

NMC3764 65,536 × 1-Bit Dynamic RAM

General Description

The NMC3764 is a 65.536 by 1-bit dynamic RAM. It is fabricated with National's XMOS™ N-channel process and uses double polysilicon gate technology. This provides high density and improved reliability. The chip is passivated with a silicone coating for alpha particle

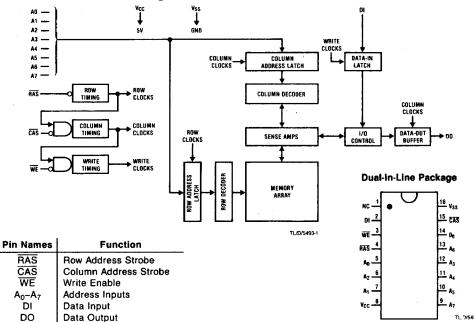
The NMC3764 operates with a single 5V power supply with ±10% tolerance. All inputs and outputs are TTL compatible.

Multiplexed address inputs with separate row and column strobes allow the NMC3764 to be packaged in a standard 16-pin DIP.

The NMC3764 must be refreshed every 2 ms. This is accomplished by performing any routine which cycles the row address strobe (RAS) active during each of the 128 different row addresses defined by row address inputs A0-A6 (the additional addresses provided by row address input A7 are not necessary for refreshing.) Any read, write, RAS-only refresh or hidden refresh cycle refreshes all cells at the selected row address. The RASonly refresh mode permits RAS to be cycled while the column address strobe (CAS) is held high, i.e., inactive.

Conversely the buried refresh mode allows the memory to be refreshed by cycling RAS while CAS is held low, i.e., active, thus maintaining valid data on the output.

Features


- MST[™] screen available*
- High performance: 120, 150, 200 ns access times
- Single power supply: 5V ± 10%
- On chip substrate bias generator
- Low power: 248 mW (max) active
- Read, Write and Read-Modify-Write cycles
- Common I/O capability using Early Write cycle
- Page Mode operation
- Gated CAS-noncritical timing
- RAS-only Refresh and Buried Refresh capability

Order Number NMC3764N

NS Package Number N16F

- 128 cycle, 2 ms refresh
- TTL compatible: all inputs and outputs
- TRI-STATE® output
- Industry standard 16-pin configuration

See the MSTTM Program.

 V_{CC}

Vss

Power (+5V)

Ground

Absolute Maximum Ratings (Note 1)

Operating Temperature Range Storage Temperature Power Dissipation 0°C to +70°C -65°C to +150°C 1W Voltage on Any Pin Relative to VSS - 1.0V to +7V Lead Temperature (Soldering, 10 seconds) 300 °C Short Circuit Output Current 50 mA

Recommended DC Operating Conditions

Symbol	Parameter	Min	Max	Units
T _A	Ambient Temperature	0	70	°C
V _{CC} V _{SS}	Supply Voltages (Notes 2, 3)	4.5 0	5.5 0	V
V _{IH}	Input High Voltage, All Inputs (Note 2)	2.4	6.5	٧
VIL	Input Low Voltage, All Inputs (Note 2)	-1.0	0.8	٧

DC Electrical Characteristics (at recommended operating conditions)

Symbol	Parameter Operating Current Average Power Supply Operating Current (RAS, CAS Cycling: t _{RC} = t _{RC} MIN, DO = High Impedance) (Note 4)		Max	Units
I _{CC1}			45	mA
I _{CC2}	Standby Current Power Supply Standby Current (RAS = V _{IH} , DO = High Impedance)		5	mA
I _{CC3}	Refresh Current Average Power Supply Current, Refresh Mode (RAS Cycling: t _{RC} = t _{RC} MIN, DO = High Impedance) (Note 4)		35	- mA
I _{CC4}	Page Mode Current Average Power Supply Current, Page Mode (RAS = V _{IL} , CAS Cycling: t _{PC} = t _{PC} MIN, DO = High Impedance) (Note 4)		42	mA
l _{Li}	Input Leakage Input Leakage Current, Any Input $(0V < V_{IN} < V_{CC}, All Other Pins Not Under Test = 0V)$	-10	10	μΑ
l _{LO}	Output Leakage Output Leakage Current (DO is Disabled, 0V < V _{OUT} < V _{CC})	-10	10	μΑ
V _{OH} V _{OL}	Output Levels Output High Voltage (I _{OUT} = -5 mA) Output Low Voltage (I _{OUT} = 4.2 mA)	2.4	V _{CC} 0.4	V V

Capacitance

Symbol	Parameter	Max	Units
CI	Input Capacitance, A0-A7, DI (Note 5)	5	pF
С _С	Input Capacitance, RAS, CAS, WE (Note 5)	10	pF
co	Output Capacitance, DO (Note 5)	7	ρF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Recommended DC Operating Conditions" provides conditions for actual device operation.

Note 2: All voltages referenced to V_{SS} .

Note 3: When applying voltages to the device, V_{CC} should never be 1.0V more negative than V_{SS} .

Note 4: $I_{\rm CC1},\,I_{\rm CC3}$ and $I_{\rm CC4}$ depend on cycle rate.

Note 5: Capacitance measured with Boonton Meter or effective capacitance calculated from the equation $C = \Delta T/\Delta V$. Capacitance is guaranteed by periodic testing.

AC Electrical Characteristics (at recommended operating conditions) (Notes 6, 7, 8)

Symbol	Parameter	NMC:	NMC3764-12		NMC3764-15		NMC3764-20	
ymboi		Min	Max	Min	Max	Min	Max	Units
READ, W	RITE CYCLES					•		
t _{RAC}	Access Time from RAS (Notes 12, 13)		120		150		200	ns
t _{CAC}	Access Time from CAS (Notes 12, 14)		80		100		135	ns
t _{RP}	RAS Precharge Time	90		100		120		ns
tRAS	RAS Pulse Width	120	10k	150	10k	200	10k	ns
t _{CAS}	CAS Pulse Width	80	10k	100	10k	135	10k	ns
t _{RC}	Random Read or Write Cycle Time	240		270		330		ns
t _{RCD}	RAS to CAS Delay Time (Note 9)	30	40	30	50	35	65	ns
t _{CRP}	CAS to RAS Precharge Time	0		0		0		ns
t _{RSH}	RAS Hold Time	80		100		135		ns
t _{CSH}	CAS Hold Time	120		150		200		ns
t _{ASR}	Row Address Set-Up Time	0		0		0		ns
t _{RAH}	Row Address Hold Time	20		20		25		ns
t _{ASC}	Column Address Set-Up Time	0		0		0		ns
t _{CAH}	Column Address Hold Time	40		45		55		ns
t _{AR}	Column Address Hold Time Referenced to RAS	80		95		120		ns
t _{RCS}	Read Command Set-Up Time	0		0		0		ns
t _{RCH}	Read Command Hold Time (Note 11)	0		0		0		ns
t _{OFF}	Output Buffer Turn-Off Delay (Note 15)	0	35	0	40	0	50	ns
t _{WP}	Write Command Pulse Width	40		45		55		ns
twcs	WE to CAS Set-Up Time (Note 16)	-10		-10		-10		ns
t _{wch}	Write Command Hold Time	40		45		55		ns
t _{WCR}	Write Command Hold Time Referenced to RAS	80		95		120		ns
t _{RWL}	Write Command to RAS Lead Time	40		45		55		ns
t _{CWL}	Write Command to CAS Lead Time	40		45		55		ns
t _{DS}	Data-In Set-Up Time	0		0	-	0		ns
t _{DH}	Data-In Hold Time	40		45		55		ns
1 _{DHR}	Data-In Hold Time Referenced to RAS	80		95		120		ns
t _T	Transition Time (Rise and Fall)	3	35	3	35	3	50	ns
t _{RRH}	Read Command Hold Time Referenced to RAS	20		20		25		ns
t _{REF}	Refresh Period		2		2		2	ms
READ-M	ODIFY-WRITE CYCLES							
t _{RWD}	RAS to WE Delay	90		110		145		ns
t _{CWD}	CAS to WE Delay (Note 16)	50		60		80		ns
t _{RWC}	Read-Write-Cycle Time	240		270		330		ns
	DDE CYCLES			·			L	
t _{CP}	CAS Precharge Time (Note 10)	50		60		80		ns
t _{PC}	Page Mode Cycle Time	150		170		225		ns

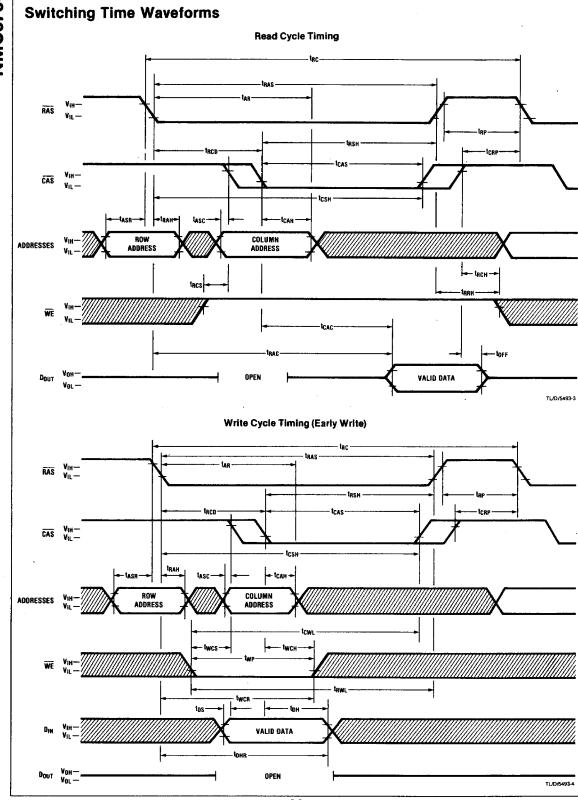
Note 6: An initial pause of 100 µs is required after power-up, followed by any 8 RAS cycles, before proper device operation is achieved.

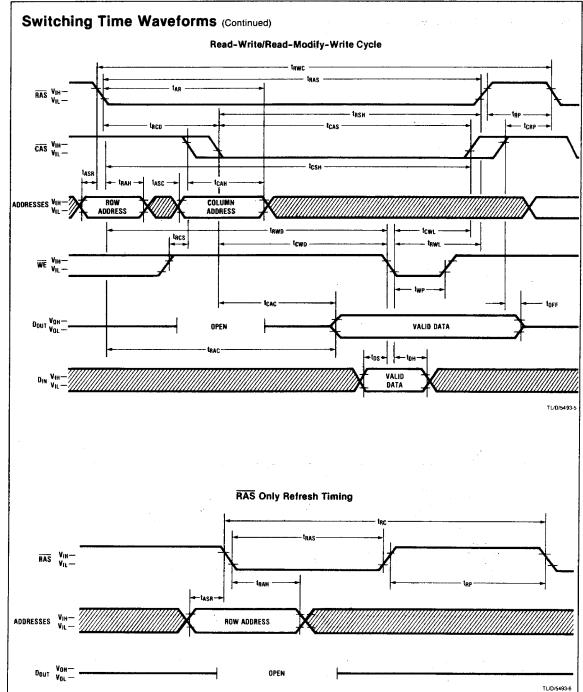
Note 7: Transition times are assumed to be 5 ns.

Note 8: Timing reference points are ViH (min) and Vii (max).

Note 9: If t_{RCD} (min) $< t_{RCD}$ (max) the access time is t_{RAC} (RAS limited timing). If the t_{RCD} exceeds t_{RCD} (max) the access time is t_{RCD} plus t_{CAC} (CAS limited timing).

Note 10: t_{CP} is necessary for RAS/CAS cycles preceded by a CAS only cycle or page mode cycle.

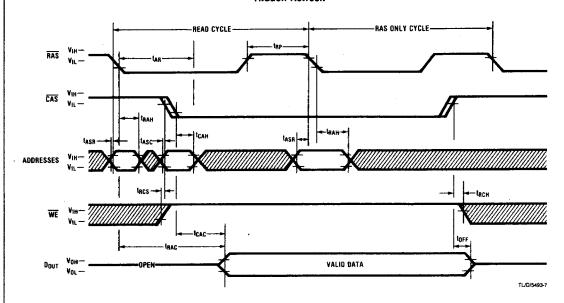

Note 11: I_{RCH} is referenced to the first rising edge of RAS or CAS.

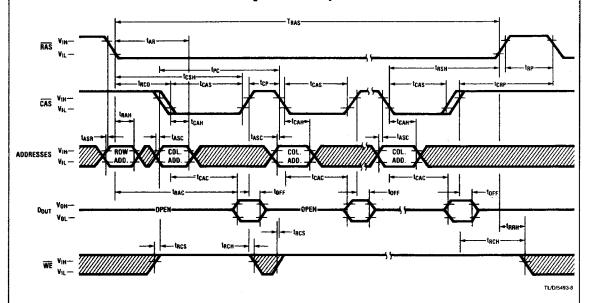

Note 12: Load = 2 TTL loads and 100 pF.

Note 13: Assumes $t_{RCD} < t_{RCD} \pmod{RAS}$ limited timing). Note 14: Assumes $t_{RCD} > t_{RCD} \pmod{CAS}$ limited timing).

Note 15: 1_{OFF} max defines the time at which the output <u>ach</u>ieves the open circuit condition and is not referenced to output voltage levels.

Note 16: The placement of the negative going edge of WE with respect to the negative edge of CAS determines the type of write cycle. If t_{WCS} is greater than t_{WCS} (min), (negative edge of WE before the negative edge of CAS) the memory is in a nearly write cycle and data out is TRI-STATE. If t_{CWD} is greater than t_{CWD} (min), the memory is in a read-write or read-modify-write cycle and data out is the original contents of the selected cell. If WE goes tow between these two times, the cycle is a write cycle and data out is indeterminate.




Note: CAS: ViH, WE and DiN: Don't care.

Switching Time Waveforms (Continued)

Hidden Refresh

Page Mode Read Cycle

TL/D/5493-9

Switching Time Waveforms (Continued) Page Mode Write Cycle RAS VIH - VIL - V