

CXA1829N

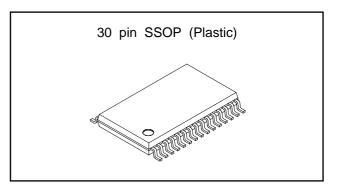
8ch. Read/Write Amplifier for Thin Film Heads of Hard Disk Drive

Description

The CXA1829N is a Read/Write amplifier for hard disk drive thin-film heads and is designed to handle up to 8-channel heads.

Features

- Operates on a single 5V power supply.
- Low power consumption.


Read: 115 mW

Write (Iw = 15 mA): 160 mW + Iw \times 5 Power Save: 7 mW

- Write current can be varied through an external resistor. Built-in stabilizer circuit provides stable current, preventing voltage and temperature drift.
- Drives up to 8 heads.
- Supports thin film heads or 2-pin MIG heads.
- Emitter follower-type Read amplifier features 290 times gain (typ.).
- Write-unsafe detection circuit.
- Damping resistance is switched at Write (315 Ω).
- Simultaneous Write function.
- Supply voltage monitor circuit prohibits error writing during power surge or abnormal voltage.
- IC protection circuit for head-to-ground short circuit protection.
- Differential input capacitance at Read: 14 pF (typ.).
- Write data input minimum pulse width: 10 ns
- Read data output in Write mode becomes a high impedance due to the improved Read data offset when Write is switched to Read.
- Non-selected head DC voltage falls to GND level.

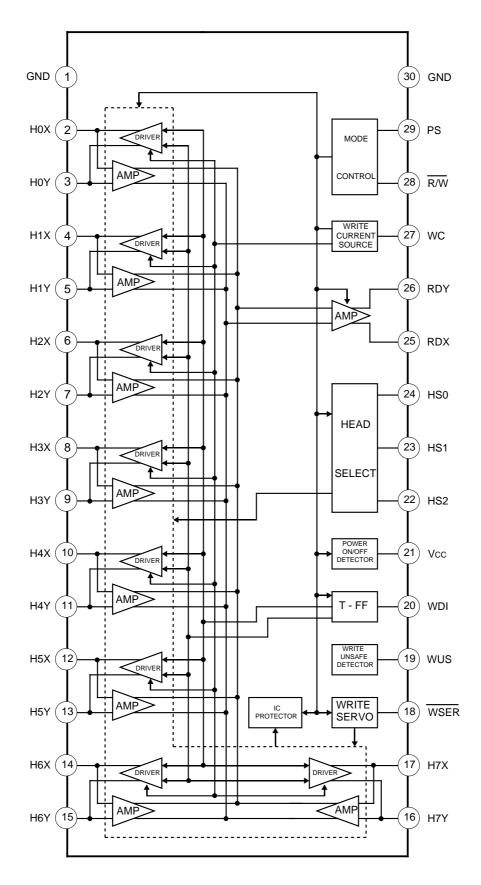
Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25°C)

	U (,	
 Supply voltage 	Vcc	7.0	V
 Write current 	Iw	20	mAo-p
Operating temperature	Topr	-20 to +75	°C
	<u> </u>		

- Operating temperature at Simultaneous Write
 - Topr –20 to +30 °C
- Storage temperature Tstg -55 to +150 °C
- Allowable power dissipation


PD 480 mW

Recommended Operating Conditions

• Supply voltage Vcc 5V±10% V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

Pin Description

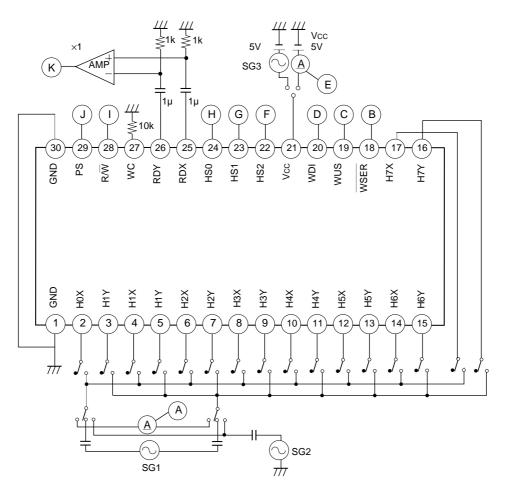
No.	Symbol	Equivalent circuit	Description
1, 30	GND		GND connection.
2, 3	H0X, H0Y	Vcc	Head input.
4, 5	H1X, H1Y		8 channels provided.
6, 7	H2X, H2Y		
8, 9	НЗХ, НЗҮ		
10, 11	H4X, H4Y		
12, 13	H5X, H5Y		
14, 15	H6X, H6Y		
16, 17	H7X, H7Y		
19	WUS	Vcc	Write-unsafe detection output.
			Open collector output. When it is
			high in Write mode, an error is
			detected.
		GND	
20	WDI		Write data input.
_		Vcc	When high changes to low, input
			is triggered.
		$ \begin{array}{ c c c c } \hline & & & \bot \\ \hline & & & \uparrow \\ \hline & & \downarrow \\ \hline & & \uparrow \\ \hline & & \downarrow \\ \hline & & \uparrow \\ \hline & & \downarrow \\ \hline & & \uparrow \\ \hline & & \downarrow \\ \hline & & \uparrow \\ \hline & & \downarrow \\ \hline & & \uparrow \\ \hline & & \downarrow \\ \hline \\ \hline \\ \hline & & \downarrow \\ \hline \\$	
	1/00		
21 22	Vcc HS2		5 V power supply. Head select signal input. Eight
22	HS1	Vcc	heads are selected as shown in
23	HS0		Table 2.
		GND	
28	R/W	Vcc	Read/Write signal input.
			Read at high; Write at low.
29	PS		Power save signal input.
			Power save at high.

No.	Symbol	Equivalent circuit	Description
18	WSER	VCC	Simultaneous Write signal input. Set to low for simultaneous Write mode.
25	RDX		Read amplifier output.
26	RDY	25 26 GND	Becomes a high impedance at Write.
27	WC	27 Vcc Vcc 1.25V GND	A setting resistor for the Write current value is connected between this pin and GND.

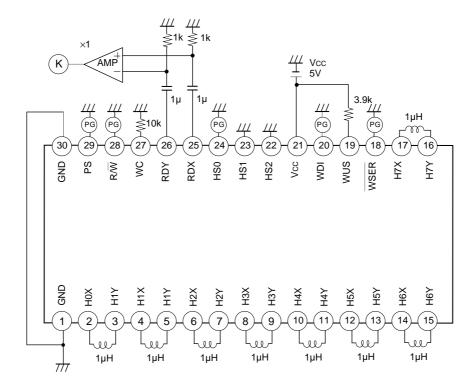
Electrical Characteristics (unless otherwise specified, Vcc = 5 V, Ta = 25°C, Write current Iw = 15 mA)
Refer to Measurement Circuit 1.

Item	Symbol	Measurement conditions	Measure- ment point	Min.	Тур.	Max.	Unit
Current consumption for Read	IR	R/₩="H"	E	17	23	33	
Current consumption for	Iw	R/W="L"	E	24	32	45	
Write				+lw	+lw	+lw	mA
Current consumption for	ISE	WSER="L"	E	71	91	111	
Servo	_			+4×Iw	+4×Iw	+4×Iw	
Current consumption for Power save	IP	PS="H"	E	0.8	1.4	2.0	
Digital low input voltage	VIL		В			0.8	
		_	D				v
Digital high input voltage	VIH		F	2.0			
			G	_			
Digital low input current	١L		Н	-70			
		High applied voltage: 5 V					μA
Digital high input current	Ін	Low applied voltage: 0 V	J			70	μ.,
Write-unsafe output saturation voltage	Vwus	Output current: 1 mA	С			0.5	V
Write-unsafe output leak current	Iwus		С			10	μA
Power ON/OFF detector threshold voltage	Vтн		Vcc A	3.6	3.9	4.3	V
Write current setting range	Iw	Current flowing between head pins.	A	5		15	mAo-p
Write current accuracy	Δlw	When Write current is Iw [mA], then: $Iw = \frac{K}{Rw}(Rw:\Omega),$ Refer to Fig. 12 (Characteristics) for K.	A	-8		8	%
Read amplifier differential voltage gain	Av	Input voltage SG1:1mVp-p,300kHz Load resistance (RDX, RDY): 1kΩ	к	245	290	335	V/V
Bandwidth (-3 dB)	Bw	Frequency at which Av drops by 3dB	к	60			MHz
Input conversion noise voltage	EN	Head impedance: 0 Ω	к		0.55	0.7	$\frac{nV}{\sqrt{Hz}}$
Common mode rejection ratio	CMRR	In-phase input voltage SG2:100mVp-p, 10 MHz	к	50	77		dB

Refer to Measurement C	Circuit	1.
------------------------	---------	----


Item	Symbol	Measurement conditions	Measure- ment point	Min.	Тур.	Max.	Unit
Supply voltage rejection ratio	PSRR	Ripple voltage SG3: 5 V ± 100 mVp-p, 10 MHz When Read amplifier output is Vp (mVp-p), then: PSRR = 20 log (100/Vp) + 20 log Av	к	45	55		
Channel separation	CS	Selected head input voltage: 0 mVp-p Non-selected head input voltage SG1: 100 mVp-p, 10 MHz When Read amplifier output is Vcs (mVp-p), then: CS = 20 log (100/Vcs) + 20 log Av	к	45	55		dB
Non-selected head voltage	VHUS		Non selected head			0.2	V

Unless otherwise specified, Vcc = 5 V, Ta = 25 °C, fwD (Write data frequency) = 5 MHz, Iw = 15 mA, LH (head inductance) = 1 μ H, RH (head DC resistance) = 30 Ω


Refer to Measurement Circuit 2 and Tim	ng Chart.
--	-----------

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Head differential voltage amplitude	Vsw	Potential difference between HX and HY pins when Write current is switched.	4.4	5.2		Vр-р
Write-unsafe detection maximum frequency	Fwus	FWUS is the Write data frequency when WUS pin is high in Write mode.		280	1000	kHz
Mode switching time Read to Write	Trw	Time required for Write current to reach 90% after Read mode is switched to Write mode.			0.6	
Mode switching time Read to Simultaneous Write	Trs	Time required for Write current to reach 90% after Read mode is switched to Simultaneous Write mode.			0.6	
Mode switching time Write to Read	Twr	Time required for Write current to reach 10% after Write mode is switched to Read mode.			0.6	
Mode switching time Safe to Unsafe	TSA1	Time required for WUS pin to become high after the Write data is stopped in Write mode.	3	7	11	μs
Mode switching time Unsafe to Safe	TSA2	Time required for WUS pin to become low after the Write data is input in Write mode.			1.0	
Mode switching time Power save to Read	Tpr	Time required for RD output to reach 90% after Power Save mode is switched to Read mode.			1.0	
Head switching time	Тн	Time required for RD output to reach 90% when the selected head is changed in Read mode.			0.6	
Write current propagation delay time	TPD	LH = 0, RH = 0 Time required for Write current to reach 90% after the Write data falling edge.		16	30	
Write current rise/fall time	Tr/Tf	LH = 0, RH = 0 TR is the time required for Write current to reach 90% from 10%; TF is the time required for it to reach 10% from 90%.		5	10	ns

Measurement Circuit 1

Measurement Circuit 2

Timing Chart 1

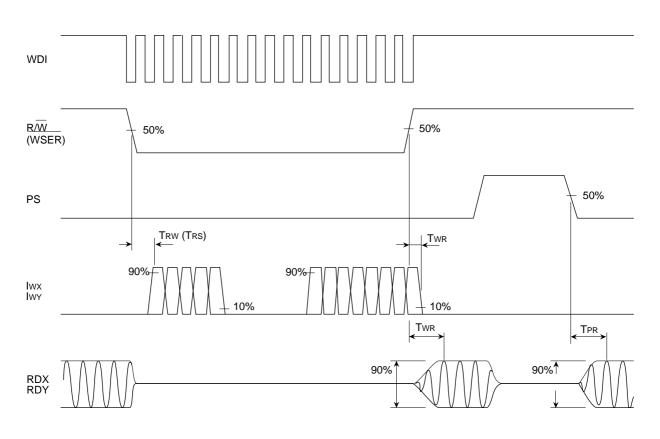
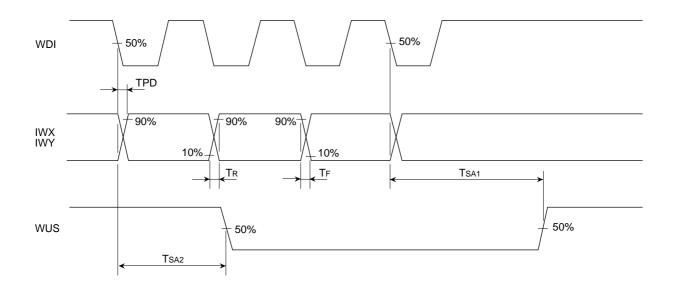



Fig. 3

Timing Chart 2

—9—

Description of Functions

Read amplifier

This is a low-noise amplifier for amplifying the faint signals from the heads, and is an emitter follower output. It outputs the signals differentially to the RDX and RDY pins, and the X side of the head and RDX pin and the Y side of the head and RDY pin have the same polarity. RDX and RDY outputs in Write mode become high impedance. (The outputs should be capacitor-coupled.)

Write circuit

The Write data input to the WDI pin passes through a T flip-flop where its frequency is halved. It then drives the Write switch circuit and supplies the Write current to the heads.

The Write data is triggered at the transition from high to low and the Write current is switched.

The Write current flows from the X side when the mode changes from Read to Write.

Mode control

The modes are set as shown in Table 1 by the R/ \overline{W} , PS and \overline{WSER} pins.

R/W	PS	WSER	HSO	Mode
L	L	Н	Х	Write
Н	L	Н	Х	Read
Х	Н	Х	Х	Power save
Х	L	L	L	0, 2, 4, 6-head simultaneous Write
Х	L	L	Н	1, 3, 5, 7-head simultaneous Write

Table 1. Mode selection

The $\overline{\text{WSER}}$ pin has a built-in pull-up resistor (100 k Ω).

Head selection

The heads are selected as shown in Table 2 by the HS0, HS1 and HS2 pins.

HS0	HS1	HS2	Head
L	L	L	0
н	L	L	1
L	Н	L	2
н	Н	L	3
L	L	Н	4
н	L	Н	5
L	Н	Н	6
Н	Н	Н	7

Table 2. Head selection

Write-unsafe detection circuit (refer to the "Notes on Operation.")

This circuit detects write errors.

In normal Write mode, the WUS output is low; in the conditions listed below, it is high.

- Head input is open.
- Head input is shorted to GND or Vcc.
- Write data frequency is abnormally low.
- There is no Write current.
- In Read mode
- In Power save mode
- Supply voltage is abnormal (refer to the "Power supply ON/OFF detection.")

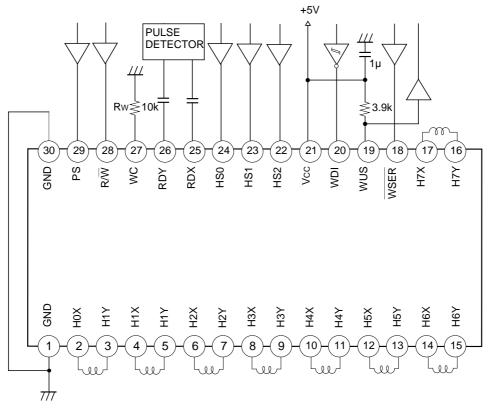
Power supply ON/OFF detection

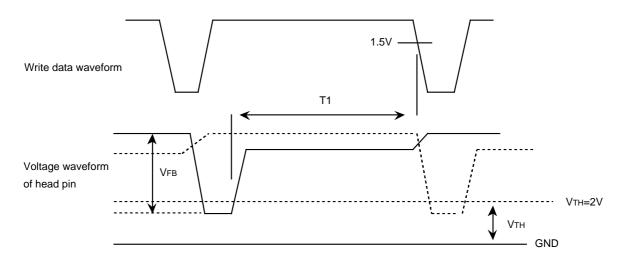
This circuit monitors VCC to detect erroneous Writes.

The error status is established when Vcc falls below the threshold voltage (VTH) of the power supply ON/OFF detector, in which case the recording and playback functions are prohibited.

When Vcc rises above VTH, the prohibition of these functions is released.

Application Circuit



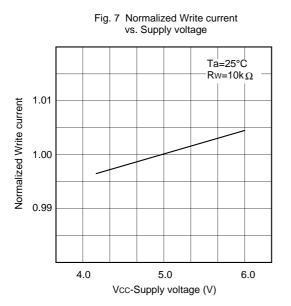

Fig. 5

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

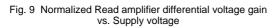
Notes on Operation

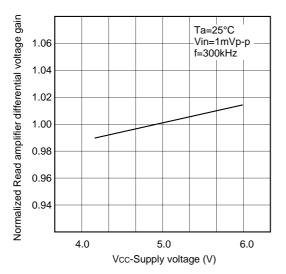
- This IC handles high frequency and high gain signals. Please note the following;
 - ◊ Connect Vcc decoupling capacitor of approximately 1000 pF near the IC.
 - ◊ Make the grounding area as large as possible.
- Short-circuit the X and Y sides of unused head pins or leave them open.
- Write data pulse width
 - Set the pulse width to 10 ns or more at 1.5 V to prevent misoperation.
- The WC pin is a constant voltage pin. When noise affects this pin, it creates noise in Write current. Therefore, locate Rw as close to the IC as possible.
- Write-unsafe detection circuit

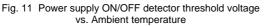
The WUS detection circuit operates by voltage waveform of head pin.

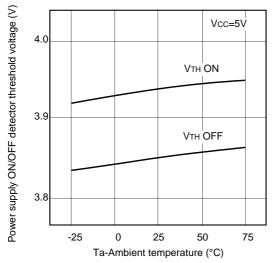

- ♦ Use the IC at T1 > 10 ns for normal operation of the WUS detecting circuit.
- Use the IC with VFB of 2V or more. If the VFB is less than 2V, the write-unsafe detection maximum frequency may become 1 MHz or more.
- Please apply to the reference mentioned on this back cover since the operation range of the writeunsafe detection circuit is greatly affected by the head inductance, head DC resistance and Write current.
- Use the IC with Ta at 30°C or less in Simultaneous Write mode.

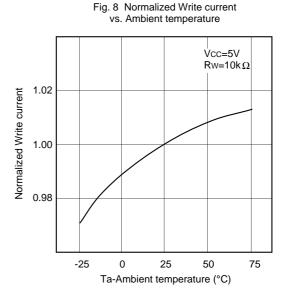
Application Notes

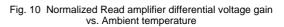

Use the following characteristics for reference.


Vcc=5V, Ta=25°C


	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
	Differential output capacitance	Co	Between head input			15	pF
Write mode	Differential output resistance	Ro	pins	235	315	395	Ω
Differential input capacitance		C1	Between head input		14	20	pF
Read mode	Differential input resistance	R1	pins	0.7	1.4		kΩ
	Output resistance	Rrd	RDX or RDY		40	60	Ω
Non-selected head differential current in Write mode		lus	LH=1µH, RH=30Ω Iw=15mA			0.2	mAp-p
Write current symmetry		Tas	LH=0μH, RH=0Ω Iw=15mA	-1		1	ns




Example of Representative Characteristics



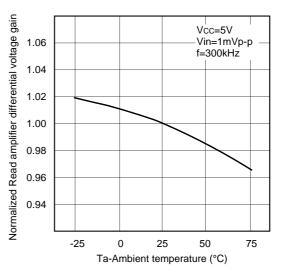
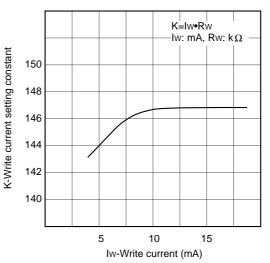
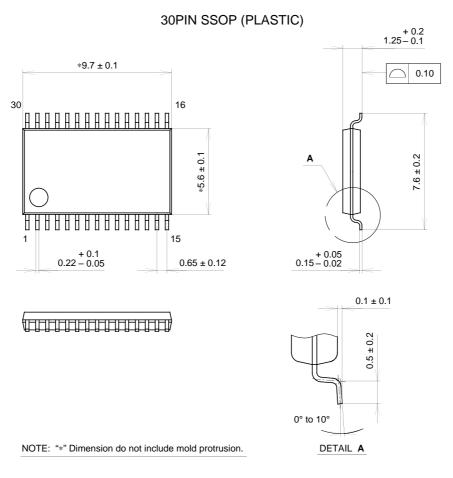




Fig. 12 Write current setting constant K vs. Write current

—14—

Package Outline Unit : mm

SONY CODE	SSOP-30P-L01
EIAJ CODE	SSOP030-P-0056
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	COPPER/42 ALLOY
PACKAGE WEIGHT	0.1g