NEC

User’s Manual

USAP77016-B11

WMA Decoder Middleware

Target Devices

uPD77113A
uPD77114
uPD77210
uPD77213

Document No. U15683EJ1VOUMOO (1st edition)
Date Published January 2002 N CP(N)

© NEC Corporation 2002
Printed in Japan

[MEMO]

2 User's Manual U15683EJ1VOUM

Windows and Windows Media are either trademarks or registered trademarks of Microsoft Corporation in
the United States and/or other countries.

e The information in this document is current as of January, 2002. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

* No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

* NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

* Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

* While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

®* NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

MSE 00. 4

User's Manual U15683EJ1VOUM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
« Ordering information

e Product release schedule

« Availability of related technical literature

» Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

» Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Europe) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 01

Fax: 0211-65 03 327

¢ Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

Fax: 040-244 45 80

e Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics (France) S.A.
Vélizy-Villacoublay, France
Tel: 01-3067-58-00

Fax: 01-3067-58-99

NEC Electronics (France) S.A.
Representacion en Espana
Madrid, Spain

Tel: 091-504-27-87

Fax: 091-504-28-60

NEC Electronics Italiana S.R.L.

Milano, ltaly
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

User's Manual U15683EJ1VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810

Fax: 11-6462-6829

Jo01.12

PREFACE

Target Readers This manual is for users who design and develop uPD77016 Family application
systems.

uPD77016 Family is the generic name for the uPD7701x family (uPD77015, 77016,
77017, 77018A, 77019), the uPD77111 Family (uPD77110, 77111, 77112, 77113A,
77114, 77115), and the uPD77210 Family (uPD77210, 77213).

However, this manual is for uPD77113A, 77114, 77210, and 77213 devices.

Purpose The purpose of this manual is to help users understand the supporting middleware
when designing and developing uPD77016 Family application systems.

Organization This manual consists of the following contents.

CHAPTER 1 INTRODUCTION

CHAPTER 2 LIBRARY SPECIFICATIONS
CHAPTER 3 INSTALLATION

CHAPTER 4 SYSTEM EXAMPLE
APPENDIX A SAMPLE PROGRAM SOURCE

How to Read This Manual It is assumed that the reader of this manual has general knowledge in the fields of
electrical engineering, logic circuits, microcontrollers, and the C language.

To learn about uPD77111 Family hardware functions
— Refer to uPD77111 Family Architecture User’s Manual.

To learn about uPD77016 Family instruction functions
— Refer to uPD77016 Family Instruction User’s Manual.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information

Numerical representation: Binary ... XXXX or 0bXXXX
Decimal ... XXXX
Hexadecimal ... OXXXXX

User's Manual U15683EJ1VOUM 5

Related Documents

However, preliminary versions are not marked as such.

Documents Related to Devices

The related documents indicated in this publication may include preliminary versions.

Document Name Pamphlet Data Sheet User's Manual Application Note
Part Number Architecture Instructions Basic Software
uPD77113A U12395E U14373E U14623E U13116E U11958E
uPD77114
uPD77210 U15203E To be prepared
uPD77213

Documents Related to Development Tools

Document Name

Document No.

RX77016 Application Note

RX77016 User’'s Manual Function U14397E
Configuration Tool U14404E
HOST API U14371E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest

version of each document for designing.

6 User’'s Manual U15683EJ1VOUM

CONTENTS

CHAPTER 1 INTRODUCTIONcccooiiiiimnriiiemnsisssmsssssssmss s samsssasssms s s ssmss s ssmss e ssmns snsssmms sesssmnsnnsssmnnnss 10
B T T 11T [1T T = 10

B I 1 (N 0 =T oo o[- 10
1.3 Product OVEIVIEW.......ccccuiiiimiriiiemnn s s s ssms s s s s s a s samn s e mn s e mm e s e mm e e e mme n e amnn e 10
LIRS T B =Y 111 (Y SRR 10

1.3.2 Operating ENVIFONIMENTcoiiiiiieeiiie ettt ettt sa e e e e eae e sabeeeabe e sbeeeabeeabeesaneesbeeenneean 12

LEC R B =14 (o) 1 =T o To Y U OPP PP 13

1.3.4 Directory CONfIQUIALIONeeiiiiii e e 14
CHAPTER 2 LIBRARY SPECIFICATIONS......ccoiiiimtiiiemnnisemssssssems s sssssms s s ssms s s ssms s sasssmss snsssmsssnsssmnnnss 15
2.1 LiDrary OVEIVIEWcuccccceceeiiesiiiansssmssssmssssssssassssssssssems s sas s s sms e smn s s ms s ean e e e am e e m R e e an e b s e nmn e s amn s 15
2.2 Application Processing FIOW........cccvuirmmiminismsmmnismss s sssssss s ssssssss s ssssss s sssssss s snssssss snssssss sennnes 16
2.3 Function Specificationsccccccmmmiiiiiiiiiiscmrrrr s s s s s s sssm s s s s s s s s sssm s e e e e s ee s s s smmmmn e e nenas 17
2.3.1 wmad_FileDecodelnit fUNCHON.............uueiiiiiieeee et e e e e e e e e e e e e e eeaaeeeeeeeeees 17

2.3.2 wmad_FileDecodeData fUNCHIONuiiiiiieeieee ettt e e e e e e e e e e e e e e esaaeeeeeeeeeens 18

2.3.3 wmad_FileGetPCOM fUNCHONeeiii et 19

P T AV oo P T B C Y=Y AVL=T4 1 (o) 10 od 1 o) o T 20

2.3.5 wmad_FileDecodelnfo fUNCHION..........couuuiei ettt e e e e e e e e e e e e e e e ersaaeneeeaeeeees 21

2.3.6 wmad_FileCBGetData function (user-defined function)...........ccceeveeiiiiiiciiiiiiie e 22

2.4 Error INfOrmation.........ceis e n e 25
2.5 Memory Configuration.......c.ccuccmiismiisrnisiscsrsss s ses s s san s sms s sa s s s e am e e mn s nmn s 26

P T IS o7 - 1 (o =T =Y PSPPSR PR 27

P T - Y (o3 T - WS 28

P2 T T 1@ N o101 (=Y £ 29

PR S (o1 (8| = T PSPPSR 31
CHAPTER 3 INSTALLATION....coiicceceriscecerrsssmmerrsssmmesssssmessassmssssssmsssassnmmssessmmssessammesesssmmsnenssnmenessannnnes 32
3.1 Installation ProCeUrEccccciiiiimriiiimnrinims s isssms s s sssssms s s ssms s s ssmns e sans s snssams s snsan s snssanes 32
3.2 Sample Creation ProCedure...........cucoiiiininimminssssssssssesssssssssmsssssss s ssssmssasmsssssms sassnssssmssasanes 32

R R T 01 - 1 T T 1o T 1 To T o T 33
3.4 Symbol Naming CONVENTIONSciiiiiieiiiiiinsiissns s issms s nssess s s s sssss s s s s ssmn s s nsmmn s snssans 33
CHAPTER 4 SYSTEM EXAMPLE...........ooeccrrircccrrsssmesrssss e s sssssme s ssssmme s ssssmme s esssmmssesssmmssesssmmssessnnnnes 34
4.1 Environment Required for Simulation Using Timing Files.........ccccucccmmminnmmmnnsssnnmnssenesnnnes 34
4.2 Input Data File Creation..........ccuucomiimiiimnins s s s sssss s s sss s ssss s sss s sasms snssnssssne s 34
0 T~ 1 11 F] 1T) o 35
4.4 Sample Program OULIINEccccicimmiiirmniiisess s s ssssssss s nsssss s sssssss s sssssns s ssssass s nsssansssnssanes 36
4.4 SAMPIE PrOGIAIM ...ttt ettt sttt e bt s bt e e et e et et e be e et et e ae e e beeeae e e abeeeneeesbneenneeeabeeennnee e 36

4.4.2 User-defined fUNCHIONSooii ettt e e e et e e e e e e e s ea e e e e e e e e e ennneeeeaens 36

4.5 Sample Program Processing FIOW........ccccccvcciiiiimniinimnninisssisssss s ssssssssssssssss s sssssss s snsnns 38
APPENDIX A SAMPLE PROGRAM SOURCE.......... i ccrrrrmcerrssmcerssssmssssssmsessssms s sesssmsssesssmsesessanes 41
A1 SamPIe SOUICE FileSuuuiiiiiiiiiiecieiriiinsssssmssss s e ssssssssmm s e s e s s s s sssmmss s s e sesssssssmmnsnsseesasssnnnnnsnnssns 41
LW I == Ty o] = 3R= T o o TP 41

F W B2 4 o T = = W= T o SRR 54

User's Manual U15683EJ1VOUM 7

A2

A3

N I =1 4o o S U [T =] o RS 55

T 10 o] (= (=T T =Tl | = 61
YN~ T Y/ o P= o (Yo o RN 61
Sample TimiNg Files......ccociiiiiiiinirr s s e am s s e ann e e as 63
LN T = o1 T g 01U 8 1 o OSSP PP 63
LN T2 4o o T =T=T (01U oo PSPPI 65
YN T B | (o] dl=o? 8 (4o PSSP OPP R 68

User's Manual U15683EJ1VOUM

LIST OF FIGURES

Figure No. Title Page
1-1 USAP77016-B11 Directory CoNfIQUIAtioNcoiueiiiiiiieeiii ettt s 14
2-1 ApPlication ProCeSSING FIOW ... e e e e e e s nnn e e e s e s 16
2-2 Setting Data in INPUL BUFEI..........oiiii et b e e e sae e st e sa e e s aneenaneas 24
2-3 Example of SECUINNG SCratCh Ara..........ueiiiiiiiiii et e e s 27
2-4 Example of SECUINNG StAtIC ATaei it st a e st sere e e e 28
2-5 Example of Securing I/O BUTFEISooiiiiiie ettt 29
4-1 [T o101 7= U= T 1= OO PEOPP SRR 34
4-2 Configuration of Sample User-Defined FUNCHON BUFfEr..........c.oiiiiiiiiiiii e 36
4-3 Initialization and Decode ProCessing FIOWco.uiiiiiiiiiiie et 38
4-4 Predecode ProCeSSING FIOWccooiiii ittt e e s e s e e e e e s e e s annnee s 39
4-5 Main Decode ProCeSSING FIOWcuiiiiiieiiiiieee ettt e s s e e s nr e e e e e e 40

LIST OF TABLES

Table No. Title Page
1-1 Bit Rates and Sampling Frequencies Supported by Each COEC..........cooiueiiiiiiiiiiiiie e 11
1-2 REQUITEA MEMOIY SIZEeeiiiiieie ettt st et e e st et e s e bt e e s bb e e e e aabe e e e snteeesanneee s 12
1-3 1011 =T (=T oo PP UPPRUPRPI 12
1-4 MIPS Values Required for WMA Decode ProCeSSINGcceiuieriieiiieniieiieesieestee st siee st e e seeesnee e 13
2-1 [o] = gV W g T (o] o I I PRSP 15
2-2 User-Defined FUNCHON LIStoeiiiiiii et enr e e e e e 15
2-3 o] 0o o L=) TSRO T RSP T RO PROPRN 25
2-4 Memory Size Required for EQch Bit Rateuooiiiiiiiiii it 26
2-5 Recommended OUtpUt BUFEE SIZEiiiiiiiiie e 30
2-6 Members of File INnformation STTUCUIEoooiiiiiiiii e e 31
2-7 Members of Contents INfOrmation STIUCIUIEcc.eiiiiiiiii e e 31
3-1 SEOMENT NBIMES ...ttt e bt e ettt e e e bt e e e e sa b et e e e bb e e e s abe e e e sabe e e e eanbe e e enteeesanbeeeeabaeeenan 33
3-2 NAMING CONVENTIONS ...ttt ettt st e b et e e et e e ek e e e be e e beeeabe e e sbeeeabeesmbeeeaneesbeeenneean 33

User's Manual U15683EJ1VOUM 9

CHAPTER 1 INTRODUCTION

1.1 Middleware

Middleware is the name given to a group of software that has been tuned so that it draws out the maximum
performance of the processor and enables processing that is conventionally performed by hardware to be performed
by software.

The concept of middleware was introduced with the development of a new high-speed processor, the DSP, in order
to facilitate operation of the environments integrated in the system.

By providing appropriate speech codec and image data compression/decompression-type middleware, NEC is
offering users the kind of technology essential in the realization of a multimedia system for the uPD77016 Family, and
is continuing its promotion of system development.

The uSAP77016-B11 introduced here is middleware that supplies decoding functions using Windows Media™
Audio (WMA) technology.

1.2 WMA Decoder

Windows Media Audio is the audio standard of the Windows Media Technology (WMT) audio/video streaming
technology promoted by Microsoft Corporation. WMA is based on the Microsoft-standard Advanced Systems Format
(ASF) and is used together with the MPEG-4 (Moving Picture Experts Group) and WMV (Windows Media Video)
standards.

The uSAP77016-B11 performs decoding using WMA decoding technology.

1.3 Product Overview

1.3.1 Features
o All bit rates and sampling frequency data encoded by Windows Media Audio CODEC Versions 2, 7, and 8 can be
decoded (refer to Table 1-1 Bit Rates and Sampling Frequencies Supported by Each Codec).
Decoding results are output in 16-bit linear PCM format
The ASF file format is supported
Extracting and decoding only audio data from data including video is possible
Contents information can be read out

DRM (Digital Rights Management), script commands, and marker functions are not supported

10 User's Manual U15683EJ1VOUM

CHAPTER 1

INTRODUCTION

Table 1-1. Bit Rates and Sampling Frequencies Supported by Each Codec

Bit Rate [bps] Sampling Number of WMA CODEC WMA CODEC WMA CODEC
Frequency [Hz] Channels Version 8 Version 7 Version 2

192,000 48,000 2 J - -
160,000 48,000 2 J J J
128,000 48,000 2 J J J
192,000 44,100 2 J J -
160,000 44,100 2 J J J
128,000 44,100 2 J J J
96,000 44,100 2 J J J
80,000 44,100 2 J J J
64,000 44,100 2 J J J
48,000 44,100 2 J - J
32,000 44,100 2 J - -
48,000 44,100 1 J - -
32,000 44,100 1 J J J
64,000 32,000 2 - - J
48,000 32,000 2 J J J
44,000 32,000 2 - - J
40,000 32,000 2 J J J
36,000 32,000 2 - - J
32,000 32,000 2 J J J
22,000 32,000 2 - - J
32,000 32,000 1 - - J
20,000 32,000 1 J J J
32,000 22,050 2 J J J
22,000 22,050 2 J J J
20,000 22,050 2 J J J
20,000 22,050 1 J J J
16,000 22,050 1 J J J
20,000 16,000 2 J J J
16,000 16,000 2 J J J
16,000 16,000 1 J J J
12,000 16,000 1 J J J
10,000 16,000 1 J J J
10,000 11,025 1 J J J

8,000 11,025 1 J J J
12,000 8,000 2 J J J

8,000 8,000 1 J J J

6,000 8,000 1 J J J

5,000 8,000 1 J J J
128" 8,000 1 J J J

Note Although this value may be selected when video-only data is encoded, valid audio data is not included.

Remark +: Supported, — Non-existent combination

User's Manual U15683EJ1VOUM

11

CHAPTER 1 INTRODUCTION

1.3.2 Operating environment

(1) Operating target DSP:
uPD77113A, 77114, 77210, 77213

(2) Required memory size:
The uSAP77016-B11 requires the memory sizes shown in the following table in order to support all the bit

rates.

Table 1-2. Required Memory Size

Memory Type Size [Kwords]
Instruction memory - 12.6
X memory RAM 10.5
ROM 17.5
Y memory RAM 12.5
ROM 9.6

Cautions 1. One word is 32 bits in the instruction memory and 16 bits in the X and Y memories.
2. The memory size does not include PCM data and bit stream data buffers. Note also that
the required memory size can be reduced by limiting the supported bit rates. For details,
refer to 2.5 Memory Configuration.

(3) Software tools (Windows™ version):

Table 1-3. Software Tools

Target DSP Software Tool

uPD77016 Family DSP tools

WB77016 (workbench)
HSM77016 (high-speed simulator)
LB77016 (librarian)

12 User's Manual U15683EJ1VOUM

CHAPTER 1 INTRODUCTION

1.3.3 Performance

The MIPS values required to perform WMA decoding in real time are shown in Table 1-4 MIPS Values Required

for WMA Decode Processing.

[Measurement conditions]

Simulator: HSM77016

Evaluation results: Measure the processing capacity when each WMA file is decoded to determine the typical
and maximum values.

Assign the values shown in Table 2-5 Recommended Output Buffer Size for the decode processing unit
(number of samples) and output buffer size.

The MIPS values only indicate the processing capacity of the wmad_FileDecodeData and wmad_FileGetPCM
functions used for decoding and wmad_FileCBGetData function; the processing capacity of other functions and
the interrupt handler, etc., is not included. Use the file attached as a sample for the user-defined
wmad_FileCBGetData function. Note that the processing capacity may differ depending on the system
configuration.

Table 1-4. MIPS Values Required for WMA Decode Processing

Decoding Conditions Processing Capacity
Bit Rate Sampling Frequency Number of Channels Typical MIPS Value Maximum MIPS Value
[kbps] [kHz] [MIPS] [MIPS]
22 22 2 28 51
22 32 2 44 74
32 32 2 27 47
192 48 2 4 1

Caution The maximum MIPS value may be larger than the values shown in Table 1-4 depending on the
data.

It is recommended to implement measures such as outputting a silent sound for a section that
cannot perform decode processing in real time, on the system side.

User's Manual U15683EJ1VOUM 13

CHAPTER 1 INTRODUCTION

1.3.4 Directory configuration
The directory configuration in the uSAP77016-B11 is shown below.

Figure 1-1. uSAP77016-B11 Directory Configuration

library wmad.lib: Library for instruction segments
wmad_rom.lib: Constant data library for ROM segments

wmad_ram.lib: Constant data library for RAM segments

smp —— wmadec ——5—— wma_dec.h: Sample header file
—— sample.prj: Project file
—— sample.asm: Sample source file

—— smp_user.asm: User-defined function sample source file
—— smp_data.asm: Data area sample source file
—— smp_input.tmg: Data input timing file

—— clk_for_2ch.tmg: Serial clock timing file

L— smp_serout.tmg: Serial output timing file

The directories are outlined below.

(1) library
Stores the library files.

e wmad.lib: Library file for instruction segments

e wmad_rom.lib: Constant data library file for ROM segments
Select when allocating constant data to ROM.

e wmad_ram.lib: Constant data library file for RAM segments
Select when allocating constant data to RAM.

(2) smp/wmadec
Stores the source, header, and simulation timing files of the sample program. Simulation can be performed
using the high-speed simulator by utilizing these timing files (refer to 4.1 Environment Required for
Simulation Using Timing Files).

14 User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

This chapter describes the function specifications and function call regulations in the uSAP77016-B11.

2.1 Library Overview
The uSAP77016-B11 provides the following five functions.

Table 2-1. Library Function List

Function Name Description

wmad_FileDecodelnit Decoder initialization processing

wmad_FileDecodeData Decode processing

wmad_FileGetPCM Decode processing
wmad_GetVersion Version information acquisition
wmad_FileDecodelnfo File information acquisition

The following function must also be provided by the user in order to operate the uSAP77016-B11.

Table 2-2. User-Defined Function List

Function Name Description

wmad_FileCBGetData Input data acquisition function

User's Manual U15683EJ1VOUM

15

CHAPTER 2 LIBRARY SPECIFICATIONS

2.2 Application Processing Flow
An example of the application processing flow is shown below.

Figure 2-1. Application Processing Flow

(Start)

| Initialization processing |

Function call
1T TSI T oo T T T T T T T Decoder initialization processing

Input data acquisition processing

wmad_FileCBGetData

1
t———>{ | wmad_FileDecodelnit
1
1
1
1
1
:
1
1

Decode processing

g — wmad_FileDecodeData

Function call
Input data

Reception processing for
data input from host
interface, etc.

End of file?

No
End <
PCMdata . Decode processing
I
Serial output processing |<7: 547 wmad_FileGetPCM
! 1
! 1
i Output buffer !
! :
! 1
! 1
! |

Number of
acquired samples less than

number requested? No

Yes

16 User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

2.3 Function Specifications

The specifications for calling each library function are as follows.

2.3.1 wmad_FileDecodelnit function

[Classification]

[Function name]

[Summary of function]

[Format]

[Arguments]

[Return value]

[Function]

[Registers used]

[Hardware resources]

[Remark]

WMA decoder initialization processing function

wmad_FileDecodelnit

Initializes the RAM area and sets the parameters used by the uSAP77016-B11.

call wmad_FileDecodelnit

Argument Description

ROL Start address of user-defined wmad_FileCBGetData function

R1 Contents information acquisition
1: Acquire 0: Do not acquire

R2L Start address of structure storing contents information (X memory)
Return Value Description
RO Error code (see 2.4 Error Information for error code details)

This function sets the parameters and initializes the RAM area used by the uSAP77016-
B11. If the bit stream data contains contents information, this information can be acquired.
An area (structure) for storing contents information must be prepared beforehand (refer to
Table 2-7 Members of Contents Information Structure).

RO, R1, R2, R3, R4, R5, R6, R7,
DPO, DP1, DP2, DP3, DP4, DNO

Maximum stack level 5
Maximum loop stack level 2
Maximum number of repetitions 502
Maximum number of cycles 5.5x10*

Because this function calls the wmad_FileCBGetData function, when using the call stack
via the wmad_FileCBGetData function, the maximum stack level will increase by the
amount of that call stack. Note also that the maximum number of repetitions and
maximum number of cycles depend on the number of repetitions and cycles of the
wmad_FileCBGetData function. The values above are for when the wmad_FileCBGetData
function of the sample source is used and each item of contents information is acquired as
40 characters. The maximum number of cycles may also differ depending on factors such
as the number of characters in the acquired contents information and whether marker
information is included or not.

User's Manual U15683EJ1VOUM 17

CHAPTER 2 LIBRARY SPECIFICATIONS

2.3.2 wmad_FileDecodeData function

18

[Classification]

[Function name]

[Summary of function]

[Format]

[Arguments]

[Return value]

[Function]

[Registers used]

[Hardware resources]

[Remark]

WMA decode processing function

wmad_FileDecodeData

Decodes the bit stream data and creates the data required for PCM data creation.

call wmad_FileDecodeData

None

Return Value Description

RO Error code (see 2.4 Error Information for error code details)

This function decodes the bit stream data and stores the data required for PCM data
creation in the static area. When decoding has finished, the error code cWMA_Failed or
cWMA_NoMoreFrames is returned. Note that it is not necessary to subsequently execute
the wmad_FileGetPCM function when the error code is not cWMA_NoErr. This function
should be re-executed only after the wmad_FileGetPCM function is executed and all the
PCM data that can be created at that time is created.

RO, R1, R2, R3, R4, R5, R6, R7,
DPO, DP1, DP2, DP3, DP4, DP5, DP6, DP7,
DNO, DN1, DN2, DN4, DN5, DN6, DN7

Maximum stack level 7
Maximum loop stack level 2
Maximum number of repetitions 25
Maximum number of cycles 2.7 x10°

Because this function calls the wmad_FileCBGetData function, when using the call stack
via the wmad_FileCBGetData function, the maximum stack level will increase by the
amount of that call stack. Note also that the maximum number of repetitions and
maximum number of cycles depend on the number of repetitions and cycles of the
wmad_FileCBGetData function. The values above are for when the wmad_FileCBGetData
function of the sample source is used.

User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

2.3.3 wmad_FileGetPCM function

[Classification]

[Function name]

[Summary of function]

[Format]

[Arguments]

[Return value]

[Function]

[Registers used]

[Hardware resources]

[Remark]

WMA decode processing function

wmad_FileGetPCM

Creates PCM data from the results of decoding wmad_FileDecodeData.

call wmad_FileGetPCM

Argument Description
ROL Start address of output buffer (X memory)
R1L Number of requested PCM samples (per channel)
Return Value Description
R1 Number of acquired PCM samples (per channel)

This function converts the decoding results stored in the static area into PCM-format data
and stores PCM data totaling the number of requested PCM samples multiplied by the
number of channels in the specified buffer in the X memory. In the case of 2-channel data,
data is stored alternately in the order of L channel then R channel. For the argument
indicating the number of requested PCM samples, specify a value that is either the same
as or smaller than the PCM buffer size (but at least 1). If the return value indicating the
number of acquired PCM samples is smaller than the number of requested PCM samples,
it indicates that decoding of all the data stored in the static area has finished. To acquire
the next PCM data, re-execute the wmad_FileDecodeData function. Note that the size of
the user-defined output buffer can be reduced by reducing the number of requested PCM
samples.

RO, R1, R2, R3, R4, R5, R6, R7,
DPO, DP1, DP2, DP3, DP4, DP5,
DNO, DN2, DN5, DN7

Maximum stack level 4
Maximum loop stack level 1
Maximum number of repetitions 0
Maximum number of cycles 2.1x10°

The maximum number of cycles is the value when the number of acquired PCM samples
per channel is 2048.

User's Manual U15683EJ1VOUM 19

CHAPTER 2 LIBRARY SPECIFICATIONS

2.3.4 wmad_GetVersion function

20

[Classification]

[Function name]

[Summary of function]

[Format]

[Arguments]

[Return value]

[Function]

[Registers used]

[Hardware resources]

Version information acquisition function

wmad_GetVersion

Returns the versions of the library and corresponding Windows Media Player.

call wmad_GetVersion

None

Return Value

Description

ROH Major version number of this library
ROL Minor version number of this library
R1H Major version number of the corresponding Windows Media Player
R1L Minor version number of the corresponding Windows Media Player

This function returns the version number of this library and the version number of the
corresponding Windows Media Player as a 32-bit value.
Example When RO = 0x00'0x0001°0x0100, the library version is V1.01

When R1 = 0x00’'0x0007°0x0000, the Windows Media Player version is V7.0

RO, R1
Maximum stack level 0
Maximum loop stack level 0
Maximum number of repetitions 0
Maximum number of cycles 10

User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

2.3.5 wmad_FileDecodelnfo function

[Classification] File information acquisition function

[Function name] wmad_FileDecodelnfo

[Summary of function] Acquires WMA file information.

[Format] call wmad_FileDecodelnfo
[Arguments] Argument Description
ROL Start address of structure storing file information (X memory)
[Return value] Return Value Description
RO Error code (see 2.4 Error Information for error code details)
[Function] This function acquires file information such as the bit rate and sampling frequency and

stores the result in the file information structure. Execute this function after executing the
wmad_FileDecodelnit function. Note that at this time an area (structure) for storing file
information must be prepared in the X memory beforehand using the start address of that
area as the argument. Refer to Table 2-6 Members of File Information Structure for
details of the structure for storing file information.

[Registers used] RO, R1, R2, DPO

[Hardware resources] | Maximum stack level 0
Maximum loop stack level 0
Maximum number of repetitions 0
Maximum number of cycles 41

User's Manual U15683EJ1VOUM 21

CHAPTER 2 LIBRARY SPECIFICATIONS

2.3.6 wmad_FileCBGetData function (user-defined function)

[Classification] Input data acquisition function

[Function name] wmad_FileCBGetData

[Summary of function] Supplements the input buffer with the bit stream data required for decoding.

[Format] The wmad_FileDecodelnit and wmad_FileDecodeData functions call this function in call
DPO format.
[Arguments] Argument Description
RO Size of requested data [bytes]
R1 Offset from start of bit stream data [bytes]
[Return value] Return Value Description
RO Size of acquired data [bytes]
R2L Start address of input buffer
[Function] This function is called from the wmad_FileDecodelnit and wmad_FileDecodeData

functions a number of times each to supplement the input buffer with the bit stream data
required for WMA decoding.
Set the start address of this function using the wmad_FileDecodelnit function.

[Usable registers] RO, R1, R2, R3, R4, R5, DPO, DP1
Caution When using registers other than the above, be sure to save their contents

to memory before use.

[Usable hardware resources]

Stack level Oto7
Loop stack level 1
[Remark] When using the repeat instruction in this function, the interrupt servicing may be delayed if

the number of repetitions is large. Similarly, if the number of execution cycles of this
function is large, decoding may not be able to be performed in real time. Also, be sure to
set the stack level of this function so that the total stack level of the wmad_FileCBGetData
function, wmad_FileDecodeData function, and other functions used by the user does not
exceed 15.

22 User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

[Function request specifications]
o Store data of the requested size (argument: RO bytes) in the user-defined input buffer in
the X memory starting from the position of the offset from the start of the bit stream data
(argument: R1 byte number), and set the size of the acquired data to the RO register and
the start address of the input buffer to the R2L register (refer to Figure 2-2 Setting
Data in Input Buffer). The input buffer that stores the bit stream data must have a
capacity of at least 64 words (128 bytes) (refer to 2.5 Memory Configuration).

e The value of the RO argument is between 1 and 128 (inclusive) when acquiring the data
required for decoding. When this value exceeds 128, bit stream data not required for
decoding is skipped, so data does not need to be set in the input buffer. Be sure,
however, to set the acquired data size for the RO return value.

e The value of the R1 argument is always higher than the value of R1 when the
wmad_FileCBGetData function was previously called. The R1 value when the
wmad_FileCBGetData function is first called is 0. Therefore bit stream data up to the
value of R1 when the wmad_FileCBGetData function was previously called is always
completely decoded.

e When the value of the R1 argument is equal to or lower than the terminal position (value
of previous argument R1 + RO0) of the bit stream data read when the
wmad_FileCBGetData function was previously called (case A), it is necessary to keep all
but the first byte of the data previously set in the input buffer™. Therefore, be sure to
save all but the first byte of the data set in the input buffer when the
wmad_FileCBGetData function was previously called until that function is next called.
Note that if the uSAP77016-B11 is operating normally, the contents of the input buffer

set by the user are never changed.
Note If the previous value of the RO argument exceeded 128, case A will not occur.

e When the value of the R1 argument is higher than the terminal position (value of
previous argument R1 + RO0) of the bit stream data read when the wmad_FileCBGetData

function was previously called, data in which the offset is less than the value of R1 is
never used.

User's Manual U15683EJ1VOUM 23

CHAPTER 2 LIBRARY SPECIFICATIONS

24

Figure 2-2. Setting Data in Input Buffer

Input bit stream data

0x12|0x34(0x56|0x78

O0x9A

Offset from start [bytes]

0x56 o

* * * *

* * * *

* * = Any value

0
When arguments are
offset = 8,
requested size = 3
Input buffer
MSB 0x12 0x34 LSB

8 12
When arguments are
offset =9,
requested size = 4
Input buffer
MSB 0x34 0x56 LSB

0x78 0x9A

* * * *

* * * *

* * = Any value

User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

2.4 Error Information

Details of the error codes returned by the functions of the uSAP77016-B11 are shown in the table below.

Table 2-3. Error Code List

Error Value Description
cWMA_NoErr 0 Normal
cWMA_Failed 1 Other abnormality
cWMA_BadArgument 2 Initialization was not completed normally
cWMA_BadAsfHeader 3 lllegal ASF Header
cWMA_BadPacketHeader 4 lllegal Packet Header
cWMA_BrokenFrame 5 Not used
cWMA_NoMoreFrames 6 There is no data to be decoded
cWMA_BadSamplingRate 7 Not used
cWMA_BadNumberOfChannels 8 Not used
cWMA_BadVersionNumber 9 Not used
cWMA_BadWeightingMode 10 Not used
cWMA_BadPacketization 11 Not used
cWMA_BadDRMType 12 Not used
cWMA_DRMFailed 13 Not used
cWMA_DRMUnsupported 14 DRM is not supported
cWMA_DemoExpired 15 Not used
cWMA_BadState 16 Not used
cWMA_Internal 17 Internal error

User's Manual U15683EJ1VOUM

25

CHAPTER 2 LIBRARY SPECIFICATIONS

2.5 Memory Configuration

The configuration of the data memory used by the uSAP77016-B11, including details of the static area and how to
secure area for buffers, is described here.

With the uSAP77016-B11, the scratch memory area and static memory area must be defined separately. The
respective sizes of these areas are shown in Table 2-4 Memory Size Required for Each Bit Rate.

Table 2-4. Memory Size Required for Each Bit Rate (1/2)

Bit Rate Sampling Number of | WMA CODEC X Memory Size [Words] Y Memory Size [Words]
[bps] Frequency [Hz] | Channels Version static_x1 | static_x2 | scratch | static_y1 | static_y2 | scratch
192,000 48,000 2 8 741 0 1,572 8,192 4,096 0
192,000 44,100 2 7,8 741 0 1,572 8,192 4,096 0
160,000 48,000 2 2,7,8 741 0 1,572 8,192 4,096 0
160,000 44,100 2 2,7,8 741 0 1,572 8,192 4,096 0
128,000 48,000 2 2,7,8 741 0 1,572 8,192 4,096 0
128,000 44,100 2 2,7,8 741 0 1,572 8,192 4,096 0
96,000 44,100 2 2,7,8 741 0 1,572 8,192 4,096 0
80,000 44,100 2 2,7,8 741 0 1,572 8,192 4,096 0
64,000 44,100 2 2,7,8 741 0 1,572 8,192 4,096 0
64,000 32,000 2 2 741 0 1,572 8,192 4,096 0
48,000 44,100 2 2,8 741 0 1,572 8,192 4,096 0
48,000 32,000 2 2,7,8 741 0 1,572 8,192 4,096 0
44,000 32,000 2 2 972 0 1,572 8,192 4,096 0
40,000 32,000 2 2,7,8 972 0 1,572 8,192 4,096 0
36,000 32,000 2 2 972 0 1,572 8,192 4,096 0
32,000 44,100 2 8 972 0 1,572 8,192 4,096 0
48,000 44,100 1 8 741 0 1,572 8,192 2,048 0
32,000 44,100 1 2,7,8 741 0 1,572 8,192 2,048 0
32,000 32,000 2 2,7,8 972 0 1,572 8,192 4,096 0
32,000 32,000 1 2 972 0 1,572 8,192 2,048 0
32,000 22,050 2 2,7,8 741 0 1,572 8,192 2,048 0
22,000 32,000 2 2 972 8,192 1,572 8,192 4,096 299
22,000 22,050 2 2,7 972 4,096 1,572 8,192 2,048 299
22,000 22,050 2 8 972 0 1,572 8,192 2,048 0
20,000 32,000 1 2,7 972 4,096 1,572 8,192 2,048 299
20,000 32,000 1 8 972 0 1,572 8,192 2,048 0
20,000 22,050 2 2,7 972 4,096 1,572 8,192 2,048 299
20,000 22,050 2 8 972 0 1,572 8,192 2,048 0
20,000 22,050 1 2,7 972 2,048 1,572 8,192 1,024 299
20,000 22,050 1 8 972 0 1,572 8,192 1,024 0
20,000 16,000 2 2,7,8 972 2,048 1,572 8,192 1,024 299

26 User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

Table 2-4. Memory Size Required for Each Bit Rate (2/2)

Bit Rate Sampling Number of | WMA CODEC X Memory Size [Words] Y Memory Size [Words]
[bps] Frequency [Hz]| Channels Version static_x1 | static_x2 | scratch | static_y1 | static_y2 | scratch
16,000 22,050 1 2,7 972 2,048 1,572 8,192 1,024 299
16,000 22,050 1 8 972 0 1,572 8,192 1,024 0
16,000 16,000 2 2,7,8 972 2,048 1,572 8,192 1,024 299
16,000 16,000 1 2,7,8 972 1,024 1,572 8,192 512 299
12,000 16,000 1 2,7,8 972 1,024 1,572 8,192 512 299
12,000 8,000 2 2,7,8 972 2,048 1,572 8,192 1,024 299
10,000 16,000 1 2,7,8 972 1,024 1,572 8,192 512 299
10,000 11,025 1 2,7,8 972 1,024 1,572 8,192 512 299
8,000 11,025 1 2,7,8 972 1,024 1,572 8,192 512 299
8,000 8,000 1 2,7,8 972 1,024 1,572 8,192 512 299
6,000 8,000 1 2,7,8 972 1,024 1,572 8,192 512 299
5,000 8,000 1 2,7,8 972 1,024 1,572 8,192 512 299
128 8,000 1 2,7,8 972 1,024 1,572 8,192 512 299

2.5.1 Scratch area
This is a memory area that can be freed up and used by the user when the uSAP77016-B11 is not operating.
Note, however, that because the scratch area is used once more when the middleware starts operating again, if the

user has set information in this area, the set information may be changed at this time.

Secure the scratch area under the label names wmad_lib_Scratch_x and wmad_lib_Scratch_y. It is not necessary

to make align or at specifications. The size of the area differs depending on the supported bit rate. For details, refer to

Table 2-4 Memory Size Required for Each Bit Rate. Be sure to make a PUBLIC declaration for defined symbols.

Figure 2-3. Example of Securing Scratch Area

public
public

end

wmad_lib Scratch x

wmad_lib Scratch y

wmad_lib Scratch x:

wmad_lib Scratch y:

;When all bit rates are supported
#define WMAD MAX SCRATCH X SIZE 1572
#define WMAD MAX SCRATCH Y SIZE 299

__WMAD_LIB_SCRATCH X XRAMSEG

DS WMAD MAX_ SCRATCH X SIZE;

__WMAD_LIB_SCRATCH Y YRAMSEG

DS WMAD MAX SCRATCH Y SIZE;

User's Manual U15683EJ1VOUM

27

CHAPTER 2 LIBRARY SPECIFICATIONS

2.5.2 Static area

This area is used to store data permanently. If this area is manipulated by the user following initialization
processing, the normal operation of this library cannot be guaranteed.

Secure the static area under the label names wmad_lib_Static_x1, wmad_lib_Static_x2, wmad_lib_Static_y1, and
wmad_lib_Static_y2. It is not necessary to make align or at specifications. The size of the area differs depending on
the supported bit rate. For details, refer to Table 2-4 Memory Size Required for Each Bit Rate. Be sure to make a
PUBLIC declaration for defined symbols.

Figure 2-4. Example of Securing Static Area

public wmad_lib_Static_x1
public wmad lib Static x2
public wmad_lib Static yl
public wmad_lib Static y2

; When all bit rates are supported

#define WMAD MAX STATIC X1 SIZE 972
#define WMAD MAX STATIC X2 SIZE 8192
#define WMAD MAX STATIC Y1 SIZE 8192
#define WMAD MAX STATIC Y2 SIZE 4096

__WMAD LIB_STATIC X1 XRAMSEG

wmad lib Static x1: DS WMAD MAX STATIC X1 SIZE;
__WMAD_LIB_STATIC X2 XRAMSEG

wmad_1lib Static x2: DS WMAD MAX STATIC X2 SIZE;
__WMAD LIB STATIC Y1 YRAMSEG

wmad_lib_Static_yl: DS WMAD MAX STATIC Y1 SIZE;
__ WMAD LIB STATIC Y2 YRAMSEG

wmad_lib Static_y2: DS WMAD MAX STATIC Y2 SIZE;
end

28 User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

2.5.3 /O buffers

In order for the uSAP77016-B11 to perform decoding, an input buffer is required to input the bit stream data (X
memory) and an output buffer is required to store the PCM data of the decoding results (X memory). Any symbol
name can be assigned to these buffers, providing names used by the uSAP77016-B11 or other applications are not

duplicated.

Figure 2-5. Example of Securing I/O Buffers
public INPUT BUFFER
public HOST IN_ BUFF
public OUTPUT BUFFER
public SERIAL OUT BUFF
I O BUFFER X XRAMSEG
INPUT BUFFER: DS 64;
HOST IN BUFF: DS 1536;
OUTPUT BUFFER: DS 4096;
SERIAL OUT BUFF: DS 4096;
end

The input buffer must have a capacity of at least 64 words and the size of the output buffer should be set to accord
with the system configuration. Recommended output buffer sizes are shown in Table 2-5 Recommended Output
Buffer Size.

Note that when performing decoding in real time, buffers such as an input data receive buffer to receive the bit
stream data sent from the host CPU (X or Y memory), and a serial output buffer to output PCM data to the DAC (X or
Y memory) are required in addition to the I/O buffers used by the uSAP77016-B11.

The size of the serial output buffer must be equivalent to the buffer size shown in Table 2-5 Recommended
Output Buffer Size.

Set the size of the input data receive buffer to accord with the system configuration, based on the average amount
of input data calculated from the equation below. For example, to store the input data required to obtain the output
results of the recommended output buffer size x 2 samples, the size of the input data receive buffer should be the
average input data amount calculated using the equation below, with the appropriate value from Table 2-5
Recommended Output Buffer Size as the number of output samples, x 2 words. The average input data amount
calculated in this way will reach a maximum value of 558 words when the bit rate is 192 kbps and the sampling
frequency is 44.1 kHz.

Bit rate [kbps]/16
Average input data amount = it rate [kbps} [Words]

Sampling frequency [kHZz]

Number of output samples
Note, however, that if data that includes video data is received in addition to audio data, there may be insufficient

data in the buffer, even if a larger buffer is secured. To counter this problem, it is recommended to construct a system
in which a command requesting input data can be sent from the DSP side to the CPU.

User's Manual U15683EJ1VOUM 29

CHAPTER 2 LIBRARY SPECIFICATIONS

30

Table 2-5. Recommended Output Buffer Size

Sampling Size [Words]
Frequency [Hz] Mono Stereo
8,000 512 1,024
11,025 512 1,024
16,000 512 1,024
22,050 1,024 2,048
32,000 2,048 4,096
44,100 2,048 4,096
48,000 2,048 4,096

User's Manual U15683EJ1VOUM

CHAPTER 2 LIBRARY SPECIFICATIONS

2.5.4 Structures

The following structures must be prepared in order to acquire WMA file information or contents information.

(1) File information structure
To acquire WMA file information, prepare the following structure in the X memory and execute the

wmad_FileDecodelnfo function.

Note The uSAP77016-B11 only supports data of version 2 of the WMA file format.
WMA CODEC Version 2, 7, or 8 is version 2 of the WMA file format.

Table 2-6. Members of File Information Structure

Item

Size [Words]

Version of WMA file format"™

1

Sampling frequency [Hz]

1

Number of channels

Playback time [ms]

Packet size [bytes]

Offset to first packet [bytes]

Offset to last packet [bytes]

Use of DRM 0: DRM not used, 1: DRM used

Bit rate [bps]

[CI I\ I \C T B \C T N \O T I \V)

(2) Contents information structure
To acquire information such as the title of a track, prepare the following contents information structure and

Data encoded using

contents character string area in the X memory and execute the wmad_FileDecodelnit function.

Table 2-7. Members of Contents Information Structure

Item

Size [Words]

Maximum length of title character string [bytes]

1

Maximum length of creator character string [bytes]

1

Maximum length of writer character string [bytes]

1

Maximum length of explanatory note character string [bytes]

Maximum length of regulation character string [bytes]

Start address of title character string area

Start address of creator character string area

Start address of writer character string area

Start address of explanatory note character string area

Start address of regulation character string area

Specify the maximum length (requested number of characters) of the contents information as an even number.
If the contents information of the bit stream data is less than the requested number of characters, the length of
the character string actually acquired (including the terminal code “0x0000”) is stored as the maximum length
of the character string in the structure.

User's Manual U15683EJ1VOUM

31

CHAPTER 3 INSTALLATION

3.1 Installation Procedure
Install the uSAP77016-B11 (WMA decoder middleware) in the host machine following the procedure shown below.
(1) Create a work directory in the host machine.
(2) Copy all the files and directories on the supplied medium to the work directory in the host machine.
3.2 Sample Creation Procedure
An example of how to build the sample program of the uSAP77016-B11 is shown below.
(1) Start up the WB77016 (workbench).
(2) Open the sample.prj project file.
Example Select [Project — Open Project] and specify sample.prj.
If the error “Cannot Load system ~*.model” occurs, select [Options — Processor Model] and specify
the appropriate model file.
If the model file has been changed, change the constant data library file of the project to accord with
the model file.
Example In the case of a model with ROM, change wmad_ram.lib to wmad_rom.lib.

(8) Execute build and confirm that sample.Ink has been created.

Example The sample.lnk file is created by selecting [Make — Build All].

32 User's Manual U15683EJ1VOUM

CHAPTER 3 INSTALLATION

3.3 Change of Location

The segment names used by the uSAP77016-B11 are shown in Table 3-1 Segment Names. The location can be
changed to accord with the user’s target by separating the object files from the library files using the LB77016
(librarian) and utilizing the edit segment function of the WB77016 (workbench).

Note that this library and the static and scratch areas used by this library must not be allocated to external memory.

Table 3-1. Segment Names

Segment Name Description
_ _WMAD_IMSEG* USAP77016-B11 instruction segment
_ _WMAD_XROM: USAP77016-B11 X memory constant data segment
_ _WMAD_YROM:= USAP77016-B11Y memory constant data segment

Remark An asterisk (*) indicates an arbitrary alphanumeric character.
3.4 Symbol Naming Conventions

The conventions that apply when naming symbols used in this library are shown in Table 3-2 Naming
Conventions. Take care not to duplicate names when using the uSAP77016-B11 together with other applications.

Table 3-2. Naming Conventions

Classification Convention
Function name, variable name wmad_XXXX
Segment name _ _WMAD_XXXX (2 underscores at the start)

Remark XXXX indicates arbitrary alphanumeric characters.

User's Manual U15683EJ1VOUM 33

CHAPTER 4 SYSTEM EXAMPLE

4.1 Environment Required for Simulation Using Timing Files
The decode processing can be simulated by using the sample program and sample timing files.
[Example of software environment]

¢ High-speed simulator: HSM77016 Ver.2.32 or later
e Sample program: sample.Ink (program created in 3.2 Sample Creation Procedure)

Timing files: smp_input.tmg, smp_serout.tmg, clk_for_2ch.tmg
Input data file: xxx.dat (see 4.2 Input Data File Creation for how to create this file)
Model file: uPD77113.model (model file used when sample program was created)

4.2 Input Data File Creation
An input data file is required to perform simulation. Create the input data file following the procedure shown below.
(1) Prepare arbitrary WMA data (binary format).

(2) Convert the prepared WMA data into a text file. In this text file, describe two bytes of WMA data per line in
order from the start of the data.

Figure 4-1. Input Data File

WMA data (binary format) 0x12|0x34|0x56|0x78|0x9A|0xBC

Offset from start [bytes]

0 4 8 12
Input data text file
(text format)
MSB 0x1234 LSB

0x5678
0x9ABC

34 User's Manual U15683EJ1VOUM

CHAPTER 4 SYSTEM EXAMPLE

4.3 Simulation

An example of how to perform simulation is shown below.

(1) Edit the timing file to accord with the prepared input data file (refer to A.3 Sample Timing Files).

(2) Start up the HSM77016 (high-speed simulator).

(3) Select the model file in accordance with the target.

Example Select [tools — Simulation Model] and specify the model file.

(4) Open sample.Ink created in 3.2 Sample Creation Procedure.

Example Select [file — open] and specify sample.Ink.

(5) Open the timing files smp_input.tmg, smp_serout.tmg, and clk_for_2ch.tmg.

Example Select [file — open] and specify each file.

(6) Reset the CPU and timing files of the HSM77016 (high-speed simulator).

Example Select [run — reset], specify all the items (CPU and built-in 1/0O devices, time measurement, all
timing files and restart execution), and reset.

(7) Select Run to execute.

User's Manual U15683EJ1VOUM 35

CHAPTER 4 SYSTEM EXAMPLE

4.4 Sample Program Outline

4.41
The sample program of the uSAP77016-B11 is designed based on a system in which input data is transmitted to
the DSP via a host interface. Input data is transmitted sequentially from the start of the data in 16-bit units. The
decode processing unit (number of samples) is the value indicated in Table 2-5 Recommended Output Buffer Size.

Sample program

4.4.2 User-defined functions
An outline of the user-defined function sample source is shown below.

[Variables]

1)

)

@)

FileCBGetData_fp variable

This variable is used to manage the number of bytes of input data received via the host interface. In this
system, input data is received in 2-byte units, so this will always be an even number.

The value of this variable, x, also means that the offset from the start of the first input data received via the
host interface in the wmad_FileCBGetData function called this time is data of x and x + 1. Note that the value
of this variable is not “the value of argument R1 + RO when the wmad_FileCBGetData function was previously
called”.

read_ptr variable
This variable is used to manage the position at which data starts to be read from the input data receive buffer
when data is set in the input buffer.

write_ptr variable
This variable is used to manage the position at which input data received via the host interface starts to be

written to the input data receive buffer.

Figure 4-2. Configuration of Sample User-Defined Function Buffer

Input data receive buffer Input buffer
host_in_buffer [input_buffer [
64 words
read_ptr >
128 words L
write_ptr >
\

36

User's Manual U15683EJ1VOUM

CHAPTER 4 SYSTEM EXAMPLE

[Processing]
The value of the FileCBGetData_fp variable is compared with the value r1 of the requested offset position and
branching to the following label occurs depending on the result:

Branch to the case000 label if FileCBGetData_fp = r1

Branch to the case001 label if FileCBGetData_fp < r1

Branch to the case002 label if FileCBGetData_fp > r1

case000 label:

Branching to this label occurs if either of the first two bytes of input data received first via the host interface
matches the requested offset data. The value of the write_ptr variable is then set to the read_ptr variable. The
size of the data to be received via the host interface in the processing following the get_data label is also set, and
the program jumps to the get_data label.

case001 label:

Branching to this label occurs if data in front of the input data already received is requested. In this case, the
data up to the requested offset data is received via the host interface. The data received here is not used and is
therefore not saved in the input data receive buffer.

The value of the write_ptr variable is then set to the read_ptr variable. The size of the data to be received is also
set, and the program jumps to the get_data label.

case002 label:

Branching to this label occurs if the requested offset data has already been received. In this case, the read_ptr
variable is set, but because the data already received is set in the input buffer, the position that is the value of the
write_ptr variable rewound by the required number is set.

Next, if data of the requested size can be set in the input buffer from the data already received, the program
jumps to the set_data label, and if data of the requested size cannot be set in the input buffer from the data
already received, a new receive data size is set and the program jumps to the get_data label.

get_data label:

If the requested size is 128 bytes or less, the program jumps to the get_data_next label. In other cases, input
data is received via the host interface, but this data is not used and is therefore not saved in the receive buffer.
When the receive processing is finished, the program jumps to the finish label.

get_data_next label:

If the size of the data that should be received is 0, the program jumps to the set_data label. In other cases, the
input data is received via the host interface and stored from the position indicated by the write_ptr variable.
When the receive processing is finished, the write_ptr variable is updated and the program performs set_data
label processing.

set_data label:

The input data stored in the input data receive buffer is read out from the position indicated by the read_ptr
variable and set in the input buffer in accordance with the requested conditions. The program then performs
finish label processing.

finish label:

After processing such as setting the return values and updating the FileCBGetData_fp variable is finished, the
program returns to the caller from the wmad_FileCBGetData function processing.

User's Manual U15683EJ1VOUM 37

CHAPTER 4 SYSTEM EXAMPLE

4.5 Sample Program Processing Flow

The sample program processing flow is shown below.

Figure 4-3. Initialization and Decode Processing Flow

Start

) (Start of decode processing)

Initialization of registers,

user variables, etc.

| Decode processing unit setting |

| | Predecode processing | |

Version information
acquisition processing
wmad_GetVersion

|Serial output start processing|

Decoder initialization
processing
Contents information
acquisition processing
wmad_FileDecodelnit

| |Main decode processing| |

| Decode end processing |

File information
acquisition processing
wmad_FileDecodelnfo

(End)

(To decode processing)

38

User's Manual U15683EJ1VOUM

CHAPTER 4 SYSTEM EXAMPLE

Figure 4-4. Predecode Processing Flow

(Start of predecode processing)

>

Decode processing

wmad_FileDecodeData

End of file? (To decode end processing)
Yes
No
Any errors? v I Error processing
es
No

<

Requested sample number,

output buffer address setting

Decode processing
wmad_FileGetPCM

Acquired sample
number = 0?

Yes

Has data
equal to the processing unit
been output?

No

Yes

Output buffer data copied

‘60 serial output start processingD

to serial output buffer

User's Manual U15683EJ1VOUM

39

CHAPTER 4 SYSTEM EXAMPLE

Figure 4-5. Main Decode Processing Flow

(Start of main decode processing)

<

Requested sample number,
output buffer address setting

Decode processing
wmad_FileGetPCM

Acquired sample _ Decode processing

number = 0? Ves wmad_FileDecodeData

Has data equal
to the processing unit been
output?

Yes

(To decode end processing)

Is the serial output

No buffer empty?

Error processing

Output buffer data copied

to serial output buffer

40 User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

The sample program source of the uSAP77016-B11 is shown in this chapter.
A.1 Sample Source Files

A.1.1 sample.asm
This file is used to control the overall decode processing.

(1/13)

/* ___ */
/* File Information x/
2 */
/* Name : sample.asm */
/* Type : Assembler program module x/
/* Version :1.00 */
/* Date : 2001 July 10 */
/* CPU : uPD7701x Family */
/* Assembler : WB77016 Ver 2.4 */
/* About : sample main function */
/* */
Y e e */
/* Copyright (C) NEC Corporation 2000, 2001 x/
/* All rights reserved by NEC Corporation. */
/* Use of copyright notice does not evidence publication x/
2 */
/* ===============—=—=—=—====—=—=—==—=—=—=—=—==—=—=—=—=-===—=—=—===—=—=—==============

* INCLUDE FILES

I ——— */
#include "wma_dec.h"
2 S —

* PUBLIC

S EE————.
public Num Channels ; for timing file
public sample rate ; for timing file
/% ================—=—=====—=—=—====—=—=—=====—=—=—====—=—=====================

* EXTERN FUNCTIONS

.
extrn Init FileCBGetData
extrn wmad FileCBGetData

Users Manual U15683EJ1VOUM 4

APPENDIX A SAMPLE PROGRAM SOURCE

42

(2/13)
2 ——
* DEFINE & EQU
* === %/
#define USE_SO 1 ; Use Serial Output interrupt

#define STRING SIZE 64
#define MAX PCMSIZE 2048
MAX RINGSIZE equ MAX PCMSIZE*2

Y
* LOCAL VARIABLES AND BUFFER
e ——

__SAMPLE X RAM XRAMSEG

ring dno: ds 1 ;

ring write ptr: ds 1 ;

ring read ptr: ds 1 ;

ring entries: ds 1 ;

putin_ temp: ds 2 ;

save_regs: ds 6 ;

g _ulOutputSample: ds 2 ;

start flag: ds 1 ;

n_sample: ds 1 ;

f dec unit end: ds 1 ;

n_get pcm: ds 1 ;

__ SAMPLE X CONTENTS XRAMSEG

/***

Contents Information

***/

desc:

desc_title len: ds 1 i
desc_author len: ds 1 ;
desc_copyright len: ds 1 ;
desc_description len: ds 1 ;
desc_rating len: ds 1 ;
desc _pTitle: ds 1 ;
desc_pAuthor: ds 1 ;
desc_pCopyright: ds 1 ;
desc_pDescription: ds 1 ;
desc_pRating: ds 1 ;
Title: ds STRING SIZE/2 ;
Author: ds STRING_SIZE/Z ;
Copyright: ds STRING SIZE/2 ;
Description: ds STRING SIZE/2 ;
Rating: ds STRING SIZE/2 ;
StructFileInfo:

Version: ds 1 ;

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(3/13)
sample rate: ds 1 ;
Num_Channels ds 1 ;
duration: ds 2 ;
packet size: ds 2 B
first_packet_offset: ds 2 ;
last packet offset: ds 2 i
has_DRM: ds 2 i
bit rate: ds 2 ;

__SAMPLE X DEC_OUTPUT XRAMSEG
output_buffer: ds MAX PCMSIZE*2 ;

__SAMPLE X SER OUTPUT XRAMSEG align at 0

ser_out_buffer: ds MAX RINGSIZE i
2
* VECTOR REGISTRATION
* —=====z=== %/
MAIN V IMSEG at 0x200
jmp star ; Regist start up routine
nop i
nop i
nop i

; reserve vector 1
nop i
reti i
nop i

nop i

; reserve vector 2
nop i
reti i
nop i

nop H

; reserve vector 3
nop i
reti i
nop i

nop i

; intl vector
nop i
reti B
nop i

nop i

User's Manual U15683EJ1VOUM 43

APPENDIX A SAMPLE PROGRAM SOURCE

44

(4/13)

7

int2 vector

nop
reti
nop

nop

int3 vector

nop
reti
nop

nop

int4 vector

nop
reti
nop

nop

SI1 vector

nop
reti
nop

nop

SO1 vector

jmp _so_interrupt
reti
nop

nop

SI2 vector

nop
reti
nop

nop

S02 vector

HI

HO

nop
reti
nop

nop

vector
nop
reti
nop

nop

vector

nop

; Regist SO1 handler

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(5/13)

7

7

reti
nop

nop

Hardware signal vector

nop
reti
nop

nop

Timer vector

nop
reti
nop

nop

MAIN IMSEG AT 0x240

start:

clr(ro0)

r0l = EIR

r0 = r0 | 0x8000
EIR = r0l

disable interrupt

User’'s Manual U15683EJ1VOUM

45

APPENDIX A SAMPLE PROGRAM SOURCE

(6/13)

r0l = 0x0000 i
*DWTR:x=r01 ;

r0l = 0x0081 ;
*HST:x = r01 ;

r0l = 0x0202 ;
*SST1:x = rOl ;

dp0 = ser_out buffer ;

clr(r0) H

rep MAX RINGSIZE ;
*dp0++ = rOh ;

r0l = ser out buffer ;

*ring write_ptr:x = ro0l ;

*ring read ptr:x = r0l ;

*ring entries:x = rOh ; set 0

rol = 1 ;

*ring dnO:x = ro0l i

*g_ulOutputSample:x = rOh ;
*g_ulOutputSample+l:x = rOh ;

r0l = Title ;
*desc_pTitle:x = r0l H
r0l = Author ;
*desc_pAuthor:x = r0l ;
r0l = Copyright ;
*desc pCopyright:x = ro0l ;
r0l = Description ;
*desc pDescription:x = r0l ;
r0l = Rating ;
*desc pRating:x = ro0l ;
r0l = STRING SIZE H
*desc_title len:x = r0l ;
*desc_author_ len:x = r0l ;

*desc_copyright len:x = r0l ;

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(7/13)

*desc description len:x = r0l ;

*desc_rating len:x = r0l ;

call Init_FileCBGetData ;

i Initialize WMA Decoder and Get Content Information

rll = 0x0001 i
r2l = desc i
call wmad_FileDecodeInit ;
r0 = r0 * cWMA NoErr ;

if (r0!=0) jmp _init error ;

r0l = StructFileInfo i

call wmad_FileDecodelInfo ;

r0l = *sample rate:x ;
rl = r0 - 32000 H
if (r1>=0) jmp _pre set size 2048 ;
rl = r0 - 22050 i
if (r1>=0) jmp _pre set size 1024 ;
rll = 512 i
jmp pre set size end i
_pre set size 1024:
rll = 1024 H

jmp pre set size end i

_pre_set_size 2048:
rll = 2048 H
_pre_set_size_end:
*n_sample:x = rll ; sample per ch
clr(xr0) i
*start_flag:x = r01l ; set *start flag:x = 0

User’'s Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

48

(8/13)

*f dec_unit end:x = r01l

*n_get_pcm:x = r0l

pre DecodeData:

call wmad_FileDecodeData

/***x decode is finished ? **x*/

A

rl = r0 CWMA_NoMoreFrames
if (r1==0) jmp finish
rl = r0 © CcWMA Failed

if (r1==0) jmp finish

/*** check error ***/

CWMA NOETT

A

rl = r0

if (r1!=0) jmp _decode_ error

_pre_GetPCM:

r2 = *n_get_pcm:x

r3 = *n_sample:x

rl = r3 - r2

rl = rl sra 16

r2 = r2 sra 16
clr(r4)

r4l = *Num Channels:x
r4 = r4 - 2

if (r4==0) r2 += r2
r0l = output_buffer

r0 = r0 + r2

call wmad_FileGetPCM

if (rl==0) jmp _pre DecodeData
clr(r2)

r2h= *g_ulOutputSample:x
r2l= *g ulOutputSample+1:x
r2 = r2 + ril
*g_ulOutputSample:x = r2h
*g_ulOutputSample+l:x = r2l

clr(xr2)

r2l = *n get pcm:x

r2 =12 + ril
clr(xr3)

r3l = *n_sample:x
r3 = r3 - r2

if (r3>0) jmp pre GetPCM end

set rl

Set r4 = Number of ch

set ro0

count total sample per ch

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(9/13)
r2l =1 i
*f dec_unit _end:x = r2l ; £ dec_unit _end =1
*start flag:x = r2l ; set *start flag:x = 1
clr(r2) i

_pre GetPCM_end:

*n_get _pcm:x = r2l ;

/* chekc decode unit is end ? */

r2 = *f dec_unit_end:x ;

if (r2==0) jmp _pre GetPCM i
#if USE_SO

call _SetPCM ; set PCM
#else

*f dec_unit _end:x = r2l ; £ dec_unit _end = 0
#endif

serout_start:

*SDT1:Xx = rlh ; serial out start

r0l = SR ;

r0 = r0 & Ox7fdf ;

r0 = r0 | OxOfdf ;

nop i

sr = r0l ; enable interrupt (SO1)

jmp _loop GetPCM i

_loop_DecodeData:

call wmad_FileDecodeData ;

/*** decode is finished ? **%*/

A

rl = r0 CWMA_NoMoreFrames i

if (r1==0) jmp finish i

CWMA_Failed i
if(r1l==0) jmp finish i

/*** check error **x/

CWMA_NOErr H

A

rl = 0
if (r1!=0) jmp _decode error i
rl = *ring entries:x ;

if (r1<0) jmp mips overflow i

loop GetPCM:

r2 = *n_get_pcm:x i

User’'s Manual U15683EJ1VOUM

49

APPENDIX A SAMPLE PROGRAM SOURCE

50

(10/13)

r3 = *n_sample:x

rl = r3 - r2

rl = rl sra 16

r2 = r2 sra 16

clr(r4)

r4l = *Num_Channels:x

réd =r4 - 2

if (r4==0) r2 += r2

r0l = output buffer

r0 = r0 + r2

call wmad_FileGetPCM

r2 = *ring entries:x

if (r2<0) jmp mips overflow
if (rl==0) jmp _loop DecodeData
clr(xr2)

r2h= *g ulOutputSample:x
r2l= *g_ulOutputSample+1:x

r2 = r2 + ril
*g_ulOutputSample:x = r2h
*g_ulOutputSample+l:x = r2l

clr(r2)
r2l = *n_get_pcm:x
r2 =r2 + ril
clr(r3)

r3l = *n sample:x
r3 = r3 - r2

if (r3>0) jmp _loop GetPCM end
r2l =1

*f dec_unit end:x = r2l

clr(r2)

_loop_GetPCM_end:

*n_get pcm:x = r2l

/* check decode unit is end ? */
r2 = *f dec_unit_end:x

if (r2==0) jmp _loop GetPCM

nop

_loop_wait:

r2 = *ring entries:x

if (r2<0) jmp mips overflow

if (r2!=0) jmp _loop wait
#if USE_SO

call _SetPCM
#else

*f dec_unit end:x = 1r2l
#endif

7

7

set rl

Set r4 = Number of ch

set ro0

count total sample per ch

f dec_unit end =1

set PCM

f dec_unit end = 0

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(11/13)

jmp _loop GetPCM

finish:
r2 = *ring entries:x
if(r2>0) jmp $-1
r2 = *n_get_pcm:x
if (r2==0)
*n_sample:x =
#if USE_sO
call _SetPCM

jmp serout finish
r2h

#else

*f dec_unit end:x = r2l
#endif

r2 = *ring entries:x

if(r2>0) jmp $-1
serout finish:

nop

jmp serout finish

7

7

set PCM

f dec unit end = 0

_init error:
nop

jop $-1

_decode_error:
nop

jop $-1

_mips_overflow:
nop

jop $-1

2 S —

[Function Name] _SetPCM
_SetPCM:
dp0 =
r2l = *ring write ptr:x
dpl = r2l
dnl =1

output_buffer

User’'s Manual U15683EJ1VOUM

51

APPENDIX A SAMPLE PROGRAM SOURCE

(12/13)

/*

dmx = MAX RINGSIZ

E-1

clr(r4)

r4l = *Num_Channels:x
ré =1r4 -1

clr(r3)

r3l = *n sample:x

Loop r31l {

r2 = *dpO++
*dpl%% = r2h

if (r4==0)

jmp $+2

r2 = *dpO++
*dpl%% = r2h

nop
}
r2l = dpl

*ring _write_ptr:x

r3 += r3
clr(r2)

*f dec_unit_end:x

r2l = EIR

r2 = r2 | 0x800
EIR = r2l

nop
nop
nop
r2l =
r2 =r2 + r3

*ring entries:x =

r2l = EIR

r2 = r2 & Ox7fff
EIR = r21

ret

_so_interrupt:

*save_regs+0:X =
*save_regs+l:x =
*save_regs+2:X =
r0l = dpoO
*save_regs+3:X =
r0l = dnoO
*save_regs+4:X =
rol = dmx

*save_regs+5:X =

0

r2

rol

rol

rol

r2l

r2h

*ring entries:x

1

7

7

7

7

Set r4 =

if ch =

always,

f dec_un

wait disable interrupt

enable i

push dpO

push dno

push dmx

Number of ch

1

output 2 ch

it _end = 0

nterrupt

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(13/13)

end

r0l = *ring read ptr:
dp0 = ro01l

r0l = *ring dn0O:x
dn0 = r0l

dmx = MAX RINGSIZE-1
r0 = *dp0%%
*SDT1:x=r0h

r0l = dpoO

*ring read ptr:x = ro0l
r0l = *ring entries:x
r0 = 1r0 - 1

*ring entries:x = ro0l

r0l = *save regs+5:x
dmx = ro0l

r0l = *save_regs+4:x
dn0 = ro0l

r0l = *save regs+3:x
dp0 = ro0l

rO0e = *save regs+2:X
rOh = *save regs+1:x
r0l = *save_regs+0:x
reti

; set

; set

; set

; set

; set

; set

i pop

i Pop

i Pop

i Pop

dp0

dno0

dmx

output PCM data

read ptr

ring entries

dmx

dno0

dpo0

r0

User’'s Manual U15683EJ1VOUM

53

APPENDIX A SAMPLE PROGRAM SOURCE

A.1.2 smp_data.asm
This file is used to secure the static and scratch areas.

public wmad lib static x1
public wmad lib static x2
public wmad lib static_yl
public wmad lib static_ y2

public wmad lib scratch x

public wmad lib scratch y

__WMAD LIB STATIC X1 XRAMSEG
wmad_lib_ static_x1: ds 972

__WMAD LIB STATIC X2 XRAMSEG
wmad lib static x2: ds 4096
__WMAD_LIB STATIC Y1 YRAMSEG

wmad lib static yl: ds 8192

__WMAD LIB STATIC Y2 YRAMSEG
wmad lib static y2: ds 4096

__WMAD LIB SCRATCH X XRAMSEG
wmad 1lib scratch x: ds 1600

__WMAD LIB SCRATCH Y YRAMSEG
wmad lib scratch y: ds 300

end

54 User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

A.1.3 smp_user.asm

This file is the source file of the user-defined function wmad_FileCBGetData.

(1/6)

/* ___ */
/* File Information */
2 */
/* Name : Smp_user.asm */
/* Type : Assembler program module */
/* Version : 1.00 */
/* Date : 2001 Jun 18 */
/* CPU : uPD7701x Family */
/* Assembler : WB77016 Ver 2.4 */
/* About : wmad_FileCBGetData function */
/* */
2 */
/* Copyright (C) NEC Corporation 2000, 2001 */
/* All rights reserved by NEC Corporation */
/* Use of copyright notice does not evidence publication */
/* ___ */
2 S —

* INCLUDE FILES

S E———.—
#include "wma_ dec.h"
/% =======————=————--————---o——o--———-o-————--————--=-————-=——=—====

* PUBLIC FUNCTIONS

* mmmmm——————m——m—m—m——————————=—————————————m—m——m————————mm—————=== */
public Init FileCBGetData
public wmad FileCBGetData
/% =======—==—=————--———-—--=-———---———---———---————-=-=———-==——=—====

* EXTERN FUNCTIONS

¥ —== %/
2

* DEFINE

S ——— */
#define CW_BUFF_SIZE 64
#define CB_BUFF_SIZE 128

/% ============—————==————==————=-==——=——=-==—=—=——=-===—=—=—=-====—=—=—=========

* LOCAL MEMORY

¥ ———=—=—== %/

User's Manual U15683EJ1VOUM 55

APPENDIX A SAMPLE PROGRAM SOURCE

56

(2/6)

__SMP_USER XRAM XRAMSEG
FileCBGetData fp:

ds 2 ; size of obtained bitstream data [byte]
read ptr:
ds 1 ; read pointer to host in buffer

write ptr:

ds 1 ; write pointer to host in buffer
tmp dnoO:

ds 1 ; for saving value of dn0O register
tmp_dmx:

ds 1 ; for saving value of dmx register

__SMP_USER BUFFER__ XRAMSEG align at 0

host_in buffer:

ds CW _BUFF SIZE*2 ; buffer for input data from Host I/F
input buffer:
ds CW_BUFF_SIZE ; buffer for input data to Middle Ware
2 ——
* PROGRAM CODE
¥ ———=—====——=—=—=====—=—=—=—=====—=—=—======—=—=—========================== %/
__SMP_USER__ IMSEG
S ——
[Function Name] Init FileCBGetData
[Argument] r0 : data size
[Return] non
[Call Function] non
[Use Register] r0, dp0, dpl
[Use Stacks] loop stack: 1, call stack: 0, repeat: 0
B E———

Init FileCBGetData:
clr(ro0)
*FileCBGetData fp+0:x = r0l ;
*FileCBGetData fp+l:x = r0l i
dn0 = ro0l ;
r0l = host_in buffer i
*read ptr:x = r0l ;

*write_ptr:x = ro0l i

dp0 = ro0l ;
r0l = input_buffer i
dpl = ro0l ;
Loop CW_BUFF SIZE { ; clear buffer

*dp0++ = rOh ;
*dpO++ = rOh ;
*dpl++ = rOh ;

ret

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(3/6)

2
[Function Name] wmad_FileCBGetData
[Argument] r0 : required size [byte]

rl : offset [byte]
[Return] r0 : obtained size [byte]

r2l : address of input buffer
[Call Function] non
[Use Register] r0, rl, r2, r3, r4, r5, r6

dp0, dpl, dnO, dmx
[Use Stacks] loop stack: 1, call stack: 0, repeat: 0

wmad_FileCBGetData:
r4l = dnO
*tmp_dnO:x = r4l
r4l = dmx

*tmp_dmx:x = r4l

r4l =1

dn0 = r4l

r4l = 2*CW_BUFF_SIZE - 1
dmx = r4l

r5 = *FileCBGetData fp+0:x
r51= *FileCBGetData fp+1l:x
r4 = r5-ril

if (r4==0) jmp case000
if(r4>0) Jjmp case002

r4 = -r4
r4 = r4 sra 1
if (r4<=0) jmp caseO0la
Loop r4l {
$READ_HOST (R6,R6)
r5 = r5 + 2
nop
}
caseO0la:
r6l = *write ptr:x

*read ptr:x = ré6l

r3 =r0 + 1
r3 = r3 srl 1
jmp get_data

; r5 is always even.

; r4 = read size [word]

; not stored

; set read ptr

; set r3 = read size [word]

User’'s Manual U15683EJ1VOUM

57

APPENDIX A SAMPLE PROGRAM SOURCE

58

(4/6)

case000:
rel = *write ptr:x ;

*read ptr:x = r6l ; set read ptr

r3 = r0 + 1 ;
r3 = r3 srl 1 ; set r3 = read size [word]

jmp get data ;

r3 =r4 + 1 ;

r3 = r3 sra 1 ; set r3 = rewind size [word]

clr(ré6) ;
r6l= *write_ ptr:x ;

ré = r6 - r3 H

r3 = r6 - host in buffer ;
if (r3>=0) jmp case002a ;
r6 = r3 + host in buffer + CB_BUFF_SIZE;

case002a:
*read_ptr:x = ré6l ; set read_ptr
r3 = 1r0 - r4 ;
if (r3<=0) jmp set data ; No need to read data
r3 = r3+1 ;
r3 = 1r3 srl 1 ; set r3 = read size [word]
i Get Data
get data

r4 = r0 - CB_BUFF_SIZE ;
if (r4<=0) jmp get data nex ;
r3 = r0 + 1 ;
r3 = r3 sra 1 ;
Loop r3l { ;
$READ HOST (R4,R4) ;
r5 = r5 + 2 ;
nop ; not stored
} ;

jmp finish ;

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(5/6)

get_data_next:

if (r3==0) jmp set data ;

r6l = *write ptr:x ;

dp0 = ré6l ;

loop r31 {
$READ HOST (R4,R4) ; get data
*dp0%% = r4h ;
r5 = r5 + 2 ;

}

r6l = dpO ;

*write ptr:x = r6l ;

set data:
r6l = *read ptr:x ;
dp0 = ré6l ;
dpl = input_buffer ;

r4 = r0+1 H
r4d = r4 srl 1 ;

if (r4==0) jmp finish ;

r3 =rl & 1 ;

if (r3==0) jmp simple_ copy ;

r3l= *dp0%% ;

r3 = r3 sll 8 H

loop r4l
r3 = r3 sll 8 ; change allocation
r3l= *dp0%% ;
r3 = r3 sll 8 ;

*dpl++ = r3h ; set data
} ;
jmp finish ;
simple copy:
loop r4l f{ ;
r3l= *dp0%% ;
*dpl++ = r31l ; set data
} ;
i Finish
finish:

*FileCBGetData_ fp+0:x = r5h ;
*FileCBGetData fp+l:x = r51 ;

User’'s Manual U15683EJ1VOUM

59

APPENDIX A SAMPLE PROGRAM SOURCE

(6/6)

END

r4l = *tmp dn0:x
dn0 = r4l
r4l = *tmp dmx:x

dmx = r4l

r2l= input buffer

ret

; set r21

60

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

A.2 Sample Header File

A.2.1 wma_dec.h
This is the header file for the sample program.

(1/2)

/* ___
/* File Information

/* ___
/* Name : wma_dec.h

/* Type : Assembler header file

/* Version : 1.00

/* Date : 2001 Jun 18

/* CPU : uPD7701x Family

/* Assembler : WB77016 Ver 2.4

/* About : header file for sample source code

/*

/* ___
/* Copyright (C) NEC Corporation 2000, 2001

/* All rights reserved by NEC Corporation.

/* Use of copyright notice does not evidence publication

/* ___
2 ——
* DEFINE

¥ —m———===== */

#define SDT1 0x3800
#define SST1 0x3801
#define SDT2 0x3802
#define SST2 0x3803
#define HDT 0x3806
#define HST 0x3807
#define DWTR 0x3808

extrn wmad FileDecodeInit
extrn wmad FileDecodeData
extrn wmad FileGetPCM

extrn wmad FileDecodeInfo

extrn wmad GetVersion

$define (READ HOST(X,Y)) (
Y@L = *HST:X H
Y =Y &1 i

User's Manual U15683EJ1VOUM

61

APPENDIX A SAMPLE PROGRAM SOURCE

@/2)

* DEFINE (ERROR CODE)

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CWMA NoErr

CWMA Failed

cWMA_ BadArgument

cWMA BadAsfHeader
cWMA BadPacketHeader
cWMA_BrokenFrame
CWMA_NoMoreFrames
cWMA BadSamplingRate
cWMA_ BadNumberOfChannels
CWMA BadVersionNumber
CWMA BadWeightingMode
cWMA BadPacketization
cWMA_ BadDRMType

cWMA DRMFailed

cWMA_ DRMUnsupported
CWMA DemoExpired
CcWMA_ BadState

CWMA Internal

o 3 o0 Uk W N O

11
12
13
14
15
16
17

62

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

A.3 Sample Timing Files

A.3.1 smp_input.tmg

This timing file fetches data from the input data file (sample_20_16s.dat) and inputs data via the host interface.
The input data file name on the 10th line should be changed to accord with the input data file prepared by the user.

(1/2)
i Declare Variables
local data ; local variable receives data
¥ File Open
open input "sample 20 1l6s.dat"
output format showbase unsigned hex, ; select output format
1 Init
set pin hecs =1 ; terminate any write access, which might
set pin hwr = 1 ; be active
set pin hrd =1 ;
i Main Input Loop
do i
wait cond pin hwe == 0 ; wait till write is allowed
wait cond pin hcs == 1 ; and no read is in progress
set pin hcs = 0 ; perform the access...
set port ha = 0 ; select higher byte of HDT
set pin hwr = 0 ; start input
input data ; input host data to temp variable
set port hd = data&O0xFF ; input low byte to host port
wait 100ns ; access duration
set pin hcs = 1 ; terminate first access...
set pin hwr =1 ; end output
wait 5ns ; delay
set port ha =1 ; select higher byte of HDT
wait 5ns ; delay
set pin hwr = 0 ; start output
User's Manual U15683EJ1V0UM 63

APPENDIX A SAMPLE PROGRAM SOURCE

set pin hcs
set port hd
wait 100ns

set pin hwr

set pin hcs

enddo

(2/2)
0 ; perform second access...
(data>>8) &0XFF ; input high byte to host port
; access duration
1 ; end input
1 ; end access

close

break

end

input

64

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

A.3.2 smp_serout.tmg
This timing file is used to save the 16-bit linear PCM data output from the serial interface to a file

(so_sample_20_16s_l.dat, so_sample_20_16s_r.dat). Set any name for the file names on the 9th and 10th lines. In
the case of stereo data, L-channel and R-channel data is output to output files #1 and #2 respectively. In the case of
monaural data, the same data is output to output files #1 and #2.

(1/3)
i Initialize
set pin soenl = 0 initialize SOEN1 line
13 File Open
open output #1 "so sample 20 16s 1.dat" ;
open output #2 "so_sample 20 16s_r.dat" i
open output #3 "dummy serial.dat" ;
output format showbase unsigned hex, ; select output format
¥ Dummy Output
if pin soenl == 0 do only if new transmission start
wait cond pin sorgl == wait for serial output request
wait 5 ns logic delay
set pin soenl =1 start serial output
endif
wait cond pin sorgl == wait for serial output start confirmation
set pin soenl = 0
rept 15 wait 15 clock cycles for one data frame
wait cond pin sckl == 0 wait for rising edge (0->1)
wait cond pin sckl == 1
endrept
wait 5ns make sure SOl and SORQ1 are updated
output #3 port sol&OxFFFF write output data to file, mask sign bits
if pin sorgl == 1 request next output
set pin scenl =1 start next serial output
endif
User's Manual U15683EJ1V0UM 65

APPENDIX A SAMPLE PROGRAM SOURCE

66

(2/3)

wait cond pin sckl ==
wait cond pin sckl ==

close output #3

7

0
1 ;

wait for rising edge (0->1)

if pin soenl == 0

wait cond pin sorgl == 1 ;

wait 5 ns
set pin soenl = 1

endif

wait cond pin sorgl == 0 H

set pin soenl = 0

rept 15
wait cond pin sckl
wait cond pin sckl

endrept

wait 5ns

output #1 port sol&OxXFFFF ;

if pin sorgl == 1
set pin soenl = 1

endif

wait cond pin sckl ==

wait cond pin sckl ==

do only if new transmission start
wait for serial output request
logic delay

start serial output

wait for serial output start confirmation

wait 15 clock cycles for one data frame

wait for rising edge (0->1)

make sure SOl and SORQ1l are updated
write output data to file, mask sign bits
request next output

start next serial output

wait for rising edge (0->1)

if pin soenl == 0
wait cond pin sorqg
wait 5 ns
set pin soenl = 1

endif

= 1 ;

wait cond pin sorgl == 0 ;

set pin soenl = 0

do only if new transmission start
wait for serial output request
logic delay

start serial output

wait for serial output start confirmation

User's Manual U15683EJ1VOUM

APPENDIX A SAMPLE PROGRAM SOURCE

(3/3)
rept 15 ; wait 15 clock cycles for one data frame
wait cond pin sckl == 0 ; wait for rising edge (0->1)
wait cond pin sckl == 1 ;
endrept i
wait 5ns ; make sure SOl and SORQ1l are updated
output #2 port sol&OxFFFF ; write output data to file, mask sign bits
if pin sorgl == 1 ; request next output
set pin soenl =1 ; start next serial output
endif
wait cond pin sckl == 0 ; wait for rising edge (0->1)
wait cond pin sckl == 1 ;
13 Serial Output is finished ?
exit ip == (MAIN.serout finish & Oxffff) ;
exit ip == ((MAIN.serout finish+1) & Oxffff) i
enddo
13 File Close
close output #1 ; close data file
close output #2 ; close data file
break ;
end
User's Manual U15683EJ1V0UM 67

APPENDIX A SAMPLE PROGRAM SOURCE

A.3.3 clk_for_2ch.tmg

This timing file creates the clock signals used to generate the serial output interrupt. Create clock signals with an
appropriate cycle in accordance with the input data sampling frequency. This file is described under the assumption
that 2-channel data is always output.

i Declare Variables
LOCAL TM pico_sec ;
LOCAL fs i
LOCAL retern addr ;
13 Wait

wait cond reg ip == ((MAIN.serout_ start) & Oxffff) ;

i Set Sampling Frequency and TM pico_ sec
set fs = *sample rate:x & Oxffff ;
set TM pico_sec = TIME RESOLUTION / 16 / fs / 2 ; TIME_RESOLUTION = 10**12
;3 Generate Clock for 2 ch
do

wait (TM pico sec/2) ps i

set pin sckl = 0 H

set pin sck2 = 0 ;

wait (TM pico sec/2) ps ;

set pin sckl = 1 ;

set pin sck2 =1 ;
enddo

68 User's Manual U15683EJ1VOUM

NEC

Although NEC has taken all possible steps
essage to ensure thatthe documentation supplied
to our customers is complete, bug free

and up-to-date, we readily accept that

From: ;
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounterproblemsinthe documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Japan
; NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
NEC El E H
C Electronics (Europe) GmbH o |\ 5 anch Fax: +81- 44-435-9608

Market Communication Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: +886-2-2719-5951

| would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity a a a a
Technical Accuracy a a a a
Organization a a a a

CS 01.11

