Features

- Isolation: 48 dB Typical at 1 GHz
- High Intercept Point Over Wide Bandwidth
- Trise, Tfall: 5 nS Typical
- DIP Package
- Integral TTL Driver (CMOS Compatible)
- 50 Ohm Nominal Impedance

Description

M/A-COM's SW-137 is a GaAs MMIC SPDT reflective switch with an integral Silicon ASIC driver. This device is in a 14-lead DIP package. These switches offer high intercept points over a wide bandwidth of operation, while maintaining low DC power dissipation. These switches exhibit excellent performance and repeatability from 0.01 to 3.0 GHz . The SW-137 is ideally suited for RF/IF communications applications. Contact the factory for environmental screening.

Ordering Information

Part Number	Package
SW-137-PIN	DI-1

Note: Reference Application Note M513 for reel size information.
Note: Die quantity varies.

Absolute Maximum Ratings ${ }^{2}$

Parameter	Absolute Maximum
Max Input Power	
0.05 GHz	
$0.5-3.0 \mathrm{GHz}$	+27 dBm
+34 dBm	
Supply Voltages	
Vcc	-0.5 V to +16.5 V
Vee	-16.5 V to +0.5 V
Control Voltage	-0.5 V to V_{Cc} to +0.5 V
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

2. Operation of this device above any one of these parameters may cause permanent damage.

Functional Block Diagram

Truth Table

Control Inputs	Condition of Switch RF Common to each RF Port	
C1	RF1	RF2
Low	On	Off
High	Off	On

Current (mA)

	$\mathbf{\pm 9 V}$	$\mathbf{\mathbf { 1 2 }} \mathbf{V}$	$\mathbf{\pm 1 5} \mathrm{V}$
Vcc	8	11	15
Vee	4	7	9

[^0][^1] Visit wnw.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}{ }^{1}$

Parameter	Test Conditions	Frequency	Units	Min	Typ	Max
Reference Insertion Loss	-	$\begin{aligned} & 0.01-0.5 \mathrm{GHz} \\ & 0.01-1.0 \mathrm{GHz} \\ & 0.01-2.0 \mathrm{GHz} \\ & 0.01-3.0 \mathrm{GHz} \end{aligned}$	dB dB dB dB	- - -	- - -	$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.4 \\ & 1.6 \end{aligned}$
Isolation	-	$\begin{aligned} & 0.01-0.5 \mathrm{GHz} \\ & 0.01-1.0 \mathrm{GHz} \\ & 0.01-2.0 \mathrm{GHz} \\ & 0.01-3.0 \mathrm{GHz} \end{aligned}$	dB dB dB dB	$\begin{aligned} & 48 \\ & 43 \\ & 37 \\ & 32 \end{aligned}$	— — —	— — —
VSWR	-	$\begin{aligned} & 0.01-0.5 \mathrm{GHz} \\ & 0.01-1.0 \mathrm{GHz} \\ & 0.01-2.0 \mathrm{GHz} \\ & 0.01-3.0 \mathrm{GHz} \end{aligned}$	Ratio Ratio Ratio Ratio	- — —	- — —	$\begin{gathered} 1.25: 1 \\ 1.4: 1 \\ 1.7: 1 \\ 2.0: 1 \end{gathered}$
Trise, Tfall Ton, Toff Transients	```10% to 90% 1.3V Control to 90/10% RF In-band (peak-peak)```	—	$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \\ & \mathrm{mV} \end{aligned}$	—	$\begin{gathered} 5 \\ 22 \\ 45 \end{gathered}$	—
1 dB Compression		0.01-3.0 GHz	dBm	-	+25	-
Input IP_{3}	For two-tone Input power up to +5 dBm	0.01 - 3.0 GHz	dBm	-	+46	-
Input IP_{2}	For two-tone Input power up to +5 dBm	$0.01-3.0 \mathrm{GHz}$	dBm	-	+76	-

1. All specifications apply when operated with bias voltages of +9 V to +15 V for Vcc and -9 to -15 V for Vee and 50 Ohm impedance at all RF ports unless otherwise specified.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Test Conditions	Frequency	Units	Min	Typ	Max
Vcc Vee		—	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{r} +9 \\ -15 \end{array}$	$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{gathered} +15 \\ -9 \end{gathered}$
Icc	$\mathrm{Vcc}=+9$ to +15 V	-	mA	-	-	20.0
lee	Vee $=-9$ to -15 V	-	mA	-	-	15.0
Vctl Vctl	Low High	—	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 2.0 \end{aligned}$	—	$\begin{aligned} & 0.8 \\ & 5.0 \end{aligned}$
Input Leakage Current (Low)	0 to 0.8 V	-	$\mu \mathrm{A}$	-	-	1.0
Input Leakage Current (High)	2.0 to 5.0 V	-	$\mu \mathrm{A}$	-	-	1.0

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Typical Performance Curves

Insertion Loss vs. Frequency

Isolation vs. Frequency

VSWR vs. Frequency

Functional Schematic (Top View)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: - North America Tel: 800.366.2266 - Europe Tel: +353.21.244.6400
 - India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

