

The Infinite Bandwidth Company™

The following application hint refers to the MICRF002, MICRF007, MICRF011 and MICRF022 QwikRadio[™] Receivers. The calculations apply to data-patterns with 50/50 and 33/66 duty cycles.

The C_{TH} capacitor value is dependent on several factors. It is important to calculate the right capacitor value for each specific application. A wrong C_{TH} capacitor value will deteriorate the maximum range in the RF link. The example below shows how to calculate it and a table is provided for other frequencies.

Example No. 1: 1.2kbps, 50% Manchester

When a 50% duty cycle data pattern with a preamble is used, (see Figure 1) use the following formula to calculate C_{TH} ,

$$C_{TH} = \frac{\left(\frac{5}{DATARATE}\right)}{\left(\frac{578200}{REFOSC}\right)} \text{ (Equation 1)}$$

Fixed Mode, SEL0 = 1, SEL1 = 0

Carrier Frequency: 433.92 MHz.

Reference Oscillator: 6.7458 MHz, up conversion Plugging in the values at Equation 1, we have

$$C_{TH} = \frac{\left(\frac{5}{1200}\right)}{\left(\frac{578200}{6.7258}\right)}$$

C_{TH}= 48.6nF

The closest commercial value is 47nF. Notice that the C_{TH} value is dependent mainly on the baud rate (data pattern) and the reference oscillator frequency. See Table 1 and 2 for other baud rates and frequencies.

Application Hint 42

QwikRadio[™]- Calculating the C_™ Capacitor

by Carlos Ribeiro

Figure 1. Data Pattern, 50% Manchester

Table 1. Freq. 315 MHz, 50% Duty Cycle, Manchester encoding, no squelch, REFOSC=4.897MHz, pulse with preamble, fixed mode.

Baud Rate bps	С _{тн}	C _{AGC}	SEL0	SEL1		
1200	39nF	2.2μF	1	0		
2400	18nF	1μF	0	1		
4800	8.2nF	0.47μF	1	1		
9600	4.7nF	0.22μF	1	1		
A						

Table 1.

Table 2. Freq. 433.92 MHz, 50% Duty Cycle, Manchester encoding, no squelch, REFOSC=6.7458MHz, pulse with preamble, fixed mode.

Baud Rate bps	С _{тн}	C _{AGC}	SEL0	SEL1		
1200	47nF	2.2μF	1	0		
2400	27nF	1μF	0	1		
4800	12nF	0.47μF	1	1		
9600	5.6nF	0.22μF	1	1		

Table 2.

Note 1: The AGC capacitor values are suggested values and will depend on how much dead time there is between preamble and data and how fast the receiver needs to be in stead state.

Note 2: For 33/66 coding scheme, use the same equation 1 to calculate C_{TH} .

Note 3: Application note 22 has further information about the C_{TH} pin.

MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2001 Micrel Incorporated

Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com