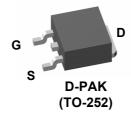
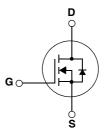


January 2006

FDD5810

N-Channel PowerTrench[®] MOSFET 60V, 35A, 27m Ω


Features


- $R_{DS(ON)} = 20.5 \text{m}\Omega$ (Typ.), $V_{GS} = 5V$, $I_D = 35A$
- $Q_{g(5)} = 13nC \text{ (Typ.)}, V_{GS} = 5V$
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse / Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Motor / Body Load Control
- ABS Systems
- Powertrain Management
- Injection System
- DC-DC converters and Off-line UPS
- Distributed Power Architecture and VRMs
- Primary Switch for 12V and 24V systems

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain to Source Voltage		60	V
V _{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (V _{GS} = 10V, T _C = 52°C)	(Note 1)	35	А
I_D	Drain Current Continuous (V _{GS} = 5V, T _C = 42°C)	(Note 1)	35	Α
	Continuous ($T_A = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 52^{\circ}C/W$)		7.7	Α
	Pulsed		Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Note 2)		45	mJ
	Power Dissipation		88	W
P_{D}	Derate above 25°C		0.59	W/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-252	1.7	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD5810	FDD5810	TO-252AA	13"	12mm	2500 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Parameter	lest Co	onditions	Min	Тур	Max	Units
cteristics						
Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_C$	as = 0V	60	-	-	V
Zara Cata Valtaga Drain Current	$V_{DS} = 48V$		-	-	1	^
Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μΑ
Gate to Source Leakage Current	$V_{GS} = \pm 20V$	•	-	-	±100	nA
	Cteristics Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current					

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	1.6	2	V
R _{DS(ON)}	Drain to Source On Resistance	$I_D = 35A, V_{GS} = 10V$	-	16.5	20	
		$I_D = 35A, V_{GS} = 5V$	-	20.5	27	mΩ
		$I_D = 35A, V_{GS} = 10V,$ $T_J = 175^{\circ}C$	-	39	48	11152

Dynamic Characteristics

C _{iss}	Input Capacitance	V 25V V 2V	-	1420	1890	pF
C _{oss}	Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz	-	150	200	pF
C _{rss}	Reverse Transfer Capacitance	1 - 111112	-	65	100	pF
R _G	Gate Resistance	f = 1MHz	-	3.5	-	Ω
Q_g	Total Gate Charge at 10V	V _{GS} = 0V to 10V	-	24	34	nC
Q_g	Total Gate Charge at 5V	V _{GS} = 0V to 5V	-	13	18	nC
$Q_{g(th)}$	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$ $V_{DD} = 30V$ $I_{D} = 35A$	-	1.3	-	nC
Q_{gs}	Gate to Source Gate Charge	ID = 33A	-	4.0	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	2.7	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	5.0	-	nC

Switching Characteristics							
t _{on}	Turn-On Time		-	-	130	ns	
t _{d(on)}	Turn-On Delay Time		-	12	-	ns	
t _r	Rise Time	$V_{DD} = 30V, I_{D} = 35A$	-	75	-	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = 30V, I_D = 35A$ $V_{GS} = 5V, R_{GS} = 11\Omega$	-	26	-	ns	
t _f	Fall Time		-	34	-	ns	
t _{off}	Turn-Off Time		-	-	90	ns	

Drain-Source Diode Characteristics

V _{SD}	I Source to Drain Diode Voltage F	I _{SD} = 35A	-	-	1.25	V
		I _{SD} = 16A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	I _F = 35A, di/dt = 100A/μs	-	-	39	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 35A$, di/dt = 100A/ μ s	-	-	35	nC

Notes: 1: Package Limitation is 35A. 2: Starting $T_J=25^{\circ}C$, $L=110\mu H$, $I_{AS}=28A$, $V_{DD}=54V$, $V_{GS}=10V$.

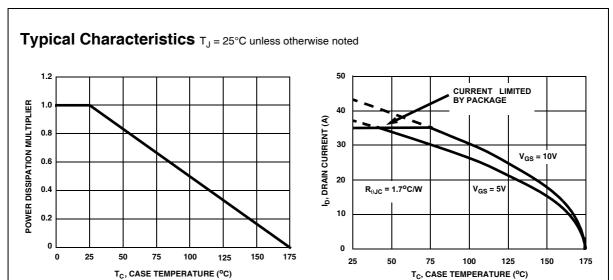


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

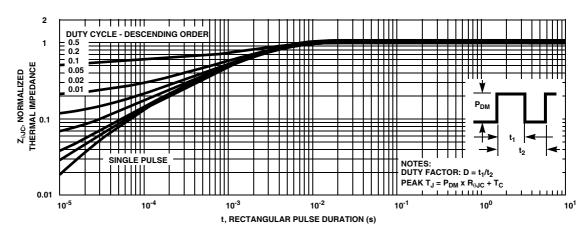


Figure 3. Normalized Maximum Transient Thermal Impedance

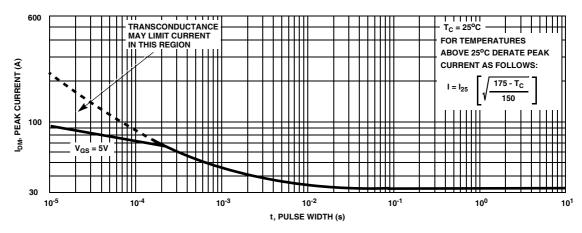
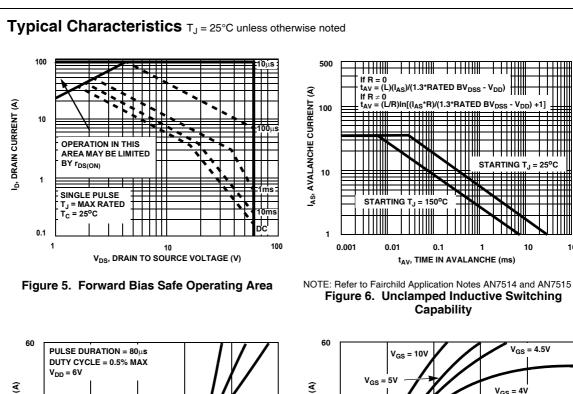



Figure 4. Peak Current Capability

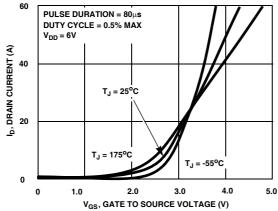


Figure 7. Transfer Characteristics

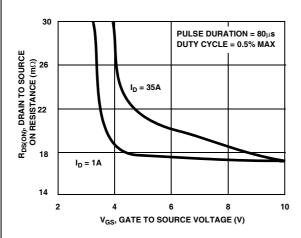


Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

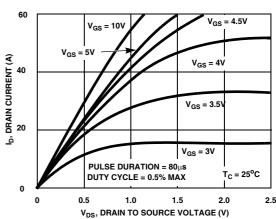


Figure 8. Saturation Characteristics

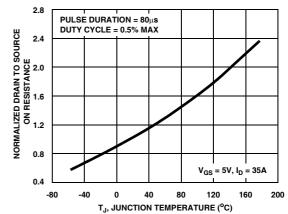
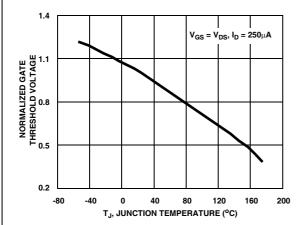
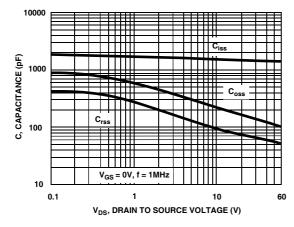



Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature



NORMALIZED DRAIN TO SOUNCE DR

1.2

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

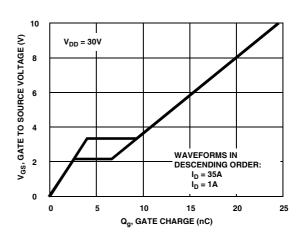


Figure 13. Capacitance vs Drain to Source Voltage

Figure 14. Gate Charge Waveforms for Constant Gate Current

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™ _
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I^2C^{TM}	MSXPro™	RapidConnect™	UHC™
E ² CMOS TM	i-Lo™	OCXTM	μSerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
FACT Quiet Serie	es™	OPTOPLANAR™	SMART START™	Wire™
Across the bear	d. Around the world.™	PACMAN™	SPM™	
The Power Fran		POP™	Stealth™	
Programmable A		Power247™	SuperFET™	
Fiografilitable P	renive proop	PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.