AS1710/AS1712

Data Sheet

High-Output-Drive, 10MHz, 10V/µs, Rail-to-Rail I/O Op Amps with Shutdown

1 General Description

The AS1710/AS1712 are low-offset, high-output CMOS op amps that deliver 200mA of peak output current from a single supply (2.7 to 5.5V).

These devices were specifically designed to drive typical headset levels (32 Ω), as well as bias RF power amplifiers for wireless handset applications.

The devices are available as the standard products shown in Table 1. See also Ordering Information on page 16.

Table 1. Standard Products

Model	Description	Package
AS1710A	Single Op Amp with Shutdown	SC70-6
AS1710B	Single Op Amp	SC70-5
AS1712A	Quad Op Amp w/Shutdown	TQFN-16 3x3mm

These rail-to-rail I/O, wide-bandwidth amplifiers exhibit a high slew rate of 10V/µs and a gain-bandwidth product of 10MHz.

The integrated shutdown feature (not included in B versions) drives the output low.

These devices operate over the entire automotive temperature range (-40°C to +125°C).

2 Key Features

Constant Output Drive Capability: 50mA

Rail-to-Rail Input and Output

Supply Current: 1.6mA

Single-Supply Operation: 2.7 to 5.5V Gain-Bandwidth Product: 10MHz

High Slew Rate: 10V/µs

Voltage Gain: 100dB (RLOAD = $100k\Omega$)

Power-Supply Rejection Ratio: -85dB

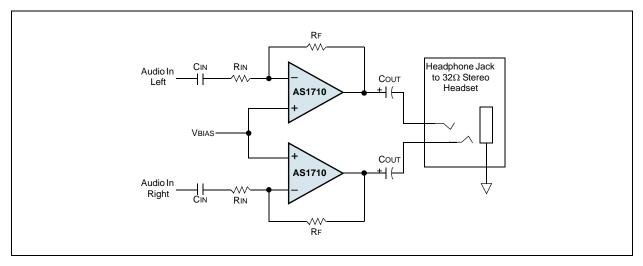
No Phase Reversal for Overdriven Inputs

Unity-Gain Stable for Capacitive Loads: Up to 100pF

Shutdown Mode (AS1710A) Current: 1nA typ

Package Types:

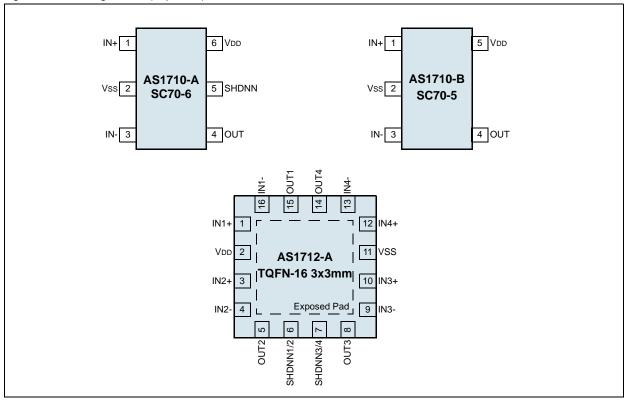
- SC70-6


- SC70-5

- TQFN-16 3x3mm

3 Applications

The devices are ideal for portable/battery-powered audio applications, portable headphone speaker drivers (32Ω) , hands-free mobile phone kits, TFT panels, sound ports/cards, set-top boxes, biasing controls, DAC converter buffers, transformer/line drivers, motor drivers, and any other battery-operated audio device.



4 Pinout

Pin Assignments

Figure 2. Pin Assignments (Top View)

Pin Descriptions

Table 2. Pin Descriptions

Pin Number	Pin Name	Description
	IN+	Non-inverting Input
	IN-	Inverting Input
	VDD	Positive Supply Input
See Figure 2	Vss	Negative Supply Input. This pin must be connected to ground in single-supply applications.
	SHDNN	Active Low Shutdown Control
	OUT	Amplifier Output
	Exposed Pad	Exposed Pad. This pin also functions as a heat sink. Solder it to a large pad or to the circuit-board ground plane to maximize power dissipation.

5 Absolute Maximum Ratings

Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 4 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Absolute Maximum Ratings

Parameter		Min	Max	Units	Comments
Supply Voltage (VDD to Vss)			+7	V	
Supply Voltage (All Other Pins)		Vss - 0.3	VDD + 0.3	V	
Output Short-Circuit D VDD or Vss	uration to		1	S	
Continuous Power	SC70-5		247	mW	Derate at 31mW/°C above 70°C
Dissipation	SC70-6		245	11100	Derate at 31mW/°C above 70°C
Thermal Resistance ⊕JA	TQFN-16 3x3mm		33	°C/W	on PCB
Operating Temperatur	re Range	-40	+125	°C	
Storage Temperature	Range	-65	+150	°C	
Junction Tempera	ature		+150	٥C	
Package Body Temperature			+260	°C	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020C "Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices". The lead finish for Pb-free leaded packages is matte tin (100% Sn).

6 Electrical Characteristics

DC Electrical Characteristics

VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = VDD/2, RLOAD = Infinite, VSHDNN = VDD, TAMB = -40 to +125°C. Typical values at TAMB = 25°C.

Table 4. DC Electrical Characteristics

Symbol	Parameter	Condition		Min	Тур	Max	Unit
VDD	Supply Voltage Range	Inferred from Power Supply Rejection Ratio Test		2.7		5.5	٧
Voffset	Input Offset Voltage			-3	0.6	+3	mV
IBIAS	Input Bias Current	Vcm = Vss	to VDD		50 ¹		pА
IOFFSET	Input Offset Current	Vcm = Vss	to VDD		50 ¹		pА
Rin	Input Resistance				1000 ¹		МΩ
Vсм	Common Mode Input Voltage Range	Inferred from Cor Rejection F		Vss		VDD	٧
CMRR	Common Mode Rejection Ratio	Vss < Vcm	< VDD	-45	-70		dB
PSRR	Power Supply Rejection Ratio	VDD = 2.7 to	5.5V	-70	-85		dB
Rout	Shutdown Output Impedance	VSHDNN = 0V (A	-Versions)		130 ¹		Ω
Vout-shdnn	Shutdown Output Voltage	VSHDNN = 0V, RLOAD (A-Version)			170	300	mV
	Large Signal Voltage Gain	Vss + 0.20V < VouT < 1 VDD - 0.20V	RLOAD = $100k\Omega$	85	100		dB
Avol			$RLOAD = 2k\Omega$	79	92		
			RLOAD = 200Ω	69	80		
	Output Voltage Swing	VDD - VOH or VOL - VSS	RLOAD = 32Ω		350	650	mV
Vout			RLOAD = 200Ω		70	120	
			$RLOAD = 2k\Omega$		9	20	
	Output Voltage	VDD - VOH or VOL - VSS	ILOAD = 10mA, VDD = 2.7V		55	100	100 mV
	Output voltage		ILOAD = 30mA, VDD = 5V		100	180	
Іоит	Output Source/Sink Current	$V_{DD} = 2.$ $V_{T} = V_{CM}, V_{T} = V_{CM}$			100		mA
1001	Output Source/Sink Current		VDD = 5.0V, V- = VCM, V+ = VCM±100mV		200		ША
IDD	Quiescent Supply Current per	VDD = 2.7V, VC	M = VDD/2		1.6	3.2	mA
טטו	OpAmp Output	VDD = 5.0V, VCM = VDD/2			2.3	4.6	ША
IDD-SHDNN	Shutdown Supply Current per OpAmp (A-Versions)	VSHDNN = 0V	VDD = 2.7V		1	2000 ¹	nA
	SHDNN Logic Threshold	Shutdown Mode			Vss + 0.3		V
	(A-Versions)	Normal Operation			V _{DD} - 0.3		
	SHDNN Input Bias Current	Vss < Vshdnn < Vd	D (A-Versions)		50 ¹		pА

^{1.} Guaranteed by design.

AC Electrical Characteristics

VDD = 2.7V, VSS = 0V, VCM = VDD/2, VOUT = VDD/2, RLOAD = Infinite, VSHDNN = VDD, TAMB = -40 to +125°C. Typical values at TAMB = 25°C.

Table 5. AC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
GBWP	Gain-Bandwidth Product	Vcm = Vdd/2		10		MHz	
FPBW	Full-Power Bandwidth	Vout = 2VP-P, Vdd = 5V		2.5		MHz	
SR	Slew Rate			10		V/µs	
PM	Phase Margin			70		deg	
GM	Gain Margin ¹			15		dB	
THD+N	Total Harmonic Distortion Plus Noise	f = 10kHz, Vout = 2VP-P, AVCL = 1V/V		0.05		%	
CIN	Input Capacitance			6		pF	
on	1	f = 1kHz		15		nV/ √Hz	
en	Voltage-Noise Density ¹	f = 10kHz		10			
	Capacitive-Load Stability	AVCL = 1V/V, no sustained oscillations		100		pF	
tshdn	Shutdown Time (AS1710A)			1		μs	
tENABLE	Enable Time from Shutdown (AS1710A)			7		μs	
ton	Power-Up Time			20		ns	

^{1.} Guaranteed by design.

7 Typical Operating Characteristics

VDD = 2.7V; VSS = 0V, VCM = VDD/2, VOUT = VDD/2, $RLOAD = \infty$, VSHDNN = VDD TAMB = +25°C (unless otherwise spectrum)

Figure 3. Gain and Phase vs. Frequency

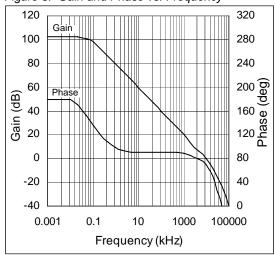


Figure 4. Gain and Phase vs. Frequency, CLOAD = 100pF

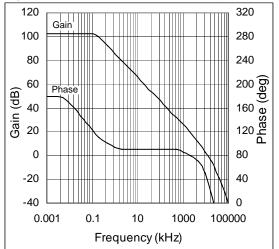


Figure 5. PSRR vs. Frequency

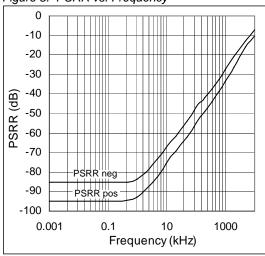


Figure 6. CMRR vs. Frequency

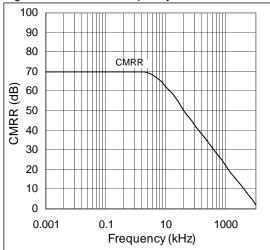
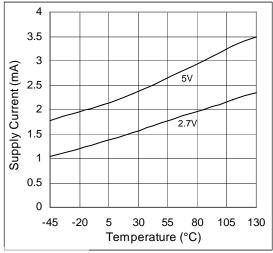
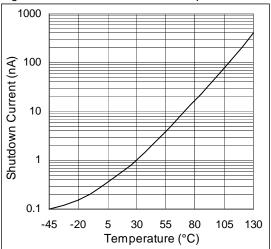
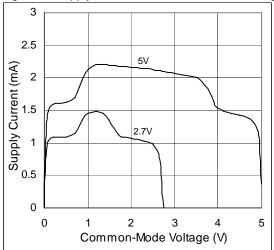


Figure 7. Supply Current vs. Temperature


Figure 8. Shutdown Current vs. Temperature

www.austriamicrosystems.com

www.DataSheet4U.com

Figure 9. Supply Current vs. Common-Mode Voltage

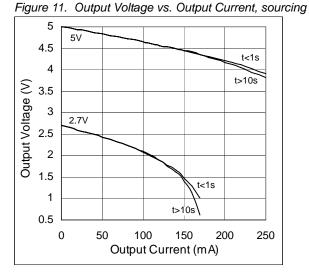


Figure 13. Output Swing High vs. Temperature

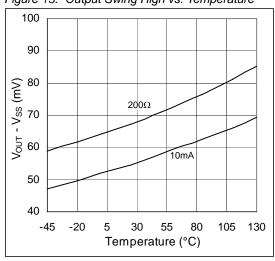


Figure 10. Input Voltage Noise vs. Frequency

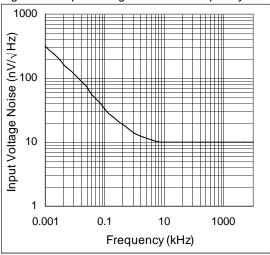


Figure 12. Output Voltage vs. Output Current, sinking

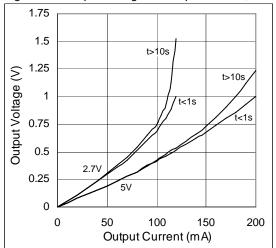
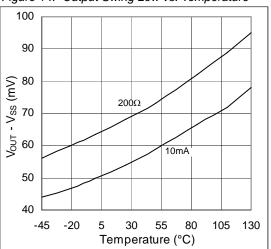



Figure 14. Output Swing Low vs. Temperature

www.austriamicrosystems.com

www.DataSheet4U.com

Figure 15. Transient Response, 100mV, 10pF load

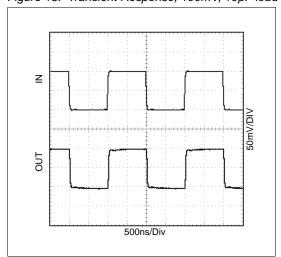


Figure 17. Transient Response, 1V, 10pF load

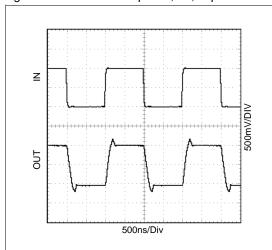


Figure 19. Transient Response, 2V, 10pF load

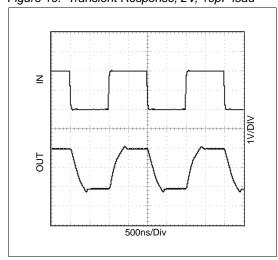


Figure 16. Transient Response, 100mV, 100pF load

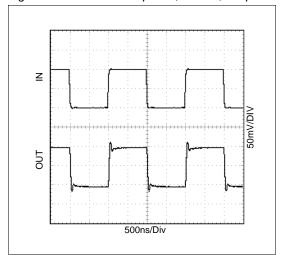


Figure 18. Transient Response, 1V, 100pF load

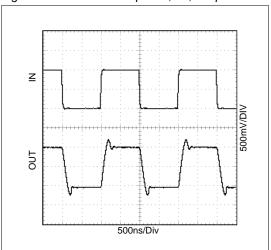
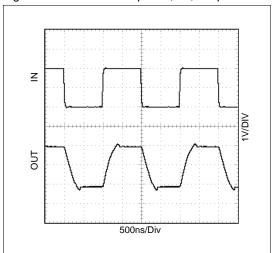



Figure 20. Transient Response, 2V, 100pF load

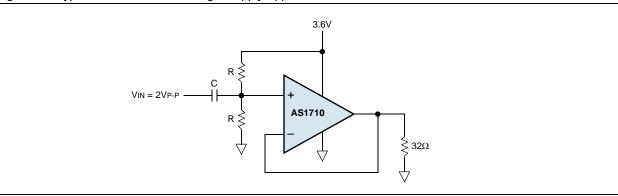
www.austriamicrosystems.com

8 Application Information

Package Power Dissipation

Caution: Due to the high output current drive, this op amp can exceed the absolute maximum power-dissipation rating. Normally, when peak current is less than or equal to 40mA the maximum package power dissipation is not exceeded for any of the package types offered.

The absolute maximum power-dissipation rating of each package should always be verified. (EQ 1) gives an approximation of the package power dissipation:


$$PPACKAGEDISS \cong VRMS\ IRMS\ COS\theta$$
 (EQ 1)

Where:

VRMs is the RMS voltage from VDD to VOUT when sourcing current, and from VOUT to Vss when sinking current. IRMs is the RMS current flowing in or out of the op amp and the load.

 θ is the phase difference between the voltage and the current. For resistive loads, COS θ = 1.

Figure 21. Typical AS1710/AS1712 Single-Supply Application

VRMs can be calculated as:

$$V_{RMS} \cong (V_{DD} - V_{DC}) + V_{PEAK} / \sqrt{2}$$
 (EQ 2)

Where:

VDC is the DC component of the output voltage.

VPEAK is the highest positive excursion of the AC component of the output voltage.

For the circuit shown in Figure 21:

$$VRMS = (3.6V - 1.8V) + 1.0V/\sqrt{2} = 2.507VRMS$$

IRMs can be calculated as:

$$IRMS \cong IDC + (IPEAK/\sqrt{2})$$
 (EQ 3)

Where:

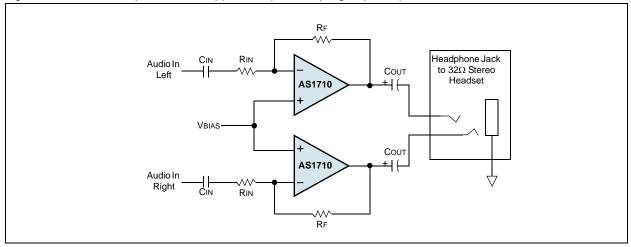
IDC is the DC component of the output current.

IPEAK is the highest positive excursion of the AC component of the output current.

For the circuit shown in Figure 21:

$$IRMS = (1.8V/32\Omega) + (1.0V/32\Omega)/\sqrt{2} = 78.4mARMS$$

Therefore, for the circuit in Figure 21 the package power dissipation can be calculated as:


PPACKAGEDISS = VRMS IRMS $COS\theta = 196mW$

Adding a coupling capacitor improves the package power dissipation because there is no DC current to the load, as shown in Figure 22 on page 10.

60mW Single-Supply Stereo Headphone Driver

Two AS1710 amplifiers can be used as a single-supply, stereo headphone driver. The circuit shown in Figure 22 can deliver 60mW per channel with 1% distortion from a single 5V supply.

Figure 22. Stereo Headphone Driver Application (with Coupling Capacitor)

In Figure 22, CIN and RIN form a high-pass filter that removes the DC bias from the incoming signal. The -3dB point of the high-pass filter is given by:

$$f-3dB = 1/(2\pi RINCIN)$$
 (EQ 4)

Choose gain-setting resistors RIN and RF according to the amount of desired gain, keeping in mind the maximum output amplitude.

Court blocks the DC component of the amplifier output, preventing DC current flowing to the load. The output capacitor and the load impedance form a high-pass filter with the -3dB point determined by:

$$f$$
-3dB = $1/(2\pi R LOADCOUT)$ (EQ 5)

For a 32Ω load, a 100μF aluminum electrolytic capacitor gives a low-frequency pole at 50Hz.

Rail-to-Rail Input Stage

The AS1710/AS1712 CMOS op amps have parallel connected N- and P-channel differential input stages that combine to accept a common-mode range extending to both supply rails. The N-channel stage is active for common-mode input voltages typically greater than (Vss + 1.2V), and the p-channel stage is active for common-mode input voltages typically less than (VDD - 1.2V).

Rail-to-Rail Output Stage

The minimum output is within millivolts of ground for single- supply operation, where the load is referenced to ground (Vss). Figure 23 shows the input voltage range and the output voltage swing of an AS1710 connected as a voltage follower. The maximum output voltage swing is load dependent although it is guaranteed to be within 500mV of the positive rail (VDD = 2.7V) even with maximum load (32Ω to ground).

Figure 23. Rail-to-Rail Input/Output Range, 100kΩ

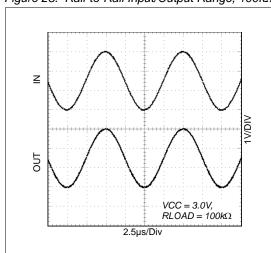
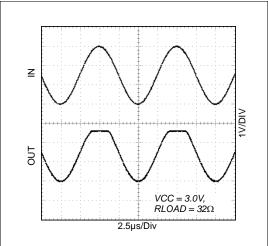
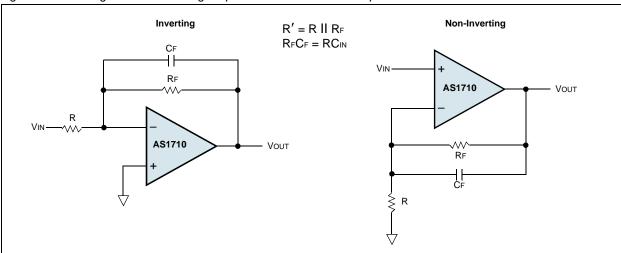



Figure 24. Rail-to-Rail Input/Output Range, 32Ω



Note: The absolute maximum ratings (see page 3) for power dissipation and output short-circuit duration (10s, max) must be adhered to since the output current can exceed 200mA (see Typical Operating Characteristics on page 6).

Input Capacitance

The parallel-connected differential input stages for rail-to-rail operation results in relatively large input capacitance CIN (6pF typ). This introduces a pole at frequency ($2\pi R'CIN$)-1, where R' is the parallel combination of the gain-setting resistors for the inverting or non-inverting amplifier configuration (Figure 25). If the pole frequency is less than or comparable to the unity-gain bandwidth (10MHz), the phase margin is reduced, and the amplifier exhibits degraded AC performance through either ringing in the step response or sustained oscillations.

Figure 25. Inverting and Non-inverting Amplifiers with Feedback Compensation

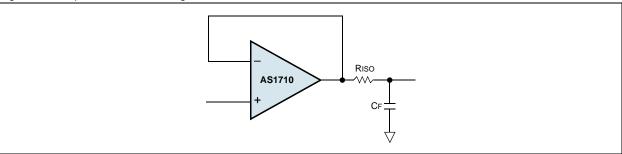
The pole frequency is 10MHz when R' = $2k\Omega$. To maximize stability, R' << $2k\Omega$ is recommended.

To improve step response when $R' > 2k\Omega$, connect a small capacitor (CF) between the inverting input and output. CF can be calculated by:

$$CF = 6(R/RF) [pf]$$
 (EQ 6)

Where:

RF is the feedback resistor. R is the gain-setting resistor.



Driving Capacitive Loads

The AS1710/AS1712 amplifiers have a high tolerance for capacitive loads, and are stable with capacitive loads up to 100pF.

Figure 26 shows a typical non-inverting capacitive-load driving circuit in the unity-gain configuration.

Figure 26. Capacitive-Load Driving Circuit

Note: Resistor Riso improves the circuit's phase margin by isolating the load capacitor from the AS1710/AS1712 output.

Power-Up

The AS1710/AS1712 typically settle within 5µs after power-up.

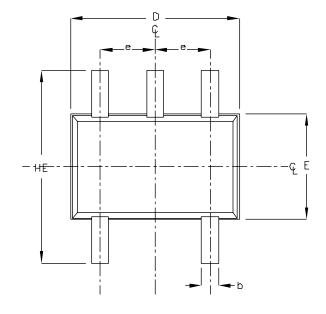
Shutdown

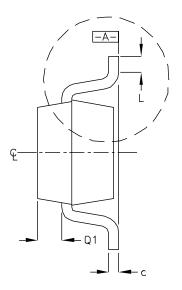
When SHDNN (not included in B versions) is pulled low, supply current drops to 0.5μ A (per amplifier, VDD = 2.7V), the amplifiers are disabled, and their outputs are driven to Vss. Because the outputs are actively driven to Vss in shutdown, any pullup resistor on the output causes a current drain from the supply.

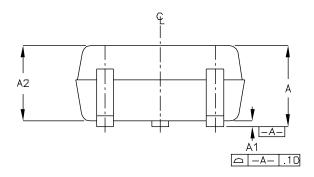
Note: Pulling SHDNN high enables the amplifier. In the AS1712 the amplifiers shutdown in pairs.

When exiting shutdown, there is a 6µs delay before the amplifier output becomes active.

Power Supplies and Layout


The AS1710/AS1712 can operate from a single 2.7 to 5.5V supply or from dual ± 1.35 to ± 2.5 V supplies. Good design improves device performance by decreasing the amount of stray capacitance at the op amp inputs/outputs.


- For single-supply operation, bypass the power supply with a 0.1µF ceramic capacitor.
- For dual-supply operation, bypass each supply to ground.
- Decrease stray capacitance by placing external components close to the op amp pins, minimizing trace and lead lengths.


avaluatriamicro austriamicro systems

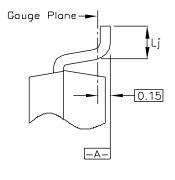
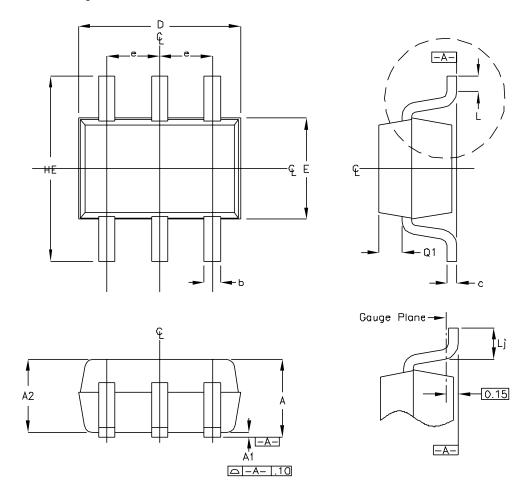

9 Package Drawings and Markings

Figure 27. SC70-5 Package


Notes:

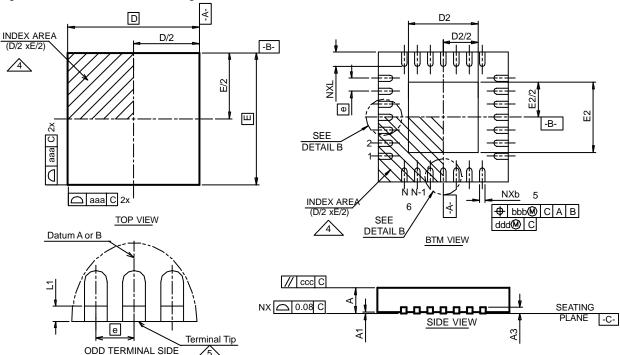
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating.
- 3. Dimensions are exclusive of mold flash and metal burr.
- All specifications comply with JEITA SC88A and JEDEC MO203.

Symbol	Min	Max	
е	0.65BSC		
D	1.80	2.20	
b	0.15	0.30	
Е	1.15	1.35	
HE	1.80	2.40	
Q1	0.10	0.40	
A2	0.80	1.00	
A1	0.00	0.10	
Α	0.80	1.10	
С	0.10	0.18	
L	0.10	0.30	
Lj	0.26	0.46	
Lj	0.26	0.46	

avaluatriamicro austriamicro systems

Figure 28. SC70-6 Package

Notes:


- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating.
- 3. Dimensions are exclusive of mold flash and metal burr.
- All specifications comply with JEITA SC88 and JEDEC MO203.

Symbol	Min	Max	
е	0.65BSC		
D	1.80	2.20	
b	0.15	0.30	
Е	1.15	1.35	
HE	1.80	2.40	
Q1	0.10	0.40	
A2	0.80	1.00	
A1	0.00	0.10	
Α	0.80	1.10	
С	0.10	0.18	
L	0.10	0.30	
Lj	0.26	0.46	

www.Do

Figure 29. TQFN-16 3x3mm Package

Symbol	Min	Тур	Max	Notes
aaa		0.15		1, 2
bbb		0.10		1, 2
CCC		0.10		1, 2
ddd		0.05		1, 2
b	0.18	0.25	0.30	1, 2
Α	0.70	0.75	0.80	1, 2
A1	0.00	0.02	0.05	1, 2
A3		0.20REF		1, 2
е			0.50	

Symbol	Min	Тур	Max	Notes
L1	0.03		0.15	1, 2
D BSC		3.00		1, 2, 8
E BSC		3.00		1, 2, 8
D2	1.30	1.45	1.55	1, 2, 8
E2	1.30	1.45	1.55	1, 2, 8
L	0.30	0.40	0.50	1, 2, 8
N		16		1, 2, 8
ND		4		1, 2, 8
NE		4		

Notes:

- 1. Dimensioning and tolerancing conform to ASME Y14.5m-1994.
- 2. All dimensions are in millimeters while angle is in degrees (°).
- 3. N is the total number of terminals.
- 4. The terminal #1 identifier and terminal numbering convention shall conform to *JEDEC 95, SPP-002*. Details of terminal #1 identifier are optional, but must be located within the zone indicated. The terminal #1 identifier may be either a mold or marked feature.
- 5. Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measured in that radius area.
- 6. Depopulation is possible in a symmetrical fashion.
- 7. Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measured in that radius area.
- 8. ND and NE refer to the number of terminals on sides D and E respectively.

10 Ordering Information

The device is available as the standard products shown in Table 6.

Table 6. Ordering Information

Model	Description	Delivery Form	Package	
AS1710A-ASCT	Single Op Amp with Shutdown	Tape and Reel	SC70-6	
AS1710B-ASCT	Single Op Amp	Tape and Reel	SC70-5	
AS1712A-AQFT	Quad Op Amp with Shutdown	Tape and Reel	TQFN-16 3x3mm	

All devices are RoHS compliant and free of halogene substances.

Data Sheet

www.DataSheet4U.com

Copyrights

Copyright © 1997-2009, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters

austriamicrosystems AG A-8141 Schloss Premstaetten, Austria

Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com/contact-us