TELEPHONE SPEECH CIRCUIT WITH MULTIFREQUENCY TONE GENERATOR INTERFACE

- PRESENTS THE PROPER DC PATH FOR THE LINE CURRENT, PARTICULAR CARE BEING PAID TO HAVE LOW VOLTAGE DROP
- HANDLES THE VOICE SIGNAL, PERFORMING THE $2 / 4$ WIRES INTERFACE AND CHANGING THE GAIN ON BOTH SENDING AND RECEIVING AMPLIFIERS TO COMPENSATE FOR LINE ATTENUATION BY SENSING EITHER THE LINE CURRENT OR THE LINE VOLTAGE. IN ADDITION, THE LS656 CAN ALSO WORK IN FIXED GAIN MODE
- ACTS AS LINEAR INTERFACE FOR MF, SUPPLYING A STABILIZED VOLTAGE TO THE DIGITALCHIP AND DELIVERING TO THE LINE THE MF TONES GENERATED BY THE M761

DESCRIPTION

The LS656 is a monolithic integrated circuit in 16lead plastic package to replace the hybrid circuit in telephone set. It works with the same type of transducers for both transmitter and receiver (typically dynamic capsules). Many of its electrical char-

acteristics can be controlled by means of external components to meet different specifications.
In addition to the speech operation, the LS656 acts as an interface for the MF tone signal (particularly for M761 C/MOS frequency synthesizer).

BLOCK DIAGRAM (DIP16)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{L}	Line Voltage (3 ms pulse duration)	22	V
I_{L}	Forward Line Current	150	mA
I_{L}	Reverse Line Current	-150	mA
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	1	W
$\mathrm{~T}_{\text {op }}$	Operating Temperature	-45 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Parameter	Value	Unit
$R_{\text {th } j \text {-amb }}$	Thermal Resistance Junction-ambient	Max	80
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

PIN CONNECTIONS (top view)

TEST CIRCUITS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

ELECTRICAL CHARACTERISTICS (refer to the test circuits, $\mathrm{V}_{\mathrm{G}}=1$ to $2 \mathrm{~V}, \mathrm{IL}=12$ to $80 \mathrm{~mA}, \mathrm{~S} 1$, S2 and S3 in (a), $\mathrm{T}_{\mathrm{amb}}=-25$ to $+50^{\circ} \mathrm{C}, \mathrm{f}=200$ to 3400 Hz , unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit	Fig.

SPEECH OPERATION

V ${ }_{\text {L }}$	Line Voltage	$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{L}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{L}} & =30 \mathrm{~mA} \\ \mathrm{~L}_{\mathrm{L}} & =60 \mathrm{~m} \end{aligned}$	3.4		4.0 5.1 7.0	V	-
CMR	Common Mode Rejection	$\mathrm{f}=1 \mathrm{kHz}$	50			dB	1
Gs	Sending Gain	$\begin{aligned} \mathrm{T}_{\mathrm{mab}} & =25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}, \\ \mathrm{~V}_{\mathrm{MI}} & =2 \mathrm{mV} \\ \mathrm{IL} & =25 \mathrm{~mA} \\ \mathrm{LL} & =50 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 48 \\ & 44 \end{aligned}$		$\begin{aligned} & 51 \\ & 47 \end{aligned}$	dB	2
	Sending Gain Flatness (versus frequency)	$\mathrm{V}_{\mathrm{MI}}=2 \mathrm{mV}, \mathrm{f}_{\text {ref }}=1 \mathrm{kHz}$	- 1		+ 1	dB	2
	Sending Gain Flatness (versus current)	$\begin{aligned} & \mathrm{V}_{\mathrm{MI}}=3 \mathrm{mV}, \mathrm{I}_{\text {ref }}=50 \mathrm{~mA}, \\ & \mathrm{~S} 3 \text { in (b) } \end{aligned}$	- 1		+ 1	dB	2
	Sending Distortion	$\begin{gathered} \mathrm{f}=1 \mathrm{kHz}, \mathrm{LL}=16 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{so}}=775 \mathrm{mV} \\ \mathrm{~V}_{\mathrm{so}}=900 \mathrm{mV} \end{gathered}$			$\begin{gathered} 3 \\ 10 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	2
	Sending Noise	$\mathrm{V}_{\mathrm{MI}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{G}}=1 \mathrm{~V} ; \mathrm{S} 1$ in (b)		- 71		dBmp	2
	Microphone Input Impedance (pin 1-16)	$\mathrm{V}_{\mathrm{MI}}=2 \mathrm{mV}$	40			$\mathrm{k} \Omega$	-
	Sending Gain in MF Operation	$\mathrm{V}_{\mathrm{MI}}=2 \mathrm{mV}$, S 2 in (b)	-30			dB	2
G_{R}	Receiving gain	$\begin{aligned} \mathrm{V}_{\mathrm{RI}} & =0.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \\ \mathrm{~T}_{\mathrm{amb}} & =25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{L}} & =25 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{L}} & =50 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} -6 \\ -11 \end{array}$		$\begin{aligned} & -3 \\ & -8 \end{aligned}$	dB	3
	Receiving Gain Flatness (vs. freq.)	$\mathrm{V}_{\mathrm{RI}}=0.3 \mathrm{~V}, \mathrm{f}_{\text {ref }}=1 \mathrm{kHz}$	-1		+1	dB	3
	Receiving Gain Flatness (vs. current)	$\begin{aligned} & \mathrm{V}_{\mathrm{RI}}=0.3 \mathrm{~V}, \mathrm{I}_{\text {ref }}=50 \mathrm{~mA}, \\ & \mathrm{~S} 3 \text { in }(\mathrm{b}) \end{aligned}$	-1		+ 1	dB	3
	Receiving Distortion	$\begin{gathered} f=1 \mathrm{kHz}, \mathrm{~L}=15 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{RO}}=400 \mathrm{mV} \\ \mathrm{~V}_{\mathrm{RO}}=450 \mathrm{mV} \end{gathered}$			$\begin{gathered} 3 \\ 10 \end{gathered}$	\%	3
	Receiving Noise	$\mathrm{V}_{\mathrm{RI}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{G}}=1 \mathrm{~V} ; \mathrm{S} 1 \mathrm{in}(\mathrm{b})$		150		$\mu \mathrm{V}$	3
	Receiving Ouptut Impedance (pins 12-13)	V RO $=50 \mathrm{mV}$		30		Ω	-
	Sidetone	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~S} 1 \mathrm{in}(\mathrm{~b}) \end{aligned}$			36	dB	2
Z_{ML}	Line Matching Impedance	$\mathrm{V}_{\mathrm{RI}}=0.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$	500	600	700	Ω	3
18	Input Current for Gain Control (pin 8)				-10	$\mu \mathrm{A}$	-

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit	Fig.

MULTIFREQUENCY SYNTHESIZER INTERFACE

VDD	MF Supply Voltage Stand by and Operation	S2 in (b)	2.4	2.5	2.7	V	-
IDD	MF Supply Current Stand by Operation	S2 in (b)	$\begin{gathered} 0.5 \\ 2 \end{gathered}$			mA mA	-
	MF Amplifier Gain	$\mathrm{f}_{\mathrm{MF} \text { in }}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{MF} \text { in }}=80 \mathrm{mV}$	15		17	dB	4
V	DC Input Voltage Level (pin 14)	$\mathrm{V}_{\mathrm{MF} \text { in }}=80 \mathrm{mV}$		$\begin{gathered} V_{D D} \\ \times 0.3 \end{gathered}$		V	-
R_{I}	Input Impedance (pin 14)	$\mathrm{V}_{\text {MF in }}=80 \mathrm{mV}$	60			$\mathrm{k} \Omega$	-
d	Distortion	$\mathrm{V}_{\mathrm{MF} \mathrm{in}}=150 \mathrm{mVp}, \mathrm{IL}>17 \mathrm{~mA}$			4	\%	4
	Starting Delay Time				5	ms	-
	Muting Threshold Voltage (pin3)	Speech Operation MF Operation	1.6		1	V	-
	Muting Stand by Current (pin 3))				-10	$\mu \mathrm{A}$	-
	Muting Operating Current (pin 3)	S2 in (b)			+ 10	$\mu \mathrm{A}$	-

CIRCUIT DESCRIPTION

1. DC Characteristic

The fig. 5 shows the DC equivalent circuit of the LS656.
A fixed amount I_{0} of the total available current I_{L} is drained for the proper operation of the circuit. The value of I_{0} can be programmed externally by changing the value of the bias resistor connected to pin 4 (see block diagram).
The minimum value of I_{0} is 7.5 mA .
The voltage $\mathrm{V}_{0}=37 \mathrm{~V}$ of the shunt regulator is independent of the line current.
The shunt regulator (2) is controlled by a temperature compensated voltage reference (1) (see the
block diagram).
Fig. 6 shows a more detailed circuit configuration of the shunt regulator.
Thedifference $l_{-}-I_{o}$ flowsthrough the shunt regulator being l_{b} negligible. l_{a} is an internal constant current generator; hence $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{B}}+\mathrm{l}_{\mathrm{a}} . \mathrm{R}_{\mathrm{a}}=3.7 \mathrm{~V}$.
The $\mathrm{V}_{\mathrm{L}}, \mathrm{I}_{\mathrm{L}}$ characteristic of the device is therefore similar to a pure resistance in series to a battery.
It is important to note that the DC voltage at pin 5 is proportional to the line current $\left(\mathrm{V}_{5}=\mathrm{V}_{7}+\mathrm{V}_{\mathrm{B}}=(\mathrm{LL}\right.$ $\left.\mathrm{I}_{0}\right) \mathrm{R} 3+\mathrm{V}_{\mathrm{B}}$).
The DC characteristic of the LS656 is shown in fig. 7.

Figure 5 : EquivalentDC Load to the Line.

Figure 6 : Circuit Configuration of the Shunt Regulator.

Figure 7 : DC Characteristic.

2. Two to Four Wires Conversion

The LS656 performs the two wires (line) to four wires (microphone, earphone) conversion by means of a Wheatstone bridge configuration so obtaining the proper decoupling between sending and receiving signals (see fig. 8).
For a perfect balancing of the bridge $\frac{Z_{L}}{Z_{B}}=\frac{R_{1}}{R_{2}}$
The AC signal from the microphone is sent to one diagonal of the bridge (pin 6 and 9). A small percentage of the signal power is lost on Z_{B} (being Z_{B} $\gg \mathrm{Z}_{\mathrm{L}}$) ; the main part is sent to the line via R 1 . In receiving mode, the AC signal coming from the line is
sensed across the second diagonal of the bridge (pin 11 and 10). After amplification it is appliedto the receiving capsule.
The impedance Z_{M} is simulated by the shunt regulator that is also intended to work as a transconductance amplifier for the transmission signal.
The impedance Z_{M} is defined as $\frac{\Delta V_{6-9}}{\Delta I_{6-9}}$
From fig. 6 considering C1 as a short circuit for AC signal, any variation $\Delta \mathrm{V}_{6}$ generates a variation :

$$
\Delta \mathrm{V}_{7}=\Delta \mathrm{V}_{\mathrm{A}}=\Delta \mathrm{V}_{6} \cdot \frac{\mathrm{R}_{\mathrm{b}}}{\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}}
$$

SCS-THOMSON

The corresponding current is

$$
\Delta \mathrm{I}=\frac{\Delta \mathrm{V}_{7}}{\mathrm{R}_{3}}
$$

Therefore

$$
\mathrm{Z}_{\mathrm{M}}=\frac{\Delta \mathrm{V}_{6}}{\Delta \mathrm{l}}=\mathrm{R} 3\left(1+\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{R}_{\mathrm{b}}}\right)
$$

The total impedance across the line connections (pin 11 and 9) is given by

$$
\mathrm{Z}_{\mathrm{ML}}=\mathrm{R} 1+\mathrm{Z}_{\mathrm{M}} / /\left(\mathrm{R} 2+\mathrm{Z}_{\mathrm{B}}\right)
$$

By choosing $\mathrm{Z}_{\mathrm{M}} \geq \mathrm{R} 1$ and $\mathrm{Z}_{\mathrm{B}} \geq \mathrm{Z}_{\mathrm{M}}$

$$
\mathrm{Z}_{\mathrm{ML}} \cong \mathrm{Z}_{\mathrm{M}}=\mathrm{R} 3\left(1+\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{R}_{\mathrm{b}}}\right)
$$

The received signal amplitude across pin 11 and 10 can be changed using different value of R1 (of course the relationship $\mathrm{Z}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{B}}=\mathrm{R} 1 / \mathrm{R} 2$ must be always valid).
The received signal is related to $R 1$ value according to the approximated relationship :

$$
V_{R}=2 V_{R I} \frac{R_{1}}{R_{1}+Z_{M}}
$$

Note that by changing the value of R1, the transmission signal current is not changed, being the microphone amplifier a transconductance amplifier.

3. Automatic Gain Control

The LS656 automatically adjusts the gain of the sending and receiving amplifiers to compensate for line attenuation.
This function is performed by the circuit of fig. 9 .
The differential stage is progressively unbalanced by changing V_{G} in the range 1 to 2 V ($\mathrm{V}_{\mathrm{REFG}}$ is an internal reference voltage, temperature compensated).
It changes the current I_{G}, and this current is used as a control quantity for the variable gain stages (amplifier (4) and (5) in the block diagram). The voltage V_{G} can be taken :
a) from the LS656 itself (both in variable and in fixed mode) and.
b) from a resistive divider, directly at the end of the line.
a) In the first case, connecting V_{G} (pin8) to the regulator bypass (pin 5) it is possible to obtain a gain characteristic depending on the current.
In fact (see fig. 6)

$$
V_{5}=V_{B}+V_{7} \cong V_{B}=\left(I_{L}-I_{0}\right) R 3
$$

The starting point of the automatic level control is obtained at $\mathrm{L}_{\mathrm{L}}=25 \mathrm{~mA}$ when the drain current $\mathrm{I}_{0}=7.5 \mathrm{~mA}$.
Minimum gain is reached for a line current of about 50 mA for the same drain current $\mathrm{I}_{0}=7.5 \mathrm{~mA}$. When
I_{0} is increased by means of the external resistor connected to pin 4, the two above mentioned values of the line current for the starting point and for the minimum gain increase accordingly.
It is also possible to change the starting point without changing l_{0} by connecting pin 8 to the centre of a resistive divider placed between pin 5 and ground (the total resistance seen by pin 5 must be at least 100 $K \Omega$). In this case, the AGC range increases too; for example using a division $1: 1(50 \mathrm{~K} / 50 \mathrm{~K})$ the AGC starting point shifts to about $L_{L}=40 \mathrm{~mA}$, and the minimum gain is obtained at $I_{L}=95 \mathrm{~mA}$. In addition to this operation mode, the V_{G} voltage can be maintained constant thus fixing the gain value (Rx, Tx) independently of the line conditions.
For this purpose the $V_{D D}$ voltage, available for supplying the MF generator, can be used.
b) When gains have to be related to the voltage at the line terminals of the telephone set, it is necessary to obtain V_{G} froma resistive divider directly connected to the end of the line.
This type of operationmeets the requirements of the French standard. (See the application circuit of fig. 13).

4. Transducer Interfacing

The microphone amplifier (3) has a differential input stage with high impedance ($\cong 40 \mathrm{k} \Omega$) so allowing a good matching to the microphone by means of external resistor without affecting the sending gain. The receiving output stage (6) is particularly intended to drive dynamic capsules. (Low output impedance (100Ω max) ; high current capability 3 mAp).
When a piezoceramic capsule is used, it is useful to increase the receiving gain by increasing R1 value (see the relationship for V_{R}).
Whit very low impedance transducer, DC decoupling by an external capacitor must be provided to prevent a large DC current flow across the transducer itself due to the receiving output stage offset.

5. Multifrequency Interfacing

The LS656 acts as a linear interface for the Multifrequency synthesizer M761 according to a logical signal (mute function) present on pin 3.
When no key of the keyboard is pressed the mute state is low and the LS656 feeds the M761 through pin 15 with low voltage and low current (standby operation of the M761). The oscillator of the M761 is not operating.
When one key is pressed, the M761 sends a "high state" mute condition to the LS656. A voltage com-
parator (8) of LS656 drives internal electronic switches ; the voltage and the current delivered by the voltage supply (9) are increased to allow the operation of the oscillator.
This extra current is diverted by the receiving and sending section of the LS656 and during this operation the receiving output stage is partially inhibited and the input stages of sending and receiving amplifiers are switched OFF.

A controlled amount of the signalling is allowed to reach the earphone to give a feedback to the subscriber ; the MF amplifier (10) delivers the dial tones to the sending paths.
The mute function can be used also when a temporary inhibition of the output signal is requested. The application circuit shown in fig. 10 fulfils the EUROPE II standard ($-6,-8 \mathrm{dBm}$). If the EUROPE I levels are required $(-9,-11 \mathrm{dBm})$ an external divider

Figure 8 : Two to Four Wires Conversion.

Figure 9.

APPLICATION INFORMATION

Figure 10 : Application Circuit with Multifrequency (Europe II STD).

Figure 11 : Application Circuit with Multifrequency (Europe I STD).

Figure 12 : Sending and Receiving Gain vs. Line Current (application circuit of fig. 10).

Figure 13 : Application Circuit without Multifrequency.

Figure 14 : Application Circuit with Gain Controlled by Line Voltage (french standard).

Figure 15 : Application Circuit with Fixed Gain Operation.

$$
\begin{array}{ll}
R y=0 & \text { Main gain condition } \\
R x=0 & \text { Main gain condition }
\end{array}
$$

Figure 16 : External Mute Function.

In addition to the above mentioned applications, different values for the external components can be used in order to satisfy different requirements.
The following table (refer to the application circuit of fig. 10) can help the designers.

Component	Value	Purpose	Note
R1	30Ω	Bridge Resistors	R1 controls the receiving gain. When high current values are allowed, R1 must be able to dissipate up to 1 W . The Ratio R2/R1 fixes the amount of signal delivered to the line. R1 helps in fixing the DC characteristics (see R3 note).
R2	330Ω		
R3	30Ω	Line Current Sensing Fixing DC Characteristic	The relationships involving R3 are: $\begin{aligned} & Z_{M L}=\left(20 R 3 / / Z_{B}\right)+R 1, G_{S}=K \cdot \frac{Z_{L} / / Z_{M L}}{R_{3}} \text { and } \\ & V_{L}=\left(\mathrm{IL}_{\mathrm{L}}-I_{0}\right)(R 3+R 1)+V_{0} ; V_{0}=3.7 \mathrm{~V} \end{aligned}$ Without any problem it is possible to have a $Z_{M L}$ ranging from 600 up to 900Ω. As far as the power dissipation is concerned, see R1 note.
R4	$13 \mathrm{k} \Omega$	Bias Resistor	The suggested value assures the minimum operating current. It is possible to increase the supply current by decreasing R4 (they are inversely proportional), in order to achieve the shifting of the AGC starting point. (see fig. 16). After R4 changement, so
R5	2.2k Ω	Balance Network	It's possible to change R5 and R6 values in order to improve the matching to different lines; in any case: $\frac{Z_{L}}{Z_{B}}=\frac{R_{1}}{R_{2}}, Z_{B}=R 5+R 6 / / X_{C 4}$
R6	$6.8 \mathrm{k} \Omega$		
R7-R7'	100Ω	Receiver Impedance Matching	R7 and R7', must be equal ; the suggested value is good for matching to dynamic capsule ; there is no problem in increasing and decreasing (down to 0Ω) this value. A DC decoupling must be inserted when low resistance levels are used to stop
R8	200Ω	Microphone Impedance Matchin	
C1	10رF	Regulator AC byPass	A value greater than $10 \mu \mathrm{~F}$ gives a system start time too high for low current line during MF operation; a lower value gives an alteration of the AC line impedance at low frequency.
C2	47nF	Matching to a Capacitive Line	C2 changes with the characteristics of the transmission line.
C3	82nF	Receiving Gain Flatness	C3 depends on balancing and line impedance versus frequency.
C4	15nF	Balance Network	See note for R5, R6.
C5	$0.33 \mu \mathrm{~F}$	DC Filtering	The C5 range is from $0.1 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$. The lowest value is ripple limited, the higher value is starting up time limited.
C6-C7	1000pF	RF byPass	
C8	100 $\mu \mathrm{F}$	Receiving Output DC Decoupling	See note for R7, R7.
C9	$1 \mu \mathrm{~F}$	Receiving Input DC Decoupling	

DIP16 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.100	0.787
E		8.5			0.700	
e		17.78				0.280
e3			7.1		0.130	
F			5.1			0.201
i		3.3				
L			1.27		050	
Z						

SO20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1	45° (typ.)					
D	12.6		13.0	0.496		0.510
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.4		7.6	0.291		0.300
L	0.5		1.27	0.020		0.050
M			0.75			0.030
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

