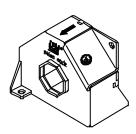


Current Transducer LA 305-S/SP22

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			300			Α
I _P	Primary current, measuring range			0 ± 500			Α
R _M	Measuring resistance @		$T_{A} =$	$T_{A} = 70^{\circ}C \mid T_{A} = 85^{\circ}C$;
			$\mathbf{R}_{M\;min}$	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	R _{M min}	$\mathbf{R}_{\mathrm{M}\;\mathrm{max}}$	
	with ± 15 V	$@ \pm 300 A_{max}$	0	75	5	73	Ω
		$@ \pm 500 \text{ A}_{max}$	0	31	5	29	Ω
I _{SN}	Secondary nominal r.m.s. current			120)		m A
K _N	Conversion ratio			1:	2500		
V _c	Supply voltage (± 5 %)			± 1	5		V
I _c	Current consumption			20 + I _s			m A
$\dot{\mathbf{V}}_{_{\mathrm{b}}}$	R.m.s. rated voltage 1), safe separation			1750 [°]			V
b		basic isolation		350	00		V
V_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 m		mn	1 2.5 ²⁾			k۷
ŭ				1 3)			k۷


Accuracy - Dynamic performance data								
X _G	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$	± 0.8		%				
$\mathbf{e}_{\!\scriptscriptstyle L}^{\scriptscriptstyle \circ}$	Linearity	< 0.1		%				
		Тур	Max					
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C		Max ± 0.20	m A				
I _{OM}	Residual current ⁴⁾ @ $\mathbf{I}_{p} = 0$, after an overload of 3 x \mathbf{I}_{pN}		± 0.40					
I _{OT}	Thermal drift of I _o - 25°C + 85°C	± 0.12	± 0.40	m A				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns				
t,	Response time ⁵⁾ @ 90 % of I _{PN}	< 1		μs				
di/dt	di/dt accurately followed	> 100		A/μs				
f	Frequency bandwidth (- 3 dB)		100	kHz				
General data								

General data									
$T_{_{\rm A}}$	Ambient operating temperature		- 25 + 85	°C					
\mathbf{T}_{s}	Ambient storage temperature		- 40 + 90	°C					
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70$ °C	35	Ω					
		$T_A = 85^{\circ}C$	37	Ω					
m	Mass		320	g					
	Standards		EN 50155						

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) Between primary and secondary + shields
- ³⁾ Between secondary and internal shield + external shield The internal shield is connected to external shield
- 4) The result of the coercive field of the magnetic circuit
- 5) With a di/dt of 100 A/µs.

$I_{PN} = 300 \text{ A}$

Features

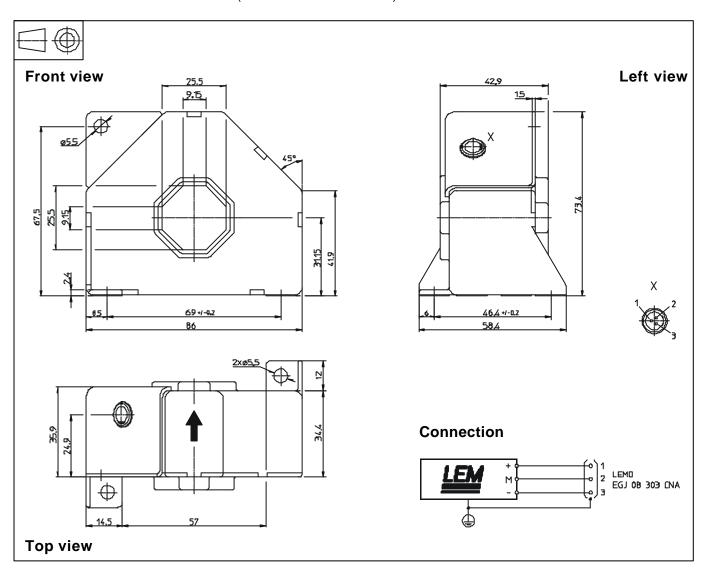
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Copyright protected.

Special features

- $V_{c} = \pm 15 (\pm 5 \%) V$
- $T_A = -25^{\circ}C ... + 85^{\circ}C$
- Connection to secondary circuit on LEMO EGJ.0B.303.CNA
- Potted
- Internal and external shield
- Serigraphy with customer specification number
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- · No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

030205/2

Dimensions LA 305-S/SP22 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- · Connection of secondary
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.

25.5 x 25.5 mm

LEMO EGJ.0B.303.CNA

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.