ & X X X X X X X \end{aligned}$	$\begin{array}{r} \mathrm{EDT} \\ \mathrm{XXXXXXX} \end{array}$	$\begin{aligned} & \hline[W] \\ & X X X X X X X \end{aligned}$	

(Continued)

MB91305

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} \hline 000 \mathrm{~B} 14 \mathrm{H} \\ \text { to } \\ 000 \mathrm{~B} 1 \mathrm{C}_{\mathrm{H}} \end{gathered}$					DSU
000B20н					
000B24н	EIA1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B28н					
000B2CH	EIA3 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B30н	EIA4 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B34н					
000B38н					
000B3CH	EIA7 [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B40н					
000B44н	EDTM [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B48н					
000B4CH	EOA1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B50н	EPCR [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B54н	EPSR [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B58H					
000B5CH	EIAM1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B60 ${ }^{\text {¢ }}$	EOAM0/EODM0 [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B64н					

(Continued)

(Continued)

*1: Register whose initial value depends on the reset level. The registers at the INIT level are indicated.
*2 : Register whose initial value depends on the reset level. The registers at the INIT level due to the INIT pin are indicated.

MB91305

(Continued)
(Continued)

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} \hline 0006007 \mathrm{H}_{\mathrm{H}} \\ \text { to } \\ 0006007 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	-				USB Function
$\begin{gathered} \hline 00060080 \text { н } \\ \text { to } \\ 0006 \text { FFFBн } \end{gathered}$	-				Reserved
0006FFFCH	-	-	$\begin{aligned} & \hline \text { USBRST } \\ & \text {-0------- } \end{aligned}$	-	USB reset

INTERRUPT SOURCE TABLE

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	Resource number
	Decimal	Hexadecimal				
Reset	0	00	-	3FCH	000FFFFFCH	-
Mode vector	1	01	-	3F8н	000FFFF8\%	-
Reserved for system	2	02	-	3F4H	000FFFFF4н	-
Reserved for system	3	03	-	3FOH	000FFFFFOH	-
Reserved for system	4	04	-	3ЕСн	000FFFEECH	-
Reserved for system	5	05	-	3Е8н	000FFFE8\%	-
Reserved for system	6	06	-	3E4н	000FFFE4 ${ }_{\text {¢ }}$	-
No-coprocessor trap	7	07	-	3Е0н	000FFFEEO	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-
INTE instruction	9	09	-	3D8H	000FFFD8н	-
Instruction break exception	10	0A	-	3D4H	000FFFDD4	-
Operand break trap	11	OB	-	3D0H	000FFFDD ${ }_{\text {H }}$	-
Step trace trap	12	OC	-	3СС	000FFFCCC	-
NMI request (tool)	13	OD	-	3С8н	000FFFCC8	-
Undefined instruction exception	14	OE	-	3C4H	000FFFCC4	-
NMI request	15	OF	$\begin{aligned} & 15 \text { (FH) } \\ & \text { fixed } \end{aligned}$	3С0н	000FFFCCOH	-
External interrupt 0	16	10	ICR00	3BCH	000FFFFBC ${ }_{\text {н }}$	-
External interrupt 1	17	11	ICR01	3В8н	000FFFB88	-
External interrupt 2	18	12	ICR02	3B4н	000FFFB44	-
External interrupt 3	19	13	ICR03	3В0н	000FFFBB0н	-
External interrupt 4 (USB-function)	20	14	ICR04	ЗАСн	000FFFACH	-
External interrupt 5	21	15	ICR05	3А8н	000FFFA8 ${ }^{\text {¢ }}$	-
External interrupt 6	22	16	ICR06	3A4н	000FFFA4 ${ }_{\text {¢ }}$	-
External interrupt 7	23	17	ICR07	3A0н	000FFFAOH	-
Reload timer 0	24	18	ICR08	39 CH	000FFFF9CH	8
Reload timer 1	25	19	ICR09	398н	000FFF988	9
Reload timer 2	26	1A	ICR10	394	000FFF944	10
UART0 (Reception completed)	27	1B	ICR11	390н	000FFF90Н	0
UART1 (Reception completed)	28	1 C	ICR12	38 CH	000FFFF8C ${ }_{\text {H }}$	1
UART2 (Reception completed)	29	1D	ICR13	388н	000FFF888	2
UART0 (Transmission completed)	30	1E	ICR14	384н	000FFF844	3
UART1 (Transmission completed)	31	1F	ICR15	380н	000FFF80Н	4

(Continued)

MB91305

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	Resource number
	Decimal	Hexadecimal				
UART2 (Transmission completed)	32	20	ICR16	37С	000FFF77 ${ }_{\text {н }}$	5
DMAC0 (end or error)	33	21	ICR17	378 ${ }^{\text {¢ }}$	000FFF78 ${ }_{\text {\% }}$	-
DMAC1 (end or error)	34	22	ICR18	374	000FFF74	-
DMAC2 (end or error)	35	23	ICR19	370н	000FFF70н	-
DMAC3 (end or error)	36	24	ICR20	36 CH	000FFF6CH	-
DMAC4 (end or error)	37	25	ICR21	368н	000FFF68	-
A/D	38	26	ICR22	364	000FFF64	-
PPG0	39	27	ICR23	360н	000FFF60н	-
PPG1	40	28	ICR24	35 CH	000FFF5CH	-
PPG2	41	29	ICR25	358н	000FFF58\%	-
PPG3	42	2A	ICR26	354	000FFF54н	-
PWC	43	2B	ICR27	350н	000FFF50н	-
External interrupt 8/U-TIMER0	44	2C	ICR28	34 CH	000FFF4CH	-
External interrupt 9/U-TIMER1	45	2D	ICR29	348H	000FFF48 ${ }^{\text {¢ }}$	-
External interrupt 10/U-TIMER2	46	2E	ICR30	344 ${ }^{\text {H }}$	000FFF44н	-
Timebase timer overflow / U-TIMER3	47	2F	ICR31	340н	000FFF40н	-
External interrupt 11/U-TIMER4	48	30	ICR32	$33 \mathrm{CH}_{4}$	000FFF3CH	-
16-bit free-run timer	49	31	ICR33	338 ${ }^{\text {¢ }}$	000FFF38н	-
$\mathrm{I}^{2} \mathrm{C}$ ch. 0	50	32	ICR34	334	000FFF34	-
${ }^{2} \mathrm{C}$ ch. 1	51	33	ICR35	330н	000FFF30н	-
${ }^{2} \mathrm{C}$ ch. 2	52	34	ICR36	32 CH	000FFF2CH	-
${ }^{2} \mathrm{C}$ ch. 3	53	35	ICR37	328н	000FFF28н	-
UART3 (Reception completed)	54	36	ICR38	324	000FFF24	-
UART4 (Reception completed)	55	37	ICR39	320н	000FFF20н	-
UART3 (Transmission completed)	56	38	ICR40	$31 \mathrm{CH}_{\text {H }}$	000FFF1账	-
UART4 (Transmission completed)	57	39	ICR41	318н	000FFF18н	-
External interrupt 12/Input capture 0	58	3A	ICR42	314 ${ }^{\text {H }}$	000FFF14 ${ }_{\text {¢ }}$	-
External interrupt 13/Input capture 1	59	3B	ICR43	310н	000FFFF10н	-
External interrupt 14/Input capture 2	60	3C	ICR44	30 CH	000FFFOCH	-
External interrupt 15/Input capture 3	61	3D	ICR45	308н	000FFF08н	-
Reserved for system	62	3E	ICR46	304	000FFF04н	-
Delayed interrupt source bit	63	3F	ICR47	300 H	000FFF00н	-

(Continued)

MB91305

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	Resource number
	Decimal	Hexadecimal				
Reserved for system (used by REALOS)	64	40	-	2FCH	000FFEFF\%	-
Reserved for system (used by REALOS)	65	41	-	2F8н	000FFEF8H	-
Reserved for system	66	42	-	2F4H	000FFEF4H	-
Reserved for system	67	43	-	2F0н	000FFEFOH	-
Reserved for system	68	44	-	2ECH	000FFEECH	-
Reserved for system	69	45	-	2Е8н	000FFEE8н	-
Reserved for system	70	46	-	2E4 ${ }^{\text {¢ }}$	000FFEE4н	-
Reserved for system	71	47	-	2Е0н	000FFEEOH	-
Reserved for system	72	48	-	2DCH	000FFEDCH	-
Reserved for system	73	49	-	2D8н	000FFED8н	-
Reserved for system	74	4A	-	2D4 ${ }^{\text {¢ }}$	000FFED4	-
Reserved for system	75	4B	-	2D0н	000FFEDOн	-
Reserved for system	76	4 C	-	2ССн	000FFECCH	-
Reserved for system	77	4D	-	2С8н	000FFEC8 ${ }_{\text {н }}$	-
Reserved for system	78	4E	-	2C4H	000FFEC4	-
Reserved for system	79	4F	-	2 COH	000FFECOH	-
Used in INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BCH} \\ \text { to } \\ 00 \mathrm{H}_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { O00FFEBCH } \\ & \text { to } \\ & 000 \text { FFC00н } \end{aligned}$	-

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	VDDE	Vss -0.5	Vss +4.0	V	*2
Power supply voltage (Internal) *1	Vodi	Vss -0.5	Vss +2.2	V	*2
Analog power supply voltage*1	AVcc	Vss -0.5	Vss +4.0	V	* 3
Analog reference voltage*1	$\mathrm{AV}_{\text {RH }}$	Vss - 0.5	Vss +4.0	V	*3
Input voltage*1	V_{1}	Vss -0.3	$V_{\text {die }}+0.3$	V	
Analog pin input voltage*1	VIA	Vss -0.3	AV cc +0.3	V	
Output voltage*1	Vo	Vss - 0.3	AV cc +0.3	V	
"L" level maximum output current	loL	-	10	mA	*4
"L" level average output current	lolav	-	4	mA	*5
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	*6
"H" level maximum output current	Іон	-	-10	mA	* 4
"H" level average output current	lohav	-	-4	mA	*5
"H" level total maximum output current	इloh	-	-50	mA	
"H" level total average output current	Elohav	-	-20	mA	*6
Power consumption	PD	-	750	mW	
Operating temperature	Ta	-10	+70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-	+150	${ }^{\circ} \mathrm{C}$	

*1 : This parameter is based on $A V_{s s}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}$.
*2 : Vode must not be lower than $\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$.
*3 : Be careful not to exceed $V_{D D E}+0.3 \mathrm{~V}$, for example, when power is turned on.
*4 : Maximum output current determines the peak value of any one of corresponding pins.
*5 : Average output current is defined as the value of the average current flowing over 100 ms at any one of the corresponding pins.
*6 : Average total output current is defined as the value of the average current flowing over 100 ms at all of the corresponding pins.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91305

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vdoe	3.0	3.6	V	
	VDDI	1.65	1.95	V	
Analog power supply voltage	AVcc	Vss - 0.3	Vss +3.6	V	
Analog reference voltage	$\mathrm{AV}_{\text {RH }}$	AVss	AVcc	V	
Operating temperature	Ta	- 10	+70	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(1) CPU
$\left(\mathrm{V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} \mathrm{DDE}=\mathrm{AV} \mathrm{Cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}\right.$ Ss $=\mathrm{AV}$ Ss $=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	V_{H}	D31 to D16	-	$0.7 \times$ VDDE	-	Vdde +0.3	V	
	Vhis	Input ports except for D31 to D16	-	$0.8 \times \mathrm{V}$ die	-	Vdde +0.3	V	Hysteresis input
"L" level input voltage	VIL	D31 to D16	-	Vss		$0.25 \times \mathrm{V}$ DDE	V	
	Vıs	Input ports except for D31 to D16	-	Vss	-	$0.2 \times \mathrm{VdDE}$	V	Hysteresis input
"H" level output voltage	Vон	All output pins	$\begin{aligned} & \mathrm{VDDE}=3.0 \mathrm{~V} \\ & \mathrm{IOH}=-4.0 \mathrm{~mA} \end{aligned}$	Vdde - 0.5	-	Vdde	V	
"L" level output voltage	Vol	All output pins	$\begin{aligned} & \mathrm{V}_{\mathrm{DDE}}=3.0 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	Vss	-	0.4	V	
Input leak current (High-Z output Leakage current)	IL	All input pins	$\begin{array}{\|l} V_{D D E}=3.6 \mathrm{~V} \\ 0.45 \mathrm{~V}<\mathrm{V}_{1}< \\ \mathrm{V}_{\mathrm{DDE}} \end{array}$	-5	-	+5	$\mu \mathrm{A}$	
Pull-up resistance	Rup	*1	$\begin{aligned} & \hline \mathrm{VDE}=3.6 \mathrm{~V} \\ & \mathrm{VI}=0.45 \mathrm{~V} \end{aligned}$	12	25	100	$\mathrm{k} \Omega$	
Pull-down resistance	Roown	*2	$\begin{aligned} & \mathrm{VDDE}=3.6 \mathrm{~V} \\ & \mathrm{VI}=3.3 \mathrm{~V} \end{aligned}$	12	25	100	$\mathrm{k} \Omega$	
Power supply current	Icc	VDDE, VDDI	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=16.5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DDE}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \end{aligned}$	-	120	180	mA	(Multiply by 4) When operating at 66 MHz
	Iccs		$\begin{aligned} & \hline \mathrm{fc}=16.5 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DDE}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \end{aligned}$	-	60	90	mA	at sleep
	Icch		$\begin{aligned} & \hline \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V} D \mathrm{~V}=3.3 \mathrm{~V} \\ & \mathrm{VDD}=1.8 \mathrm{~V} \end{aligned}$	-	200	1000	$\mu \mathrm{A}$	at stop
Input capacitance	Сıн	Other than VDDE, VSS AVCC and AVSS	-	-	10	-	pF	

*1 : Pins that the I/O circuit type is B and G
*2 : Pins that the I/O circuit type is J

MB91305

(2) USB
[1] DC characteristics

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон	-	Іон $=-100 \mu \mathrm{~A}$	Vdde - 0.2	-	Vdde	V	
"L" level output voltage	Voı	-	$\mathrm{loL}=100 \mu \mathrm{~A}$	0	-	0.2	V	
"H" level output voltage	Іон	-	Full Speed $\mathrm{V}_{\text {OH }}=\mathrm{V}_{\text {DDE }}-0.4 \mathrm{~V}$	-20	-	-	mA	
		-	Low Speed $\mathrm{V}_{\text {OH }}=\mathrm{V}_{\text {DDE }}-0.4 \mathrm{~V}$	-6	-	-		
"L" level output voltage	loL	-	Full Speed $\mathrm{VoL}=0.4 \mathrm{~V}$	20	-	-	mA	
		-	Low Speed $\mathrm{Vol}=0.4 \mathrm{~V}$	6	-	-		
Output ShortCircuit Current	los	-	-	-	-	300	mA	*1
Input leak current	ILz	-	-	-	-	± 5	$\mu \mathrm{A}$	*2

*1 : < Output Short Circuit Current los >
The output short circuit current los is the maximum current that flows when the output pin is connected to VDDE or VSS pin (within the maximum rating).
Output Short Circuit Current : The output short circuit current's value is the short-circuit current value of one terminal in one side of the differential output terminal. As this USB I/O buffer is a differential output, consider both of the pins.

*2 : < Z leak current lız measurement >
The leak current when VDDE or Vss potential is impressed to bi-directional pin at high-impedance state of USB I/O buffer is the input leak current Ilz.

MB91305

[2] DC Characteristics
Conform to USB Specification Revision 1.1

$$
\left(\mathrm{V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} \text { DDE }=\mathrm{AV} \mathrm{CC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \text { SS }=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Value		Unit	Remarks	
		Min	Max				
Input Levels	High (driven)		VIH	2.0	-	V	*1
	Low	VIL	-	0.8	V	*1	
	Differential Input Sensitivity	Voi	0.2	-	V	*2	
	Common Mode Range	Vcm	0.8	2.5	V	*2	
Output Levels	Low	VoL	0.0	0.3	V	*3	
	High (driven)	Vон	2.8	3.6	V	*3	
	Differential Output Signal Voltage	V ${ }_{\text {crs }}$	1.3	2.0	V	* 4	
Terminations	Bus Pull-Up Resistor on Upstream Port	Rpu	1.425	1.575	$\mathrm{k} \Omega$	$1.5 \mathrm{k} \Omega \pm 5 \%$	
	Bus Pull-Down Resistor on Downstream Port	Rpd	1.425	1.575	$\mathrm{k} \Omega$	$1.5 \mathrm{k} \Omega \pm 5 \%$	
	Termination Voltage for Upstream Port Pull-Up	$\mathrm{V}_{\text {term }}$	3.0	3.6	V	*5	

${ }^{* 1}$: < Input Levels $\mathrm{V}_{\mathbb{H}}$ and V_{IL} >
The switching-threshold voltage of the single-end-receiver in USB I/O buffer is set within the following range; VIL $(\mathrm{Max})=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}(\mathrm{Min})=2.0 \mathrm{~V}$ (TTL input standard).
And, to fall the noise sensitivity, a little hysteresis is set.

*2 : < Input Levels Voiand Vсm >

Reception of the USB differential data signal uses the differential-receiver.
The differential input sensitivity of the differential-receiver is 200 mV , when the difference voltage between the differrential data input and local ground reference level is the following ranges; 0.8 V to 2.5 V .
The voltage range above is called the common ${ }^{2}$ mode input voltage range.

*3: < Output Levels VoL and Voн >
The driver's output driving ability is set to following;

- at low state (VoL) : less than 0.3 V (vs. $3.6 \mathrm{~V}, 1.5 \mathrm{k} \Omega$ load)
- at high state (Vон) : more than 2.8 V (vs. ground, $1.5 \mathrm{k} \Omega$ load)

*4: < Output Levels Vcrs >

The cross voltage of the external differrencial output signal (D+/D-) in USB buffer is from 1.3 V to 2.0 V .
\square
*5: < Terminations VTerm >
Pull-up voltage for the upstream port is shown.

MB91305

4. AC Characteristics

(1) Clock timing ratings

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Clock frequency (1)	$f \mathrm{c}$	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	-	37.5	48	MHz	Using PLL*1
				12.5	16	MHz	
Clock cycle time	tc	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		-	20.8	ns	
				-	62.5	ns	
Clock frequency (2)	$f \mathrm{c}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		10	50	MHz	Self-oscillation (1/2 division input)
Clock frequency (3)	$f \mathrm{c}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		10	50	MHz	
Clock cycle time	tc	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	-	40	100	ns	At external clock
Input clock pulse width	$\begin{aligned} & \hline \text { Pwh } \\ & \text { PwL } \end{aligned}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		16	-	ns	
Input clock rise time and fall time	$\begin{aligned} & \text { tcr } \\ & \text { tcc } \end{aligned}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		-	8	ns	tcr + tcF
Internal operating clock frequency	fcp	-	-	3.125*2	64	MHz	CPU
	fcpp			3.125^{*}	32	MHz	Peripheral
	fcpt			3.125*2	32	MHz	External bus
Internal operating clock cycle time	tcp	-	-	15.6	1280*2	ns	CPU
	tcpp			31.2	1280*2	ns	Peripheral
	tcpt			31.2	1280*2	ns	External bus

*1: This value is as follows;

- With USB function (MD pin = 00008) $: 37.5 \mathrm{MHz}$ to 48 MHz And using USB: fixed to 48 MHz (operation at a maximum internal speed of 64 MHz by quadrupling a self-oscillation frequency of 48 MHz via PLL of divided by 3.)
- Without USB function (MD pin = 0010в) : 12.5 MHz to 16 MHz
(operation at a maximum internal speed of 64 MHz by quadrupling a self-oscillation frequency of 16 MHz via PLL.)
*2: The values shown represent a minimum clock frequency of 12.5 MHz input at the X 0 pin, using the oscillation circuit PLL and a gear ratio of $1 / 16$.
$12.5[\mathrm{MHz}] \times 4$ (multiply) $\times 1 / 16($ gear $1 / 16)=3.125[\mathrm{MHz}]$
- Conditions for measuring the clock timing ratings

- Operation Assurance Range

MB91305

- External/internal clock setting range

Notes : • When the PLL is used, the external clock input must fall between 12.5 MHz and 16.5 MHz .
- Set the PLL oscillation stabilization wait time longer than $500 \mu \mathrm{~s}$.
- The internal clock gear setting should not exceed the relevant value in the table in (1) "Clock timing ratings".

(2) Clock output timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	toyc	$\begin{gathered} \hline \text { MCLK } \\ \text { SYSCLK } \end{gathered}$	-	tcpt	-	ns	*1
$\begin{aligned} & \text { MCLK (SYSCLK) } \uparrow \\ & \overrightarrow{M C L K}(\text { SYSCLK }) \downarrow \end{aligned}$	tchcı	MCLK SYSCLK		$1 / 2 \times$ tcyc -3	$1 / 2 \times \operatorname{tcyc}+3$	ns	*2
$\begin{aligned} & \text { MCLK (SYSCLK) } \downarrow \\ & \overrightarrow{M C L K}(\text { SYSCLK }) \uparrow \end{aligned}$	tclcl	$\begin{gathered} \text { MCLK } \\ \text { SYSCLK } \end{gathered}$		$1 / 2 \times \operatorname{tcyc}-3$	$1 / 2 \times \operatorname{tcyc}+3$	ns	*3

*1: tcyc is the frequency of one clock cycle after gearing.
*2 : The following ratings are for the gear ratio set to 1 .
For the ratings when the gear ratio is set to between $1 / 2,1 / 4$ and $1 / 8$, substitute $1 / 2,1 / 4$ or $1 / 8$ for n in the following equation.

$$
\text { tchcL }=(1 / 2 \times 1 / n) \times \operatorname{tcyc}-10
$$

*3 : The following rating are for the gear ratio set to 1 .

MB91305

(3) Reset and hardware standby input ratings

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
INIT input time (at power-on)	tintı	$\overline{\text { INIT }}$	-	*	-	ns	
INIT input time (other than at power-on)				tcp $\times 5$	-	ns	

*: INIT input time (at power-on)
FAR resonator, ceramic oscillator : $\phi \times 2^{15}$ or greater recommended
Crystal : $\phi \times 2^{21}$ or greater recommended
$\phi:$ Power on $\rightarrow \mathrm{X0} / \mathrm{X} 1$ period $\times 2$

(4-1) Normal bus access read/write operation

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
$\begin{array}{\|l} \hline \overline{\mathrm{CSO}} / \overline{\mathrm{CS} 1} / \overline{\mathrm{CS} 4} / \overline{\mathrm{CS5} /} \\ \hline \mathrm{CS6} / \mathrm{CS} \text { setup } \\ \hline \end{array}$	tcstch	$\frac{\text { MCLK/SYSCLK }}{\text { CS0 to }}$		3	-	ns	
$\begin{aligned} & \overline{\mathrm{CS0}} / \overline{\mathrm{CS1}} / \overline{\mathrm{CS4}} / \overline{\mathrm{CS5} /} \\ & \hline \mathrm{CS6} / \mathrm{CS7} \text { hold } \end{aligned}$	tcshch			3	tcyc / $2+6$	ns	
Address setup	tasch	MCLK/SYSCLK A23 to A0		3	-	ns	
Address hold	tchax			3	toyc / $2+6$	ns	
Valid address \rightarrow Valid data input time	tavov	$\begin{gathered} \hline \text { A23 to A0 } \\ \text { D31 to D16 } \end{gathered}$		-	$3 / 2 \times \operatorname{tcyc}-15$	ns	$\begin{array}{\|l\|} \hline{ }^{*} 1 \\ { }^{2} \end{array}$
$\overline{\text { WRO }}$, $\overline{\text { WR1 }}$ delay time	tchwL	MCLK/SYSCLK WR0, WR1		-	6	ns	
$\overline{\text { WRO, }}$ WR1 delay time	tchwh			-	6	ns	
$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$ minimum pulse width	twwwh	$\overline{\mathrm{WRO}}$, $\overline{\mathrm{WR1}}$		tcyc - 3	-	ns	
Data setup $\rightarrow \overline{\text { WRx }} \uparrow$	toswh			tovc	-	ns	
$\overline{\text { WRx }} \uparrow \rightarrow$ Data hold time	twhox			5	-	ns	
$\overline{\mathrm{RD}}$ delay time	tchri	$\frac{\mathrm{MCLK} / \mathrm{SYSCLK}}{\mathrm{RD}}$		-	6	ns	
$\overline{\mathrm{RD}}$ delay time	tснRн			-	6	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input time	trLDv	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { D31 to D16 } \end{gathered}$		-	tcyc - 15	ns	*1
$\begin{aligned} & \text { Data setup } \\ & \rightarrow \overline{\mathrm{RD} \uparrow \text { Time }} \end{aligned}$	toser			15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhdx			0	-	ns	
$\overline{\overline{R D}}$ minimum pulse	trLRH	$\overline{\mathrm{RD}}$		tcyc - 3	-	ns	
$\overline{\text { AS }}$ setup	taslch	$\underset{\overline{A S}}{M C L K / S Y S C L K}$		3	-	ns	
$\overline{\text { AS }}$ hold	tashch			3	-	ns	

*1: When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc \times the number of cycles added for the delay) to this rating.
*2 : The following ratings are for the gear ratio set to 1 .
For the ratings when the gear ratio is set to between $1 / 2,1 / 4$ and $1 / 8$, substitute $1 / 2,1 / 4$ and $1 / 8$ for n in the following equation.
tavov: $3 /(2 n) \times \operatorname{tcyc}-15$

MB91305

(4-2) Multiplex bus access read/write operation

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
D31 to D16 address setup time \rightarrow MCLK (SYSCLK) \uparrow	tasch	$\begin{gathered} \text { MCLK/SYSCLK } \\ \text { D31 to D16 } \\ \text { (address) } \end{gathered}$	-	3	-	ns	
MCLK (SYSCLK) $\uparrow \rightarrow$ D31 to D16 address hold time	tchax			3	tcyc / 2 + 6	ns	
D31 to D16 address setup time $\rightarrow \overline{\mathrm{AS}} \uparrow$	tasash	$\begin{gathered} \overline{\mathrm{AS}} \\ \text { D31 to D16 } \\ \text { (address) } \end{gathered}$		12	-	ns	*
$\overline{\mathrm{AS}} \uparrow \rightarrow$ D31 to D16 address hold time	tashax			tcyc - 3	tcyc +3	ns	*

* : At $\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ setup extension $=1$

Note : Use the same rating as normal bus interface except for this rating.

MB91305

- At $\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ setup extension $=1$

- At $\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ setup extension $=0$

MB91305

(5) Ready input timings

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
RDY setup time \rightarrow MCLK (SYSCLK) \downarrow	trovs	$\begin{gathered} \text { MCLK } \\ \text { SYSCLK } \\ \text { RDY } \end{gathered}$	-	10	-	ns	
MCLK (SYSCLK) $\downarrow \rightarrow$ RDY hold time	trovh	$\begin{gathered} \text { MCLK } \\ \text { SYSCLK } \\ \text { RDY } \end{gathered}$	-	0	-	ns	

(6) Hold timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\text { BGRNT delay time }}$	tchbgl	$\begin{gathered} \text { MCLK } \\ \text { SYSCLK } \\ \hline \text { BGRNT } \end{gathered}$	-	tcyc / 2-6	toyc / $2+6$	ns	
$\overline{\text { BGRNT delay time }}$	tснвян			tcrc / 2-6	toyc / $2+6$	ns	
Pin floating $\rightarrow \overline{\text { BGRNT }} \downarrow$ time	txHAL	$\overline{\text { BGRNT }}$		tcrc - 10	tcyc +10	ns	
$\overline{\text { BGRNT } \uparrow \rightarrow}$ Pin valid time	thatv			tcrc - 10	tovc +10	ns	

Note : It takes one cycle or more from when BRQ is captured until $\overline{\text { BGRNT }}$ changes.

MB91305

(7) UART timing

$$
\left(\mathrm{V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=\mathrm{AV} \mathrm{VC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK0 to SCK4	Internal shift clock mode	8 toycp	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tsıov	SCK0 to SCK4 SOUT0 to SOUT4		-80	+80	ns	
$\text { Valid SIN } \rightarrow$ $\text { SCLK } \uparrow$	tivsh	SCK0 to SCK4 SIN0 to SIN4		100	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK4 SINO to SIN4		60	-	ns	
Serial clock "H" Pulse Width	tshsL	SCK0 to SCK4	External shift clock mode	4 toycp	-	ns	
Serial clock "L" Pulse Width	tsısh	SCK0 to SCK4		4 toycp	-	ns	
SCLK $\downarrow \rightarrow$ SOUT delay time	tsıov	$\begin{aligned} & \text { SCK0 to SCK4 } \\ & \text { SOUT0 to SOUT4 } \end{aligned}$		-	150	ns	
$\begin{aligned} & \text { Valid SIN } \rightarrow \\ & \text { SCLK } \uparrow \end{aligned}$	tivsh	SCK0 to SCK4 SIN0 to SIN4		60	-	ns	
SCLK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK4 SINO to SIN4		60	-	ns	

Notes : • Above rating is for CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.

MB91305

(8) Timer clock Input Timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttiwn ttiwn	TINO to TIN2	-	2 tcycp	-	ns	

Note : tcycp indicates the peripheral clock cycle time.

(9) Trigger Input Timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
A/D activation trigger input time	tatg	ATRG	-	5 tcycp	-	ns	

Note : tcycp indicates the peripheral clock cycle time.

(10) DMA controller timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
DREQ Input pulse width	torwh	DREQ0 to DREQ2	-	5 tcyc	-	ns	
$\overline{\text { DACK }}$ delay time	tcld	MCLK/SYSCLK		-	6	ns	
	tclon	$\overline{\text { DACK0 }}$ to $\overline{\text { DACK2 }}$		-	6		
$\overline{\text { DEOP }}$ delay time	tclel	MCLK/SYSCLK		-	6	ns	
	tclee	$\overline{\mathrm{DEOP}}$ to $\overline{\mathrm{DEOP}}$		-	6		
$\overline{\text { IORD delay time }}$	tclirl	MCLK/SYSCLK		-	6	ns	
	tclirh			-	6		
$\overline{\text { IOWR delay time }}$	tcliwL	MCLK/SYSCLK		-	6	ns	
	tclwh			-	6		

MB91305

Note : The waveform of $\overline{\text { DACKx }}$ and $\overline{\text { DEOPx }}$ is the waveforms when the PFR register is set to FR30 compatible timing.
When the setting is chip selection timing, The delay starts from the falling edge of MCLK/SYSCLK.
(11) USB interface

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Input clock	Tucyc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	-	-	48*1	-	MHz	Self oscillation 2500 ppm accuracy*
		X0	-					External input 2500 ppm accuracy* ${ }^{* 1}$
Rise Time	Tutfr	UDP/ UDM	Full Speed	4	-	20	ns	*2
Fall Time	Tutff	UDP/ UDM	Full Speed	4	-	20	ns	*2
Differential Rise and Fall Timing Matching	Tutfrfm	$\begin{aligned} & \hline \text { UDP/ } \\ & \text { UDM } \end{aligned}$	Full Speed	90	-	111.11	\%	*2
Driver Output Resistance	Tuzdrv	UDP UDM	-	28	-	44	Ω	*3

*1: AC characteristics for USB interface conform to USB Specification Revision 1.1.
*2 : < Driver Characteristics Tutfr, Tutff and Tutfrfm >
These are regulations of the rising / falling time of the differential data signal.
This time is defined at the time between 10% to 90% of the output signal voltage.
For full-speed buffer, Tutfr/Tutff is specified such that the Tutfr/Tutff ratio falls within $\pm 10 \%$ to minimize RFI radiation.

MB91305

*3: < Driver Characteristics ZDRV >
The USB Full-speed connection is done by $90 \Omega \pm 15 \%$ of characteristic impedance (Z0).
It is connected through the shielded twist 2-pair cable.
In this USB standard, both following conditions must be satisfied.

- The output impedance of USB Driver is from 28Ω to 44Ω.
- To balance, discrete series resistor (Rs) is added.

The output impedance of USB I/O Buffer of this LSI is about 3Ω to 19Ω.
Therefore, it is necessary to add the series resistance Rs of 25Ω to 30Ω (recommended value 27Ω).

Driver output impedance 3Ω to 19Ω
Rs series resistance 25Ω to 30Ω
Resistance Rs of recommended value 27Ω should be added.

(12) $I^{2} \mathrm{C}$ Timing

In the master mode operation

$$
\left(\mathrm{V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} \text { DDE }=\mathrm{AV} \mathrm{VC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \text { Ss }=\mathrm{AV} \text { Ss }=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Standard-mode		Fast-mode*3		Unit	Remarks
			Min	Max	Min	Max		
SCL clock frequency	fscl	$\begin{gathered} \mathrm{R}=1 \mathrm{k} \Omega, \\ \mathrm{C}=50 \mathrm{pF}^{* 4} \end{gathered}$	0	100	0	400	kHz	
"L" width of the SCL clock	tıow		4.7	-	1.3	-	$\mu \mathrm{s}$	
"H" width of the SCL clock	tHIGH		4.0	-	0.6	-	$\mu \mathrm{s}$	
Bus free time between a STOP and START condition	tbus		4.7	-	1.3	-	$\mu \mathrm{s}$	
$\begin{aligned} & \text { SCL } \downarrow \rightarrow \text { SDA } \\ & \text { output delay time } \end{aligned}$	toldat		-	$5 \times \mathrm{M}^{* 1}$	-	$5 \times \mathrm{M}^{* 1}$	ns	
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$	
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	thista		4.0	-	0.6	-	$\mu \mathrm{s}$	The first clock pulse is generated afterword.
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$	
Data input hold time (vs.SCL \downarrow)	thddat		$2 \times \mathrm{M}^{* 1}$	-	$2 \times \mathrm{M}^{* 1}$	-	$\mu \mathrm{s}$	
Data input set-up time (vs.SCL \uparrow)	tsudat		250	-	100*2	-	ns	

*1: M = Resource clock cycle (ns)
*2 : To use high-speed mode $I^{2} \mathrm{C}$ bus device for standard mode $I^{2} \mathrm{C}$ bus system, it must satisfy the request condition (tsudat $=250 \mathrm{~ns}$). If a device does not extend "L" period of the SCL signal, the following data must be output to the SDA line before 1250 ns (SCL line is opened, equal to SDA, SCL rise Max time + tsudata).
*3: To use it exceeding 100 kHz , the resource clock is set to 6 MHz or more.
*4: R and C is the pull-up resistor and the load capacity for SCL and SDA output lines respectively.

MB91305

In the slave mode operation
$\left(\mathrm{V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} D \mathrm{DE}=\mathrm{AV} \mathrm{VC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}\right.$ SS $=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Condition	Standard-mode		Fast-mode ${ }^{* 3}$		Unit	Remarks
			Min	Max	Min	Max		
SCL clock frequency	fscl	$\begin{gathered} \mathrm{R}=1 \mathrm{k} \Omega \\ \mathrm{C}=50 \mathrm{pF}^{* 4} \end{gathered}$	0	100	0	400	kHz	
"L" width of the SCL clock	tow		4.7	-	1.3	-	$\mu \mathrm{s}$	
"H" width of the SCL clock	tHIGH		4.0	-	0.6	-	$\mu \mathrm{s}$	
$\begin{aligned} & \text { SCL } \downarrow \rightarrow \text { SDA } \\ & \text { output delay time } \end{aligned}$	toldat		-	$5 \times \mathrm{M}^{* 1}$	-	$5 \times \mathrm{M}^{* 1}$	ns	
Bus free time between a STOP and START condition	tsus		4.7	-	1.3	-	$\mu \mathrm{s}$	
Data input hold time (vs.SCL \downarrow)	thdoat		$2 \times \mathrm{M}^{* 1}$	-	$2 \times \mathrm{M}^{* 1}$	-	$\mu \mathrm{s}$	
Data input set-up time (vs.SCL个)	tsudat		250	-	100*2	-	ns	
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$	
Hold time for a repeated START condition SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$	The first clock pulse is generated afterword.
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$	

*1: M = Resource clock cycle (ns)
*2: To use high-speed mode $I^{2} \mathrm{C}$ bus device for standard mode $I^{2} \mathrm{C}$ bus system, it must satisfy the request condition (tsudat = 250 ns). If a device does not extend "L" period of the SCL signal, the following data must be output to the SDA line before 1250 ns (SCL line is opened, equal to SDA, SCL rise Max time + tsudata).
*3: To use it exceeding 100 kHz , the resource clock is set to 6 MHz or more.
*4: R and C is the pull-up resistor and the load capacity for SCL and SDA output lines respectively.

MB91305

(13) SDRAM Timing
$\left(\mathrm{V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}\right.$ DDE $=\mathrm{AV} \mathrm{VC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Output clock cycle time	tcycso	MCLK	-	-	32	MHz	
"H" level clock pulse width	tchso			12	-	ns	
"L" level clock pulse width	tcısd			12	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	todsdcke	MCLKE		-	15	ns	
Output hold time	tohsdcke			2	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	todstras	$\overline{\text { SRAS }}$		-	15	ns	
Output hold time	tohsdras			2	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	todsdcas	$\overline{\text { SCAS }}$		-	15	ns	
Output hold time	tohsdcas			2	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	todsowe	SWR $\overline{\text { CS6 }}$ CS7		-	15	ns	
Output hold time	tohsowe			2	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	toosocs		-	-	15	ns	
Output hold time	tohsdis			2	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	toosda	A00 to A15		-	15	ns	
Output hold time	tohsia			2	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	todsdoam	DQMUU DQMUL		-	15	ns	
Output hold time	tohsdoam			2	-	ns	
MCLK $\uparrow \rightarrow$ output delay time	toosid	D16 to D31		-	15	ns	
Output hold time	tohsod			2	-	ns	
Data input setup time	tissdo	D16 to D31	-	15	-	ns	
Data input hold time	thesd			2	-	ns	

MB91305

5. Electrical Characteristics for the A/D Converter

Parameter	Symbol	Pin	Value			Unit
			Min	Typ	Max	
Resolution	-	-	-	-	10	BIT
Total error	-	-	-	-	± 5.5	LSB
Nonlinear error	-	-	-	-	± 3.5	LSB
Differential linear error	-	-	-	-	± 2.0	LSB
Zero transition voltage	Vот	ANO to AN9	-4.0	-	+6.0	LSB
Full-transition voltage	Vfst	ANO to AN9	AVRH - 5.5	-	AVRH+3.0	LSB
Conversion time	-	-	8.18*1	-	-	$\mu \mathrm{s}$
Analog port input current	Iain	ANO to AN9	-	0.1	10	$\mu \mathrm{A}$
Analog input voltage	$V_{\text {AIN }}$	AN0 to AN9	AVSS	-	AVRH	V
Reference voltage	-	AVRH	AVSS	-	AVCC	V
Power supply current	IA	AVCC	-	3.6	-	mA
	ІАн		-	-	$10^{* 2}$	$\mu \mathrm{A}$
Reference voltage supply current	1 R	AVRH	-	600	-	$\mu \mathrm{A}$
	Ів ${ }^{\text {r }}$		-	-	$10^{* 2}$	$\mu \mathrm{A}$
Variation between channels	-	ANO to AN9	-	-	5	LSB

${ }^{*} 1$: For $\mathrm{V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDE}}=\mathrm{AV} \mathrm{VC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, machine clock $=32 \mathrm{MHz}$
*2 : Current when A / D converter not operating $\left(\mathrm{V} \mathrm{DDE}=\mathrm{AV} \mathrm{Cc}=\mathrm{AVRH}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=1.95 \mathrm{~V}\right)$

Notes : - The relative error increases as AVRH becomes smaller.

- If the output impedance of the external circuit is too high, the analog voltage sampling time may be too short.

MB91305

- About the external impedance of the analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
And if the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- Analog input circuit model

R	C
$4.9 \mathrm{k} \Omega(\mathrm{Max})$	$27 \mathrm{pF}(\mathrm{Max})$

Note : The values are reference values.

- The relationship between the external impedance and minimum sampling time

- About the error

The accuracy gets worse as \mid AVRH-AVss | becomes smaller.

- Definition of A/D Converter Terms

- Resolution

Analog variation that is recognized by an A / D converter.

- Linearity error The deviation between the actual conversion characteristics and a straight line connecting the device's zero transition point ("0000000000" \longleftrightarrow " 0000000001 ") and full scale transition point ("1111111110" $\longleftrightarrow \rightarrow$ "1111111111").
- Differential linear error

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

MB91305

- Total error

This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error.

Total error of digital output $N=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \text { " } \times(\mathrm{N}-1)+0.5 \mathrm{LSB} "\}}{1 \mathrm{LSB}^{\prime \prime}}$ [LSB]
$\mathrm{N}: \mathrm{A} / \mathrm{D}$ converter digital output value
Vот" (Ideal value) = AV ${ }_{\text {bL }}+0.5$ LSB" [V]
$\mathrm{V}_{\text {FST" }}$ (Ideal value) $=\mathrm{AV}_{\text {RH }}-1.5$ LSB" [V]
V_{Nt} : A voltage at which digital output transitions from $(\mathrm{N}-1)$ to N .

EXAMPLE CHARACTERISTICS

Icc-Vodi example characteristics
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcp}=68 \mathrm{MHz}$
fcpp $=34 \mathrm{MHz}, \mathrm{fcpt}=34 \mathrm{MHz}$

Icc-fcp example characteristics

$$
\begin{gathered}
\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDDE}=3.3 \mathrm{~V} \\
\mathrm{VDDI}=1.8 \mathrm{~V}
\end{gathered}
$$

(fcp : fcpp : fcpt = $2: 1: 1$, PLL 4 multiplication)

Iccs-VDo example characteristics
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

VOH-VDDE example characteristics
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Iссн-VDDI example characteristics
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Vol-VDDE example characteristics $\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Note : Not including USB I/O
(Continued)

Icc-VDDI example characteristics $\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcp}=68 \mathrm{MHz}$
fcpp $=34 \mathrm{MHz}, \mathrm{fcpt}=34 \mathrm{MHz}$

Iccs-Vdol example characteristics
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Pull-down resistor example characteristics
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Icc-fcp example characteristics

$$
\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{~V} D \mathrm{DE}=3.3 \mathrm{~V}
$$

$$
V_{D D I}=1.8 \mathrm{~V}
$$

(fcp : fcpp : fcpt = $2: 1: 1$, PLL 4 multiplication)

Icch-VDDI example characteristics $\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Note : Not including USB I/O
(Continued)
(Continued)

Note : Not including USB I/O

MB91305

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91305PMC	176-pin plastic LQFP	

PACKAGE DIMENSION

176-pin plastic LQFP (FPT-176P-M07)

Note 1) * : Values do not include resin protrusion. Resin protrusion is +0.25 (.010) Max (each side) .
Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder.

© 2004 FUJITSU LIMITED F176013S-C.-1-1
Dimensions in mm (inches). Note: The values in parentheses are reference values.

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

