M64893AGP

SERIAL INPUT PLL FREQUENCY SYNTHES IZER FOR TV/VCR
REJ03F0008-0100Z
Rev. 1.00
Jul.25.2003

Description

The M64093FP is a semiconductor integrated circuit consisting of PLL frequency synthesizer for TV/VCR using BiCMOS process. It contains prescaler with operating up to. $1.0 \mathrm{GHz}, 4$ band driver and a tuning amplifier for direct tuning.

Features

- 4 integrated PNP band switching drivers $(\mathrm{lo}=40 \mathrm{~mA}, \mathrm{Vsat}=0.2 \mathrm{~V}$ typ@Vcc1 to 13.2 V$)$
- Built-in tuning amplifier for direct tuning (33 V)
- Low power dissipation (lcc $=24 \mathrm{~mA}$, at $\mathrm{Vcc}=5 \mathrm{~V})$
- Built-in prescaler with input amplifier (Fmax $=1.0 \mathrm{GHz})$
- PLL lock/unlock status display output (built-in pull-up resistor)
- Reference driver (Division radio 1/640)
- Serial data input (3 wire Bus)
- Built-in power on reset
- 16pin -plastic mold mini flat package (16pin SSOP)
- Without protection diode at CLK,DATA,ENA

Application

- TV,VCR tuners

Block Diagram

Pin Description

Symbol	Pin No.	Pin name	Function
fin	1	Prescaler input	Input for the VCO frequency.
GND	2	GND	Ground to 0 V
Vcc1	3	Power supply voltage 1	Power supply voltage terminal. $5.0 \mathrm{~V}+/-0.5 \mathrm{~V}$
Vcc2	4	Power supply voltage 2	Power supply voltage terminal. Vcc1 to 13.2 V
BS4	5	Band switching outputs	PNP open collector method is used. When the band switching data is " H ", the output is "ON". When it is " L ", the output is "OFF".
BS3	6		
BS2	7		
BS1	8		
Vin	9	Filter input (Charge pump output)	This is the output terminal for the LPF input and charge pump output. When the phase of the programmable divider output ($\mathrm{f} 1 / \mathrm{N}$) is lead compared to the reference frequency (fref), the "source" current state becomes active. If it is lag, the same, the high impedance state be comes active.
Vtu	10	Tuning output	This supplies the tuning voltage.
Vcc3	11	Power supply voltage 3	Power supply voltage for tuning voltage 28 to 35 V
LD	12	Lock detect output	When 19 bit data is input, lock detector is output. When 27 bit data is input, lock detector is output. the programmable divider output and reference divider output is selected by the test mode.
CLOCK	13	Clock input	Data is read into the shift register when the clock signal falls.
DATA	14	Data input	Input for band SW and programmable freg. divider set falls.
ENABLE	15	Enable input	This is normally at an " L ". When this is at " H ", data and clock signals are received. Data is read into the latch when the 19th pulse of the clock signal falls.
X in	16	This is connected to the Crystal oscillator.	4.0 MHz crystal oscillator connected.

Pin Arrangement

OUTLINE 16P2Z

Method of Setting Data

The programmable divider uses 15 bits Setting up the band switching output uses 4bits.
The test mode data use s 8 bits. The total bits used is 27 bits. Data is read in when the enable signal is " H " and the clock signal falls.
The band switching data is read in the 4th pulse of the clock signal. The programmable driver data is read into the fall of the 19th pulse of the clock signal.When the enable signal goes to "L" Before the 19th pulse of the enable signal, only the band switching data is updated and other data is ignored.

How to Set The Dividing Radio of The Programmable Divider

Total division N is given by the following from formulas in addition to the prescaler used the previous stage.

$$
\begin{array}{ll}
\mathrm{N}=8^{*}(32 \mathrm{M}+\mathrm{S}) & \mathrm{M}: 10 \text { bit main counter division } \\
& \mathrm{S}: 5 \text { bit swallow counter division }
\end{array}
$$

The M and S counters are binary the possible ranges of division are follows.

$$
\begin{aligned}
& 32 \leq M \leq 1023 \\
& 0 \leq S \leq 31
\end{aligned}
$$

Therefore, the rage of division N is 8,192 to 262,136 .
The tuning frequency fvco is given in the following equations.

$$
\begin{aligned}
\text { fvco } & =\text { fref } \mathrm{f}^{*} \mathrm{~N} \\
& =6.25^{\star} 8^{\star}(32 \mathrm{M}+\mathrm{S}) \\
& =50.0^{*} 8^{*}(32 \mathrm{M}+\mathrm{S})
\end{aligned}
$$

[KHz]
Therefore, the tuning frequency range is from 51.2 MHz to 1000 MHz

Test Mode Data Set Up Method

The data for the test mode uses from 20 to 27 bits. Data is latched when the 27 th clock signal falls.

Setting Up the Charge Pump Current of The Phase Comparator

CP	Charge pump current	Mode
0	$50 \mu \mathrm{~A}$	Normal
1	$250 \mu \mathrm{~A}$	Test

Setting Up The Test Mode

T2	T1	T0	Charge pump	12 pin output	Mode
0	0	X	Normal operation	LD	Test
0	1	X	High impedance	LD	Test
1	1	0	Sink	LD	Test
1	1	1	Source	LD	Test
1	0	0	High impedance	fref	Test
1	0	1	High impedance	f1/N	Test

Set Up for The Reference Frequency Division Radio

RSa	RSb	Division radio
0	1	$1 / 512$
1	1	$1 / 1024$
X	0	$1 / 640$

Set Up The Tuning Amplifier

OS	Tuning voltage output	mode
0	ON	Normal
1	OFF	Test

Power On Reset Operation (Initial State The Power is Turned ON)

- BS4 to BS1
- Charge pump
- Tuning amplifier
- Charge pump current
:OFF
:high impedance
:OFF
: $250 \mu \mathrm{~A}$
- Frequency division radio :1/640
- Lock output
:H

M64893AGP

Timing Diagram

Crystal Oscillator Connection Diagram

Absolute Maximum Ratings

($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbols	Max.ratings	Units	Conditions
Standby voltage1	Vcc 1	6.0	V	Pin3
Standby voltage2	Vcc 2	14.4	V	Pin4
Standby voltage3	Vcc 3	36.0	V	Pin11
Input voltage	VI	6.0	V	Not to exceed Vcc1
Output voltage	$\mathrm{V}_{\mathrm{BSOFF}}$	6.0	V	Pin 12
Voltage applied when the band output current is OFF	$\mathrm{I}_{\mathrm{BSON}}$	14.4	V	
Band output current	t BSoN	50.0	mA	Per 1 band output circuit
ON the time when the band output is ON	Pd	10	sec	50 mA per 1 band output circuit
Power dissipation	Topr	350	mW	$\mathrm{Ta}=75^{\circ} \mathrm{C}$
Operating temperature	Tstg	$-20 \mathrm{to}+75$	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

			$\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{Cunless}$ otherwise noted)	
Parameter	Symbols	Ratings	Units	Conditions
Scc1	4.5 to 5.5	V		
Standby voltage1	Vcc 2	5.0 to 3.2	V	
Standby voltage2	Vcc 3	30 to 35	V	
Standby voltage3	fopr2	4.0	MHz	Crystal oscillation circuit
Operating frequency(1)	fopr2	80 to 100	MHz	
Operating frequency(2)	$\mathrm{I}_{\mathrm{BDL}}$	0 to 40	mA	Normally 1 circuit is on. 2 circuits on at the same time is max. It is prohibited to Band output current 5 to 8
				have 3 or more circuits turned on at the same time.

Electrical Characteristics

Parameters	$\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{Cunless}$ otherwise noted) $\mathrm{Vcc} 1=5.0 \mathrm{~V}, \mathrm{Vcc}=12 \mathrm{~V}, \mathrm{Vcc} 3 \mathrm{~s}=33 \mathrm{~V}$						
	Symbol	Test pin	Test conditions	Limits			Unit
				Min	Typ	Max	
input terminals							
"H" input voltage	$\mathrm{V}_{\text {IH }}$	13 to 15		3.0	-	Vcc1+0.3	V
"L" input voltage	$\mathrm{V}_{\text {IL }}$	13 to 15		-	-	1.5	V
"H" input voltage	I_{H}	13 to 15	$\mathrm{Vcc1}=5.5 \mathrm{~V}, \mathrm{Vi}=4.0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
"L" input current	IL	13 to 15	$\mathrm{Vcc} 1=5.5 \mathrm{~V}, \mathrm{Vi}=0.4 \mathrm{~V}$	-	-2	-10-	$\mu \mathrm{A}$
Lock output							
" H " output voltage	Vor	12	$\mathrm{Vcc1}=5.5 \mathrm{~V}$	5.0	-	-	v
"L" output voltage	VoL	12	$\mathrm{Vcc} 1=5.5 \mathrm{~V}$	-	0.3	0.5	V
Leak current	lок1	5 to 8	$\mathrm{Vcc} 2=12 \mathrm{~V}$ Band SW is OFF	-	-	1	$\mu \mathrm{A}$
Tuning output			$\mathrm{Vcc3}=33 \mathrm{~V}$				
output voltage "H"	V to H	10	$\mathrm{Vcc} 3=33 \mathrm{~V}$	32.5	-	-	v
output voltage "L"	V to L	10		-	0.2	0.4	v
Charge pump			$\mathrm{Vcc1}=5.0 \mathrm{~V} \mathrm{Vo}=1 \mathrm{~V}$				
" H " output current	$\mathrm{IOH}^{\text {O}}$	9	$\mathrm{Vcc} 1=5.0 \mathrm{~V} \mathrm{Vo}=1 \mathrm{~V}$	-	± 250	± 470	$\mu \mathrm{A}$
"L" output current	lob	9	$\mathrm{Vcc} 1=5.0 \mathrm{~V} \mathrm{Vo}=2.5 \mathrm{~V}$		± 50	± 130	$\mu \mathrm{A}$
Leak current	$\mathrm{I}_{\text {cpLK }}$	9		-	-	± 50	nA
Supply current 1	$\mathrm{l}_{\mathrm{CC} 1}$		$\mathrm{Vcc} 1=5.5 \mathrm{~V}$	-	24	31	mA
Supply current 2							
4circuits OFF	$\mathrm{I}_{\text {c } 22 A}$	4	$\mathrm{Vcc} 2=12 \mathrm{~V}$	-	-	0.5	mA
1 circuits ON,							
Output open	$\mathrm{I}_{\text {č2 }}$	4	$\mathrm{Vcc} 2=12 \mathrm{~V}$	-	5.0	6.0	mA
Output current 40mA	Iccra	4	$\mathrm{Vcc} 2=12 \mathrm{~V} \mathrm{lo}=-40 \mathrm{~mA}$	-	45.0	46.0	mA
Supply current 3	$\mathrm{I}_{\text {ç3 }}$	11	$\mathrm{Vcc3}=33 \mathrm{~V}$ Output ON	-	3.6	4.5	mA

Note: The typical values are at $\mathrm{Vcc} 1=5.0 \mathrm{~V}, \mathrm{Vcc} 2=12 \mathrm{~V}, \mathrm{Vcc} 3=33 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

M64893AGP

Switching Characteristics

Parameter	$\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{C}, \mathrm{Vcc} 1=5.0 \mathrm{~V}, \mathrm{Vcc}=12 \mathrm{~V}, \mathrm{Vcc} 3=33 \mathrm{~V}$, unless otherwise noted						
	Symbol	Test pin	Test conditions	Limits			Unit used
				Min	Min	Max	
Prescaler operating frequency	fopr	1	$\mathrm{Vcc} 1=4.5$ to 5.5 V	80		1000	MHz
		1	Vin $=$ Vinmin to Vinmax				
Operating input voltage	Vin	13	$\mathrm{Vcc}=4.5$ to 5.5 V				dBm
			80 to 100 MHz	-24	-	4	
			100 to 200 MHz	-27	-	4	
			200 to 800 MHz	-30	-	4	
			800 to 1000 MHz	-27	-	4	
			1000 to 1300 MHz	-24	-	4	
Clock pulse width	t PWC	14	$\mathrm{Vcc} 1=4.5$ to 5.5 V	1	-	-	$\mu \mathrm{s}$
Data setup time	t SU(D)	14	$\mathrm{Vcc} 1=4.5$ to 5.5 V	2	-	-	$\mu \mathrm{s}$
Data hold time	t H(D)	15	$\mathrm{Vcc} 1=4.5$ to 5.5 V	1	-	-	$\mu \mathrm{s}$
Enable setup time	t SU(E)	15	$\mathrm{Vcc} 1=4.5$ to 5.5 V	3	-	-	$\mu \mathrm{s}$
Enable hold time	t H(E)	15,14	$\mathrm{Vcc} 1=4.5$ to 5.5 V	3	-	-	$\mu \mathrm{s}$
Enable data interval time	t INT	13,14,15	$\mathrm{Vcc} 1=4.5$ to 5.5 V	1	-	-	$\mu \mathrm{s}$
Rise time	tr	13,14,15	$\mathrm{Vcc} 1=4.5$ to 5.5 V	-	-	1	$\mu \mathrm{s}$
Fall time	tf	15	$\mathrm{Vcc} 1=4.5$ to 5.5 V	-	-	1	$\mu \mathrm{s}$
Next enable prohibit time	tbt	13.15	$\mathrm{Vcc} 1=4.5$ to 5.5 V	5	-	-	$\mu \mathrm{s}$
Next clock prohibit time	tbcl		$\mathrm{Vcc} 1=4.5$ to 5.5 V	5	-	-	$\mu \mathrm{s}$

Application Example

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's andication, they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams,
. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
ine infor
ity for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
When using any or all of the information
evaluate all information as a total system no responsibility for any damage, liability or other loss resulting from the information contained herein. is potentially at stake. Please contact Renesas Technology Corp or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA $95134-1368$, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: < $852>2375-6836$
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

