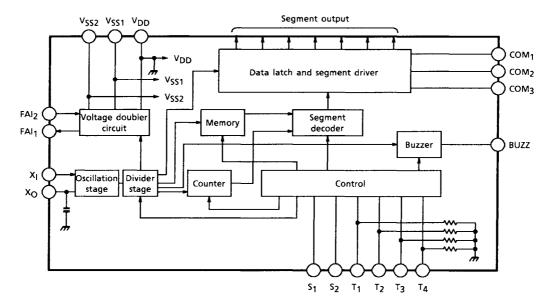
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

JT6P24-AS

LCD Display 5-Digit Counter LSI

This product is a single-chip CMOS LSI for counters capable of directly driving a 5-digit LCD.

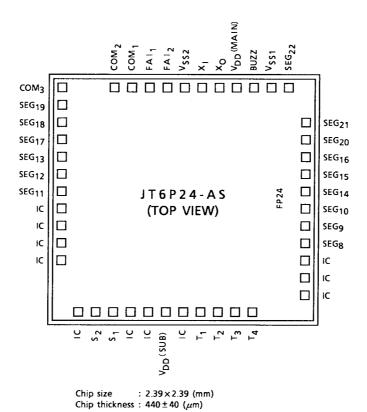

Applications

- Pedometers
- Counters

Features

- 32.768 kHz crystal oscillator
- Counts up to 99999
- 1/3 duty LCD drive, 5-digit display
- Low current consumption ($I_{sup} = 3.0 \mu A max$)
- Voltage doubler circuit (two $0.1~\mu F$ -external capacitors)

Block Diagram

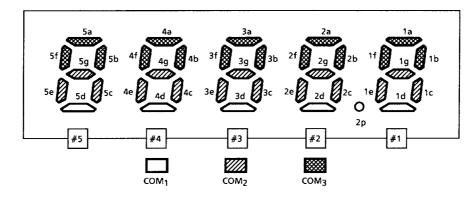

JT6P24-AS

Pin Descriptions (44 pins)

Pin Name	Symbol	No. of Pins	
Power Supply Pins	V _{DD} (2), V _{SS1} , V _{SS2}	4	
Oscillator Pins	X _I , X _O	2	
Input Pins	S ₁ , S ₂	2	
Output Pin	BUZZ	1	
Display Pins	COM _{1~3} , SEG ₍₁₅₎	18	
Test Pins	T _{1~4}	4	
Voltage Doubler Pins	FAI ₁ , FAI ₂	2	
IC (do not use)	_	11	

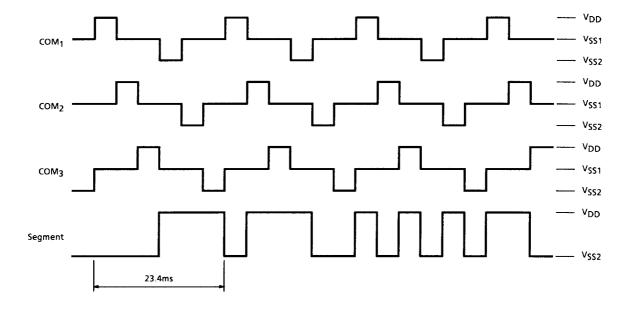
Pad Layout

Note 1: Be sure to connect the V_{DD} (MAIN).

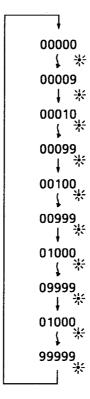

Pad Location Table

(μ**m**)

Pin Name	X Point	Y Point	Pin Name	X Point	Y Point
IC	-1067	-618	SEG ₂₁	1067	618
IC	-1067	-455	SEG ₂₀	1067	455
IC	-1067	-292	SEG ₁₆	1067	292
IC	-1067	-129	SEG ₁₅	1067	130
SEG ₁₁	-1067	33	SEG ₁₄	1067	-33
SEG ₁₂	-1067	196	SEG ₁₀	1067	-196
SEG ₁₃	-1067	359	SEG ₉	1067	-359
SEG ₁₇	-1067	522	SEG ₈	1067	-522
SEG ₁₈	-1067	684	IC	1067	-684
SEG ₁₉	-1067	847	IC	1067	-847
COM ₃	-1067	1010	IC	1067	-1010
COM ₂	-618	1067	T ₄	618	-1067
COM ₁	-45 5	1067	T ₃	455	-1067
FAI ₁	-292	1067	T ₂	292	-1067
FAI ₂	-129	1067	T ₁	130	-1067
V _{SS2}	33	1067	IC	-33	-1067
ΧI	196	1067	V _{DD} (SUB)	-196	-1067
X _O	359	1067	IC	-359	-1067
V _{DD} (MAIN)	522	1067	IC	-522	-1067
BUZZ	684	1067	S ₁	-684	-1067
V _{SS1}	847	1067	S ₂	-847	-1067
SEG ₂₂	1010	1067	IC	-1010	-1067


Function Specifications

1. LCD Segment Pattern


	COM ₁	COM ₂	COM ₃		COM ₁	COM ₂	COM ₃
SEG ₈	_	5e	5f	SEG ₁₆	_	3c	3b
SEG ₉	5d	5g	5a	SEG ₁₇	_	2e	2f
SEG ₁₀	_	5c	5b	SEG ₁₈	2d	2g	2a
SEG ₁₁	_	4e	4f	SEG ₁₉	2p	2c	2b
SEG ₁₂	4d	4g	4a	SEG ₂₀	_	1e	1f
SEG ₁₃	_	4c	4b	SEG ₂₁	1d	1g	1a
SEG ₁₄	_	3e	3f	SEG ₂₂	_	1c	1b
SEG ₁₅	3d	3g	3a				

2. LCD Drive Waveform

3. Display Modes and Display Sequences

Counter display mode

※: Counter mode sign flashes at 1Hz.

4. Input Setting

 S_1 , S_2 : Normally, pulled down to the V_{SS1} level by external resistance. S_1 and S_2 perform their specified functions when connected to the V_{DD} by an external switch.

5. Input Functions

Counter display S₁: +1/S₁ S₂: Count reset

Pressing S_1 or S_2 outputs an operating confirmation sound from BUZZ. (around $30{\sim}60$ ms)

The drive frequency is 4 kHz.

6. All Clear Function

When power is applied or when the supply of power is interrupted (e.g. if the battery is changed), the internal state of the IC may become unstable, even though it appears to be operating normally. For this reason it is vital to verify that the crystal oscillation circuit is oscillating normally ant stably (at 32 kHz) and then to use the system reset pin to initialize the IC (i.e. clear it) before use.

Note that a clear operation using the built-in power-on clear circuit should not be used in this case.

Maximum Ratings (if no temperature stipulations, Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Power supply voltage (1)	V _{SS1} -V _{DD}	-3.0~0.2	V
Power supply voltage (2)	V _{SS2} -V _{DD}	-4.5~0.2	V
Input voltage (1)	V _{IN1}	V _{SS1} - 0.2~V _{DD} + 0.2	V
Input voltage (2)	V _{IN2}	V _{SS2} - 0.2~V _{DD} + 0.2	V
Output voltage (1)	V _{OUT1}	V _{SS1} - 0.2~V _{DD} + 0.2	V
Output voltage (2)	V _{OUT2}	V _{SS2} - 0.2~V _{DD} + 0.2	V
Operating temperature	T _{opr}	-10~60	°C
Storage temperature	T _{stg}	-40~125	°C


Electrical Characteristics

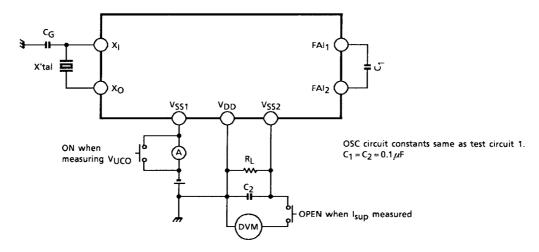
(unless otherwise stated, $V_{DD}=0.00$ V, $V_{SS1}=-1.55$ V, $V_{SS2}=-3.00$ V, $C_G=20$ pF, $C_D=$ built-in (10 pF), $C_{IMAX}=21$ k Ω , $F_o=32768$ Hz)

Characteristics	Symbol	Test Circuit	Test Condition		Min	Тур.	Max	Unit
Operating voltage	V _{SS1} -V _{DD}	3	_		1.25	1.55	1.80	V
Operating current consumption	I _{sup}	2	No LCD load		_	_	3.0	μΑ
Oscillation start voltage	V _{STA}	3	t _{STA} 10 s		_	_	1.40	V
Output current (1)	I _{OH1}	4	$V_{OH1} = -0.2 \text{ V}$	V _{OH1} = -0.2 V		_	-0.5	μА
Segment	I _{OL1}	4	V _{OL1} = -2.8 V		0.5	_	_	
Output current (2)	I _{OH2}	4	V _{OH2} = -0.2 V		_	_	-4.0	^
Common	I _{OL2}	4	V _{OL2} = -2.8 V		4.0	_	_	μА
Output current (3) Buzzer	I _{OH3}	4	V _{SS1} = -1.25 V	V _{OH3} = -0.5 V	_	_	-100	μА
	I _{OL3}	4	$V_{SS2} = -2.8 \text{ V}$	$V_{OL3} = -0.75 \text{ V}$	100	_		μΑ
Input current (2)	I _{IH2}	4	V _{IH2} = 0 V		_	_	0.1	^
T ₁ , T ₃ , T ₄	I _{IL2}	4	V _{IL2} = -1.55 V		_	-50	_	μА
Input current (3)	I _{IH3}	4	V _{IH3} = 0 V		_	_	0.1	^
T ₂	I _{IL3}	4	V _{IL3} = -1.55 V		-15.5	_	_	μА
Input current (4)	I _{IH4}	4	V _{IH4} = 0 V		_	_	0.1	^
S ₁ , S ₂	I _{IL4}	4	V _{IL4} = -1.55 V		-0.1	_	_	μА
Voltage doubler output	V _{uco}	2	$C_1 = C_2 = 0.1 \ \mu F, \ R_L = 3 \ M\Omega$		3.0	_	_	V

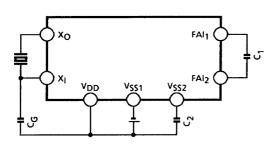
Test Circuit

1. Oscillation Circuit

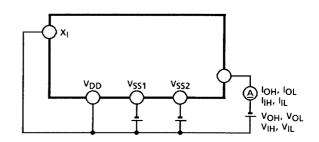
X'tal

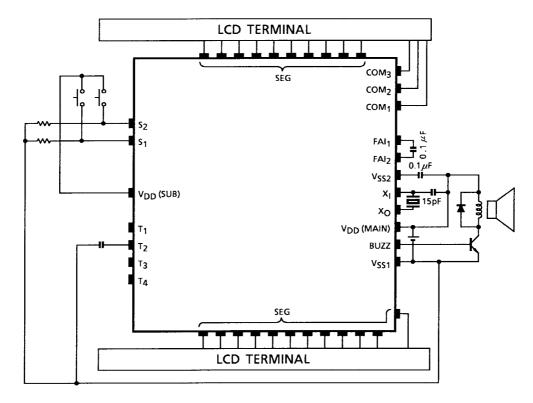

 $R_S = 21 \text{ k}\Omega$

 $F_0 = 32.768 \text{ kHz}$


 $C_G = 20 pF$

 $C_D = 10 pF$ built in


2. Measuring I_{sup} and V_{UCO}


3.

4.

Application Circuit Example

Note 2: Be sure to connect the $V_{\mbox{\scriptsize DD}}$ (MAIN).

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.