FEATURES

- · Ranges 0...±25 and 0...±1000 sccm1
- · Bidirectional sensing
- · Actual mass flow sensing
- · Ceramic flow tube
- · Manifold mount/o-ring sealed

SERVICE

To be used with dry gases only. The AWM42150VH is a special sensor for hydrogen (H_2) flow.

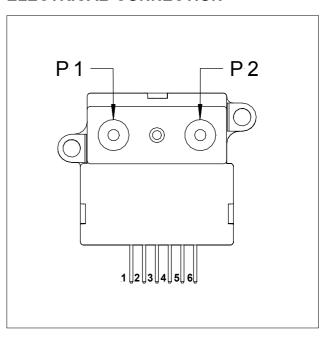
The AWM series is NOT designed for liquid flow and will be damaged by liquid flow through the sensor.

SPECIFICATIONS

Maximum ratings

Supply voltage² 8 to 15 V

typ. 10 ±0.01 V


Power consumption max. 60 mW

Temperature limits

Operating -40 to 125°C Storage -40 to 125°C

Mechanical shock 100 g (5 drops, 6 axes)

ELECTRICAL CONNECTION

Note:

¹ sccm denotes standard cubic centimeters per minute

² Output voltage is ratiometric to supply voltage

November 2004 / 624 1/6

Mass flow sensor for gases

FLOW SENSOR CHARACTERISTICS³

 $V_{s} = 10 \pm 0.01 \text{ V}, T_{A} = 25^{\circ}\text{C}$

Part no.	Flow range (full scale)	Max. flow change⁴	Output voltage @ trim point
AWM42150VH	±25 sccm	5.0 l/sec	8.5 ±1.5 mV @ 25 sccm
AWM42300V	±1000 sccm	5.0 l/sec	54.7 ±3.7 mV @ 1000 sccm

PERFORMANCE CHARACTERISTICS

 $V_s = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C}$

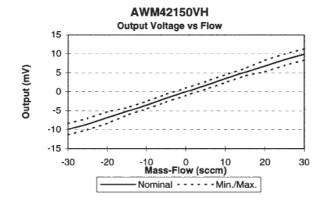
Characteristics			Min.	Тур.	Max.	Unit			
Zero offset		AWM42150VH	-1.0	0	1.0	>/			
			AWM42300V	-1.5	0	1.5	mV		
Repeatability and hysteresis AWM42150VH					±0.35	0/			
(combined)			AWM42300V			±0.50	% reading		
Temperature effects ⁵	Offset	-25 to 85 °C			±0.20		mV		
	Span	-25 to 25 °C			2.5		0/ roading		
25 to 85 °C					-2.5		% reading		
Response time					1.0	3.0	ms		
Common mode pressure					150	psi			

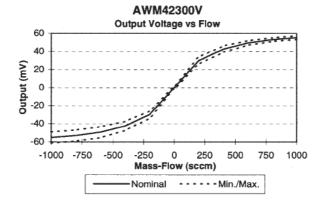
Notes:

2/6

³ A 5 micron filter is recommended for all devices.

⁴ Maximum allowable rate of flow change to prevent damage.

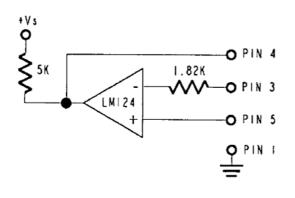

 $^{^{\}text{\tiny 5}}$ Shift is relative to 25 °C.

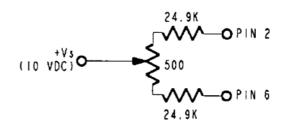

OUTPUT FLOW VS INTERCHANGEABILITY

 $V_{s} = 10 \pm 0.01 \text{ V}, T_{A} = 25^{\circ}\text{C}$

AWM42150VH			AWM42300V				
Press μBar	Flow sccm	Nom. mV	Tol. ± mV	Press. mBar	Flow sccm	Nom. mV	Tol. ± mV
20	30	9.9	1.5	2.23	1000	54.7	2.00
17	25	8.5	1.5	1.52	800	53.0	2.0
14	20	6.8	1.5	0.94	600	49.3	2.5
10	15	5.2	1.0	0.49	400	42.5	3.5
7	10	3.5	1.0	0.19	200	29.8	4.0
3	5	1.7	1.0	0.00	0	0.0	1.5
0	0	0.0	1.0	-0.19	-200	-29.8	4.0
				-0.49	-400	-42.5	5.0
				-0.94	-600	-49.3	6.0
				-1.52	-800	-53.0	6.0
				-2.23	-1000	-55.2	6.0

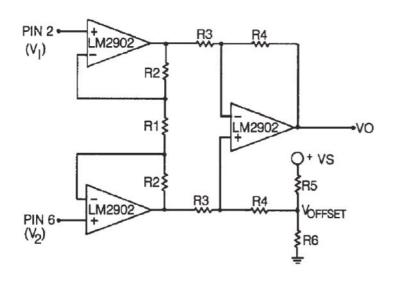
OUTPUT CURVES




November 2004 / 624 3/6

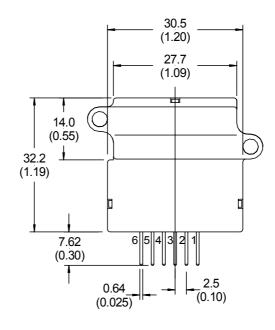
HEATER CONTROL CIRCUIT

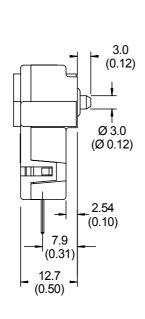
SENSING BRIDGE SUPPLY CIRCUIT

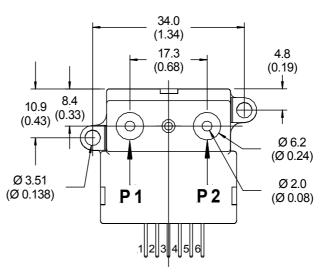


Note:

Circuits required for operation per specifications. Circuits are not on board the sensor.


DIFFERENTIAL INSTRUMENTATION AMPLIFIER CIRCUIT (OPTIONAL)




$$V_{O} = \left(\frac{2R_{2} + R_{1}}{R_{1}}\right) \left(\frac{R_{4}}{R_{3}}\right) (V_{2} - V_{1}) + V_{Offset}$$

where
$$V_{Offset} = V_S \left(\frac{R_6}{R_6 + R_5} \right)$$

OUTLINE DRAWING

mass: approx. 14 g dimensions in mm (inches)

November 2004 / 624 5/6

GAS CORRECTION FACTORS⁶

Gas type	Correction factor (approx.)		
Helium (He)	0.57		
Hydrogen (H ₂)	$0.7^{7,8}$		
Argon (Ar)	0.95		
Nitrogen (N ₂)	1.0		
Oxygen (O ₂)	1.0		
Air	1.0		
Nitric oxide (NO)	1.0		
Carbon monoxide (CO)	1.0		
Methane (CH ₄)	1.1		
Ammonia (NH ₃)	1.1		
Nitrous oxide (N ₂ O)	1.35		
Nitrogen dioxide (NO ₂)	1.35		
Carbon dioxide (CO ₂)	1.35		

Notes:

ORDERING INFORMATION

Flow range	Dry gas	Hydrogen gas ⁸		
±25 sccm		AWM42150VH		
±1000 sccm	AWM42300V			

Sensortechnics reserves the right to make changes to any products herein. Sensortechnics does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

6/6 November 2004 / 624

⁶ Gas correction factors are referenced to nitrogen (N₂) as calibration gas type. Approximate gas correction factors are provided as guidelines only. Individual gas types may perform differently at temperature extremes and varying flow rates.

⁷ When sensing Hydrogen (H₂) or Helium (He) it may be necessary to power the mass flow sensor using increased supply voltage: Hydrogen typ. 12 V, Helium typ. 15 V

⁸ Hydrogen (H₂) flow measurement requires the use of a special sensor. These devices provide normal operation when sensing hydrogen flow and are designated with an "H" at the end of the order number.