MOS INTEGRATED CIRCUIT μ PD431000A

1M-BIT CMOS STATIC RAM 128K-WORD BY 8-BIT

Description

The μ PD431000A is a high speed, low power, and $1,048,576$ bits (131,072 words by 8 bits) CMOS static RAM.
The μ PD431000A has two chip enable pins (/CE1, CE2) to extend the capacity. And battery backup is available. In addition to this, A and B versions are low voltage operations.

The μ PD431000A is packed in 32-pin PLASTIC DIP, 32-pin PLASTIC SOP and 32 -pin PLASTIC TSOP (I) (8×13.4 $\mathrm{mm})$ and $(8 \times 20 \mathrm{~mm})$.

Features

- 131,072 words by 8 bits organization
- Fast access time: 70, 85, 100, 120, 150 ns (MAX.)
- Low voltage operation (A version: $\mathrm{Vcc}=3.0$ to 5.5 V , B version: $\mathrm{Vcc}=2.7$ to 5.5 V)
- Operating ambient temperature: $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$
- Low Vcc data retention: 2.0 V (MIN.)
- Output Enable input for easy application
- Two Chip Enable inputs: /CE1, CE2

Part number	Access time ns (MAX.)	Operating supply voltage V	Operating ambient temperature ${ }^{\circ} \mathrm{C}$	Supply current		
				At operating mA (MAX.)	At standby $\mu \mathrm{A}(\mathrm{MAX} .)$	At data retention $\mu \mathrm{A}(\mathrm{MAX} .)^{\text {Note1 }}$
$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{xxL}$	70, 85	4.5 to 5.5	0 to 70	70	100	15
$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{xxLL}$					20	3
$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{Axx}$	$70^{\text {Note2 }}, 100$	3.0 to 5.5		$35^{\text {Note3 }}$	$13^{\text {Note5 }}$	
$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{Bxx}$	$70^{\text {Note2 }}, 100,120,150$	2.7 to 5.5		$30^{\text {Note4 }}$	$11^{\text {Note6 }}$	

Notes 1. $\mathrm{T}_{\mathrm{A}} \leq 40^{\circ} \mathrm{C}$
2. $\mathrm{Vcc}=4.5$ to 5.5 V
3. $70 \mathrm{~mA}(\mathrm{Vcc}>3.6 \mathrm{~V})$
4. $70 \mathrm{~mA}(\mathrm{Vcc}>3.3 \mathrm{~V})$
5. $20 \mu \mathrm{~A}(\mathrm{Vcc}>3.6 \mathrm{~V})$
6. $20 \mu \mathrm{~A}(\mathrm{Vcc}>3.3 \mathrm{~V})$

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Ordering Information

Part number	Package	Access time ns (MAX.)	Operating supply voltage V	Operating ambient temperature or	

Pin Configurations (Marking Side)

/xxx indicates active low signal.

32-pin PLASTIC DIP (15.24 mm (600))
 [μ PD431000ACZ-xxL]
 [μ PD431000ACZ-xxLL]

A0-A16	Address inputs
I/O1-I/O8	Data inputs / outputs
/CE1, CE2	Chip Enable 1, 2
/WE	Write Enable
/OE	Output Enable
Vcc	Power supply
GND	Ground
NC	No connection

Remark Refer to Package Drawings for the 1-pin index mark.

32-pin PLASTIC SOP (13.34 mm (525))
 [μ PD431000AGW-xxL]
 [μ PD431000AGW-xxLL]
 [μ PD431000AGW-Axx]
 [μ PD431000AGW-Bxx]

A0-A16	: Address inputs
I/O1- I/O8	: Data inputs / outputs
/CE1, CE2	: Chip Enable 1, 2
IWE	: Write Enable
/OE	: Output Enable
Vcc	: Power supply
GND	: Ground
NC	: No connection

Remark Refer to Package Drawings for the 1-pin index mark.

32-pin PLASTIC TSOP(I) (8x20) (Normal bent)
 [μ PD431000AGZ-xxL-KJH]
 [μ PD431000AGZ-xxLL-KJH]
 [μ PD431000AGZ-Bxx-KJH]

32-pin PLASTIC TSOP(I) (8x20) (Reverse bent)
 [μ PD431000AGZ-xxLL-KKH]
 [μ PD431000AGZ-Bxx-KKH]

/OE $\longrightarrow 32$	1	- A11
A10 $\longrightarrow 31$	2	A9
$/ C E 1 \bigcirc 30$	3	A8
I/O8 $\longrightarrow 29$	4	A13
$\mathrm{l} / \mathrm{O7} \bigcirc \longleftrightarrow 28$	5	/WE
I/O6 $\longleftrightarrow 27$	6	CE2
I/O5 $\longleftrightarrow 26$	7	A15
$\mathrm{l} / \mathrm{O} 4 \bigcirc \longrightarrow 25$	8	V cc
GND -24	9	NC
$\mathrm{I} / \mathrm{O} 3 \bigcirc \longrightarrow 23$	10	A16
$\mathrm{l} / \mathrm{O} 2 \bigcirc \longleftrightarrow 22$	11	A14
$\mathrm{l} / \mathrm{O} 1 \bigcirc \longrightarrow 21$	12	A12
A0 $\longrightarrow 20$	13	A7
A1 $\longrightarrow 19$	14	\longleftarrow A6
$\mathrm{A} 2 \bigcirc \longrightarrow 18$	15	$\bigcirc \mathrm{A} 5$
$\mathrm{A} 3 \bigcirc \longrightarrow 17$	16	$\bigcirc \mathrm{A} 4$

A0-A16	Address inputs
I/O1- I/O8	Data inputs / outputs
/CE1, CE2	Chip Enable 1, 2
/WE	Write Enable
/OE	Output Enable
Vcc	Power supply
GND	Ground
NC	No connection

Remark Refer to Package Drawings for the 1-pin index mark.

32-pin PLASTIC TSOP(I) (8x13.4) (Normal bent)
 [μ PD431000AGU-Bxx-9JH]

32-pin PLASTIC TSOP(I) (8×13.4) (Reverse bent)
$[\mu$ PD431000AGU-Bxx-9KH]

A0-A16	: Address inputs
I/O1- I/O8	: Data inputs / outputs
/CE1, CE2	: Chip Enable 1, 2
IWE	: Write Enable
/OE	: Output Enable
Vcc	: Power supply
GND	: Ground
NC	: No connection

Remark Refer to Package Drawings for the 1-pin index mark.

Block Diagram

Truth Table

/CE1	CE2	/OE	/WE	Mode	I/O	Supply current
H	\times	\times	\times	Not selected	High impedance	IsB
\times	L	\times	\times			
L	H	H	H	Output disable		Icca
L	H	L	H	Read	Dout	
L	H	\times	L	Write	Din	

Remark \times : Vін or VIL

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	$\mathrm{Vcc}_{\mathrm{cc}}$		$-0.5^{\text {Note }}$ to +7.0	V
Input / Output voltage	V_{T}		$-0.5^{\text {Note }}$ to $\mathrm{Vcc}+0.5$	V
Operating ambient temperature	T_{A}		0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

Note -3.0 V (MIN.) (Pulse width: 30 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	$\begin{aligned} & \mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{xxL} \\ & \mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{xxLL} \end{aligned}$		$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{Axx}$		$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{Bxx}$		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Supply voltage	Vcc		4.5	5.5	3.0	5.5	2.7	5.5	V
High level input voltage	V_{IH}		2.2	$\mathrm{Vcc}+0.5$	2.2	Vcc+0.5	2.2	Vcc+0.5	V
Low level input voltage	VIL		$-0.3{ }^{\text {Note }}$	+0.8	$-0.3{ }^{\text {Note }}$	+0.5	$-0.3{ }^{\text {Note }}$	+0.5	V
Operating ambient temperature	TA		0	70	0	70	0	70	${ }^{\circ} \mathrm{C}$

Note -3.0 V (MIN.) (Pulse width: 30 ns)

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	$\mathrm{C}_{I N}$	$\mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$			6	pF
Input / Output capacitance	$\mathrm{C}_{1 / 0}$	$\mathrm{~V}_{1 / \mathrm{O}}=0 \mathrm{~V}$			10	pF

Remarks 1. Vin: Input voltage
V/IO : Input/ Output voltage
2. These parameters are not 100% tested.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (1/2)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} \& \multirow[t]{2}{*}{Symbol} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Test condition}} \& \multicolumn{3}{|l|}{\(\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{xxL}\)} \& \multicolumn{3}{|l|}{\(\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{xxLL}\)} \& \multicolumn{3}{|l|}{\(\mu\) PD431000A-Axx} \& \multirow[t]{2}{*}{Unit} \\
\hline \& \& \& \& MIN. \& TYP. \& MAX. \& MIN. \& TYP. \& MAX. \& MIN. \& TYP. \& MAX. \& \\
\hline Input leakage current \& l I \& V IN \(=0 \mathrm{~V}\) to Vcc \& \& -1.0 \& \& +1.0 \& -1.0 \& \& +1.0 \& -1.0 \& \& +1.0 \& \(\mu \mathrm{A}\) \\
\hline I/O leakage current \& ILo \& \[
\begin{aligned}
\& V_{\text {IO }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}, \\
\& / \mathrm{CE} 1=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{CE} 2=\mathrm{V} \\
\& \text { or } / \mathrm{WE}=\mathrm{V}_{\mathrm{IL}} \text { or } / \mathrm{OE}=
\end{aligned}
\] \& \& -1.0 \& \& +1.0 \& -1.0 \& \& +1.0 \& -1.0 \& \& +1.0 \& \(\mu \mathrm{A}\) \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Operating \\
supply current
\end{tabular}} \& Iccal \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { ICE1 }=V_{\mathrm{IL}}, \mathrm{CE} 2=\mathrm{V}_{\mathrm{H}}, \\
\& \mathrm{IIIO}=0 \mathrm{~mA}
\end{aligned}
\] \\
Minimum cycle time
\end{tabular} \& \[
V_{c c} \leq 3.6 \mathrm{~V}
\] \& \& 40 \& 70
- \& \& 40 \& 70
- \& \& 40 \& 70

35 \& mA

\hline \& \multirow[t]{2}{*}{Iccaz} \& \multicolumn{2}{|l|}{$/ C E 1=\mathrm{V}_{\text {IL, }}, \mathrm{CE} 2=\mathrm{V}_{\text {IH, }}$, $\mathrm{I}_{\text {Io }}=0 \mathrm{~mA}$,} \& \& \& 15 \& \& \& 15 \& \& \& 15 \&

\hline \& \& Cycle time $=\infty$ \& $\mathrm{Vcc} \leq 3.6 \mathrm{~V}$ \& \& \& - \& \& \& - \& \& \& 8 \&

\hline \& \multirow[t]{2}{*}{Іccas} \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \text { /CE1 } \leq 0.2 \mathrm{~V}, \mathrm{CE} 2 \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \\
& \text { Cycle time }=1 \mu \mathrm{~s}, \mathrm{IIo}=0 \mathrm{~mA}, \\
& \mathrm{~V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}
\end{aligned}
$$} \& \& \& 10 \& \& \& 10 \& \& \& 10 \&

\hline \& \& \& $\mathrm{Vcc} \leq 3.6 \mathrm{~V}$ \& \& \& - \& \& \& - \& \& \& 8 \&

\hline \multirow[t]{6}{*}{Standby supply current} \& \multirow[t]{2}{*}{IsB} \& \multicolumn{2}{|l|}{$/ C E 1=\mathrm{V}_{\mathrm{IH}}$ or CE2 $=\mathrm{V}_{\mathrm{IL}}$} \& \& \& 3 \& \& \& 3 \& \& \& 3 \& mA

\hline \& \& \& $\mathrm{Vcc} \leq 3.6 \mathrm{~V}$ \& \& \& - \& \& \& - \& \& \& 2 \&

\hline \& \multirow[t]{2}{*}{IsB1} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$$
\begin{aligned}
& / \mathrm{CE} 1 \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \\
& \mathrm{CE} 2 \geq \mathrm{Vcc}-0.2 \mathrm{~V} \quad \mathrm{Vcc} \leq 3.6 \mathrm{~V} \\
& \hline
\end{aligned}
$$}} \& \& 2 \& 100 \& \& 1 \& 20 \& \& 1 \& 20 \& $\mu \mathrm{A}$

\hline \& \& \& \& \& \& - \& \& \& - \& \& 0.5 \& 13 \&

\hline \& \multirow[t]{2}{*}{IsB2} \& \multirow[t]{2}{*}{$\mathrm{CE} 2 \leq 0.2 \mathrm{~V}$} \& \& \& 2 \& 100 \& \& 1 \& 20 \& \& 1 \& 20 \&

\hline \& \& \& $\mathrm{Vcc} \leq 3.6 \mathrm{~V}$ \& \& - \& - \& \& - \& - \& \& 0.5 \& 13 \&

\hline \multirow[t]{3}{*}{High level output voltage} \& \multirow[t]{2}{*}{Voh1} \& \multicolumn{2}{|l|}{Іон $=-1.0 \mathrm{~mA}, \mathrm{Vcc} \geq 4.5 \mathrm{~V}$} \& 2.4 \& \& \& 2.4 \& \& \& 2.4 \& \& \& V

\hline \& \& \multicolumn{2}{|l|}{$\mathrm{IOH}=-0.5 \mathrm{~mA}$} \& - \& \& \& - \& \& \& 2.4 \& \& \&

\hline \& Voh2 \& Іон $=-0.02 \mathrm{~mA}$ \& \& - \& \& \& - \& \& \& Vcc-0.1 \& \& \&

\hline \multirow[t]{3}{*}{Low level output voltage} \& \multirow[t]{2}{*}{VoL1} \& \multicolumn{2}{|l|}{$\mathrm{loL}=2.1 \mathrm{~mA}, \mathrm{Vcc} \geq 4.5 \mathrm{~V}$} \& \& \& 0.4 \& \& \& 0.4 \& \& \& 0.4 \& V

\hline \& \& \multicolumn{2}{|l|}{$\mathrm{loL}=1.0 \mathrm{~mA}$} \& \& \& - \& \& \& - \& \& \& 0.4 \&

\hline \& Vol2 \& \multicolumn{2}{|l|}{$\mathrm{loL}=0.02 \mathrm{~mA}$} \& \& \& - \& \& \& - \& \& \& 0.1 \&

\hline
\end{tabular}

Remarks 1. VIN: Input voltage
VIIO : Input / Output voltage
2. These DC characteristics are in common regardless product classification.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (2/2)

Parameter	Symbol	Test condition	μ PD431000A-Bxx			Unit
			MIN.	TYP.	MAX.	
Input leakage current	Iı	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-1.0		+1.0	$\mu \mathrm{A}$
I/O leakage current	ILo	$\begin{aligned} & \mathrm{V}_{\mathrm{I} \mathrm{O}}=0 \mathrm{~V} \text { to } \mathrm{Vcc}, / \mathrm{CE} 1=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{CE} 2=\mathrm{V}_{\mathrm{IL}} \\ & \text { or } / \mathrm{WE}=\mathrm{V}_{\mathrm{IL}} \text { or } / \mathrm{OE}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	-1.0		+1.0	$\mu \mathrm{A}$
Operating supply current	Icca1	$/ \mathrm{CE} 1=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE} 2=\mathrm{V}_{\mathrm{IH}}, \mathrm{l}_{\text {I/O }}=0 \mathrm{~mA}$		40	70	mA
		Minimum cycle time $\quad \mathrm{Vcc} \leq 3.3 \mathrm{~V}$			30	
	Iccaz	$/ C E 1=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE} 2=\mathrm{V}_{\mathrm{IH}}, \mathrm{l}_{\text {I/ }}=0 \mathrm{~mA}$,			15	
		Cycle time $=\infty$ $\mathrm{Vcc} \leq 3.3 \mathrm{~V}$			7	
	Iccas	$/ C E 1 \leq 0.2 \mathrm{~V}, \mathrm{CE} 2 \geq \mathrm{Vcc}-0.2 \mathrm{~V}$, Cycle time $=1 \mu \mathrm{~s}, \mathrm{l} / \mathrm{o}=0 \mathrm{~mA}$,			10	
		 V IL$\leq 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \quad \mathrm{Vcc}^{2} \leq 3.3 \mathrm{~V}$			7	
Standby supply current	IsB	/CE1 $=\mathrm{V}_{\text {IH }}$ or CE2 $=\mathrm{V}_{\text {IL }}$			3	mA
		$\mathrm{Vcc} \leq 3.3 \mathrm{~V}$			2	
	IsB1	$/ \mathrm{CE} 1 \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \mathrm{CE} 2 \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
		$\mathrm{Vcc} \leq 3.3 \mathrm{~V}$		0.5	11	
	IsB2	$\mathrm{CE} 2 \leq 0.2 \mathrm{~V}$		1	20	
		$\mathrm{Vcc} \leq 3.3 \mathrm{~V}$		0.5	11	
High level output voltage	Voh1	Іон $=-1.0 \mathrm{~mA}, \mathrm{Vcc} \geq 4.5 \mathrm{~V}$	2.4			V
		$\mathrm{O} \mathbf{O}=-0.5 \mathrm{~mA}$	2.4			
	Voh2	$\mathrm{IOH}=-0.02 \mathrm{~mA}$	Vcc-0.1			
Low level output voltage	Vol1	$\mathrm{loL}=2.1 \mathrm{~mA}, \mathrm{Vcc} \geq 4.5 \mathrm{~V}$			0.4	V
		$\mathrm{loL}=1.0 \mathrm{~mA}$			0.4	
	Vol2	$\mathrm{loL}=0.02 \mathrm{~mA}$			0.1	

Remarks 1. Vin: Input voltage
VIIO : Input / Output voltage
2. These DC characteristics are in common regardless product classification.

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

AC Test Conditions

[μ PD431000A-70L, μ PD431000A-85L, μ PD431000A-70LL, μ PD431000A-85LL]
Input Waveform (Rise and Fall Time $\leq 5 \mathbf{n s}$)

Output Waveform

Output Load

AC characteristics should be measured with the following output load conditions.

Figure 1

Figure 2
(tLZ1, tLZ2, tolz, thz1, thz2, tohz, twhz, tow)

Remark C_{L} includes capacitance of the probe and jig, and stray capacitance.
$\star \quad[\mu$ PD431000A-A10, μ PD431000A-B10, μ PD431000A-B12, μ PD431000A-B15]

Input Waveform (Rise and Fall Time $\leq 5 \mathrm{~ns}$)

Output Waveform

Output Load

AC characteristics should be measured with the following output load conditions.

Part number	Output load condition	
	tAA, tco1, tco2, toe, toh	tLz1, tLz2, tolz, thz1, thz2, tohz, twhz, tow
μ PD431000A-A10, μ PD431000A-B10, μ PD431000A-B12	1 TTL +50 pF	$1 \mathrm{TTL}+5 \mathrm{pF}$
μ PD431000A-B15	$1 \mathrm{TTL}+100 \mathrm{pF}$	$1 \mathrm{TTL}+5 \mathrm{pF}$

Read Cycle (1/2)

Parameter	Symbol	$\mathrm{Vcc} \geq 4.5 \mathrm{~V}$				$\mathrm{Vcc} \geq 3.0 \mathrm{~V}$		Unit	Condition
		μ PD431000A-70 μ PD431000A-Axx μ PD431000A-Bxx		$\mu \mathrm{PD} 431000 \mathrm{~A}-85$		$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{A} 10$			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	70		85		100		ns	
Address access time	$t_{\text {AA }}$		70		85		100	ns	Note
/CE1 access time	tcon		70		85		100	ns	
CE2 access time	tco2		70		85		100	ns	
/OE to output valid	toe		35		45		50	ns	
Output hold from address change	toh	10		10		10		ns	
/CE1 to output in low impedance	tız1	10		10		10		ns	
CE2 to output in low impedance	tız2	10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/CE1 to output in high impedance	thz1		25		30		35	ns	
CE2 to output in high impedance	thz2		25		30		35	ns	
/OE to output in high impedance	tohz		25		30		35	ns	

Note See the output load.
Remark These AC characteristics are in common regardless of package types.
\star Read Cycle (2/2)

Parameter	Symbol	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$						Unit	Condition
		$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{B} 10$		μ PD431000A-B12		$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{B} 15$			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	100		120		150		ns	
Address access time	$t_{\text {A }}$		100		120		150	ns	Note
/CE1 access time	tcoi		100		120		150	ns	
CE2 access time	tco2		100		120		150	ns	
/OE to output valid	toe		50		60		70	ns	
Output hold from address change	tor	10		10		10		ns	
/CE1 to output in low impedance	tız1	10		10		10		ns	
CE2 to output in low impedance	tız2	10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/CE1 to output in high impedance	thz1		35		40		50	ns	
CE2 to output in high impedance	thzz		35		40		50	ns	
/OE to output in high impedance	tohz		35		40		50	ns	

Note See the output load.
Remark These AC characteristics are in common regardless of package types.

Read Cycle Timing Chart

Remark In read cycle, /WE should be fixed to high level.

Write Cycle (1/2)

Parameter	Symbol	$\mathrm{Vcc} \geq 4.5 \mathrm{~V}$				$\mathrm{Vcc} \geq 3.0 \mathrm{~V}$		Unit	Condition
		$\begin{aligned} & \mu \mathrm{PD} 431000 \mathrm{~A}-70 \\ & \mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{Axx} \\ & \mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{Bxx} \\ & \hline \end{aligned}$		$\mu \mathrm{PD} 431000 \mathrm{~A}-85$		$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{A} 10$			
		MIN.	MAX.	MIN.	MAX	MIN.	MAX.		
Write cycle time	twc	70		85		100		ns	
/CE1 to end of write	tcw1	55		70		80		ns	
CE2 to end of write	tcw 2	55		70		80		ns	
Address valid to end of write	taw	55		70		80		ns	
Address setup time	tas	0		0		0		ns	
Write pulse width	twp	50		60		60		ns	
Write recovery time	twr	5		5		0		ns	
Data valid to end of write	tow	35		35		60		ns	
Data hold time	toh	0		0		0		ns	
/WE to output in high impedance	twhz		25		30		35	ns	Note
Output active from end of write	tow	5		5		5		ns	

Note See the output load.

Remark These AC characteristics are in common regardless package types.
$\star \quad$ Write Cycle (2/2)

Parameter	Symbol	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$						Unit	Condition
		μ PD431000A-B10		μ PD431000A-B12		μ PD431000A-B15			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	100		120		150		ns	
/CE1 to end of write	tcw1	80		100		120		ns	
CE2 to end of write	tcw2	80		100		120		ns	
Address valid to end of write	taw	80		100		120		ns	
Address setup time	$\mathrm{tas}^{\text {s }}$	0		0		0		ns	
Write pulse width	twp	60		85		100		ns	
Write recovery time	twr	0		0		0		ns	
Data valid to end of write	tow	60		60		80		ns	
Data hold time	toh	0		0		0		ns	
/WE to output in high impedance	twhz		35		40		50	ns	Note
Output active from end of write	tow	5		5		5		ns	

Note See the output load.

Remark These AC characteristics are in common regardless of package types.

Write Cycle Timing Chart 1 (/WE Controlled)

Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
2. Do not input data to the I/O pins while they are in the output state.

Remarks 1. Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.
2. If /CE1 changes to low level at the same time or after the change of /WE to low level, or if CE2 changes to high level at the same time or after the change of $/ \mathrm{WE}$ to low level, the I/O pins will remain high impedance state.
3. When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.

Write Cycle Timing Chart 2 (/CE1 Controlled)

Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
2. Do not input data to the I / O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.

Write Cycle Timing Chart 3 (CE2 Controlled)

Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
2. Do not input data to the I/O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.

Low Vcc Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	$\mu \mathrm{PD} 431000 \mathrm{~A}-\mathrm{xxL}$			μ PD431000A-xxLL μ PD431000A-Axx μ PD431000A-Bxx			Unit
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Data retention supply voltage	VCCDR1	$\begin{aligned} & I C E 1 \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \\ & C E 2 \geq \mathrm{Vcc}-0.2 \mathrm{~V} \end{aligned}$	2.0		5.5	2.0		5.5	V
	VCCDR2	CE2 $\leq 0.2 \mathrm{~V}$	2.0		5.5	2.0		5.5	
Data retention supply current	ICCDR1	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, / \mathrm{CE} 1 \geq \mathrm{V} \mathrm{cc}-0.2 \mathrm{~V}, \\ & \mathrm{CE} 2 \geq \mathrm{V} \mathrm{cc}-0.2 \mathrm{~V} \end{aligned}$		1	$50^{\text {Note1 }}$		0.5	$10^{\text {Note2 }}$	$\mu \mathrm{A}$
	ICCDR2	$\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{CE} 2 \leq 0.2 \mathrm{~V}$		1	$50^{\text {Note1 }}$		0.5	$10^{\text {Note2 }}$	
Chip deselection to data retention mode	tcor		0			0			ns
Operation recovery time	tr		5			5			ms

Notes 1. $15 \mu \mathrm{~A}\left(\mathrm{~T}_{\mathrm{A}} \leq 40^{\circ} \mathrm{C}\right)$
2. $3 \mu \mathrm{~A}\left(\mathrm{~T}_{\mathrm{A}} \leq 40^{\circ} \mathrm{C}\right)$

Data Retention Timing Chart

(1) /CE1 Controlled

Note A version : 3.0 V, B version : 2.7 V

Remark On the data retention mode by controlling /CE1, the input level of CE2 must be CE2 $\geq \mathrm{Vcc}-0.2 \mathrm{~V}$ or CE 2 $\leq 0.2 \mathrm{~V}$. The other pins (Address, I/O, /WE, /OE) can be in high impedance state.
(2) CE2 Controlled

Note A version : 3.0 V, B version : 2.7 V

Remark On the data retention mode by controlling CE2, the other pins (/CE1, Address, I/O, /WE, /OE) can be in high impedance state.

Package Drawings

32-PIN PLASTIC DIP (15.24mm(600))

NOTES

1. Each lead centerline is located within 0.25 mm of its true position (T.P.) at maximum material condition.
2. Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS
A	40.64 MAX.
B	1.27 MAX.
C	2.54 (T.P.)
D	0.50 ± 0.10
F	1.1 MIN.
G	3.2 ± 0.3
H	0.51 MIN.
I	4.31 MAX.
J	$5.08 \mathrm{MAX}$.
K	15.24 (T.P.)
L	13.2
M	$0.25_{-0.05}^{+0.10}$
N	0.25
P	0.9 MIN.
R	$0-15^{\circ}$
	P32C-100-600A-2

32-PIN PLASTIC SOP (13.34 mm (525))

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	20.61 MAX.
B	0.78 MAX.
C	1.27 (T.P.)
D	$0.40_{-0.0}^{+0.10}$
E	0.15 ± 0.05
F	2.95 MAX.
G	2.7
H	14.1 ± 0.3
I	11.3
J	1.4 ± 0.2
K	$0.20_{-0}^{+0.10}$
L	0.8 ± 0.2
M	0.12
N	0.10
P	$3^{\circ+{ }_{-3}}{ }^{\circ}$
	P32GW-50-525A-1

32-PIN PLASTIC TSOP(I) (8x20)

detail of lead end

NOTES

1. Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
2. "A" excludes mold flash. (Includes mold flash : 8.3 mm MAX.)

ITEM	MILLIMETERS
A	8.0 ± 0.1
B	0.45 MAX.
C	0.5 (T.P.)
D	0.22 ± 0.05
E	0.1 ± 0.05
F	1.2 MAX.
G	0.97 ± 0.08
I	18.4 ± 0.1
J	0.8 ± 0.2
K	0.145 ± 0.05
L	0.5
M	0.10
N	0.10
P	20.0 ± 0.2
Q	$3_{-3}^{\circ+5}{ }_{-}^{\circ}$
R	0.25
S	0.60 ± 0.15
	S32GZ-50-KJH1-2

32-PIN PLASTIC TSOP(I) (8x20)

notes

1. Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
2. "A" excludes mold flash. (Includes mold flash : 8.3 mm MAX.)

ITEM	MILLIMETERS	
A	8.0 ± 0.1	
B	0.45 MAX.	
C	0.5 (T.P.)	
D	0.22 ± 0.05	
E	0.1 ± 0.05	
F	1.2 MAX.	
G	0.97 ± 0.08	
I	18.4 ± 0.1	
J	0.8 ± 0.2	
K	0.145 ± 0.05	
L	0.5	
M	0.10	
N	0.10	
P	20.0 ± 0.2	
Q	$3^{\circ}{ }_{-3}{ }^{\circ}{ }^{\circ}$	
R	0.25	
S	0.60 ± 0.15	
	S32GZ-50-KKH1-2	

32-PIN PLASTIC TSOP(I) (8x13.4)

detail of lead end

NOTES

1. Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.
2. "A" excludes mold flash. (Includes mold flash : 8.3 mm MAX.)

ITEM	MILLIMETERS
A	8.0 ± 0.1
B	0.45 MAX.
C	0.5 (T.P.)
D	0.22 ± 0.05
G	1.0 ± 0.05
H	12.4 ± 0.2
I	11.8 ± 0.1
J	0.8 ± 0.2
K	$0.145_{-0.015}^{+0.025}$
L	0.5
M	0.08
N	0.08
P	13.4 ± 0.2
Q	0.1 ± 0.05
R	$3^{\circ}{ }_{-3}{ }^{\circ}$
S	1.2 MAX.
T	0.25
U	0.6 ± 0.15
	P32GU-50-9JH-2

* 32-PIN PLASTIC TSOP(I) (8x13.4)

detail of lead end

NOTES

1. Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.
2. "A" excludes mold flash. (Includes mold flash : 8.3 mm MAX.)

ITEM	MILLIMETERS
A	8.0 ± 0.1
B	0.45 MAX.
C	0.5 (T.P.)
D	0.22 ± 0.05
G	1.0 ± 0.05
H	12.4 ± 0.2
I	11.8 ± 0.1
J	0.8 ± 0.2
K	$0.145_{-0.015}^{+0.025}$
L	0.5
M	0.08
N	0.08
P	13.4 ± 0.2
Q	0.1 ± 0.05
R	$3^{\circ+5^{\circ}}$
S	1.2 MAX.
T	0.25
U	0.6 ± 0.15
	P32GU-50-9KH-2

Recommended Soldering Conditions

The following conditions must be met when soldering conditions of the μ PD431000A.
For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).
Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

Types of Surface Mount Device

```
\muPD431000AGW-xxL : 32-pin PLASTIC SOP (13.34 mm (525))
\muPD431000AGW-xxLL : 32-pin PLASTIC SOP (13.34 mm (525))
\muPD431000AGW-Axx : 32-pin PLASTIC SOP (13.34 mm (525))
\muPD431000AGW-Bxx : 32-pin PLASTIC SOP (13.34 mm (525))
\muPD431000AGZ-xxL-KJH : 32-pin PLASTIC TSOP(I) (8x20) (Normal bent)
\muPD431000AGZ-xxLL-KJH : 32-pin PLASTIC TSOP(I) (8x20) (Normal bent)
\muPD431000AGZ-xxLL-KKH : 32-pin PLASTIC TSOP(I) (8x20) (Reverse bent)
\muPD431000AGZ-Bxx-KJH : 32-pin PLASTIC TSOP(I) (8x20) (Normal bent)
\muPD431000AGZ-Bxx-KKH : 32-pin PLASTIC TSOP(I) (8x20) (Reverse bent)
\muPD431000AGU-Bxx-9JH : 32-pin PLASTIC TSOP(I) (8x13.4) (Normal bent)
\muPD431000AGU-Bxx-9KH : 32-pin PLASTIC TSOP(I) (8x13.4) (Reverse bent)
```

Please consult with our sales offices.

Types of Through Hole Mount Device

μ PD431000ACZ-xxL: 32-pin PLASTIC DIP (15.24 mm (600))
μ PD431000ACZ-xxLL: 32-pin PLASTIC DIP (15.24 mm (600))

Soldering process	Soldering conditions
Wave soldering (Only to leads)	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below
Partial heating method	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (Per one lead)

Caution Do not jet molten solder on the surface of package.

Revision History

Edition/ Date	Page		Type of revision	Location Previous edition	Description edition
11th edition/ April 2002	Throughout	Throughout	Addition	Part number	μ PD431000AGZ-B10-KJH (Previous edition -> This edition)

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of April, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

