December 2006

6 C

5 G

4 S

FDFMA2P029Z Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

–20V, –3.1A, 95mΩ

FAIRCHILD

Features

MOSFET

- Max $r_{DS(on)}$ = 95m Ω at V_{GS} = -4.5V, I_D = -3.1A
- Max $r_{DS(on)}$ = 141m Ω at V_{GS} = -2.5V, I_D = -2.5A

Schottky

- V_F < 0.37V @ 500mA
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- RoHS Compliant

General Description

A 1

NC 2

D 3

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultraportable applications. It features a MOSFET with very low onstate resistance and an independently connected low forward voltage schottky diode allows for minimum conduction losses.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

MicroFET 2X2

Pin 1 A

NC

S

G

С

D

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-20	V	
V _{GS}	Gate to Source Voltage		±12	V	
1	Drain Current -Continuous (Note 1a)		-3.1	٨	
D	-Pulsed	-6	A		
P _D	Power Dissipation (Note 1a)		1.4	w	
		(Note 1b)	0.7	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	
V _{RRM}	Schottky Repetitive Peak Reverse Voltage	20	V		
I _O	Schottky Average Forward Current		2	Α	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	86	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1c)	86	0/11
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1d)	140	

Package Marking and Ordering Information

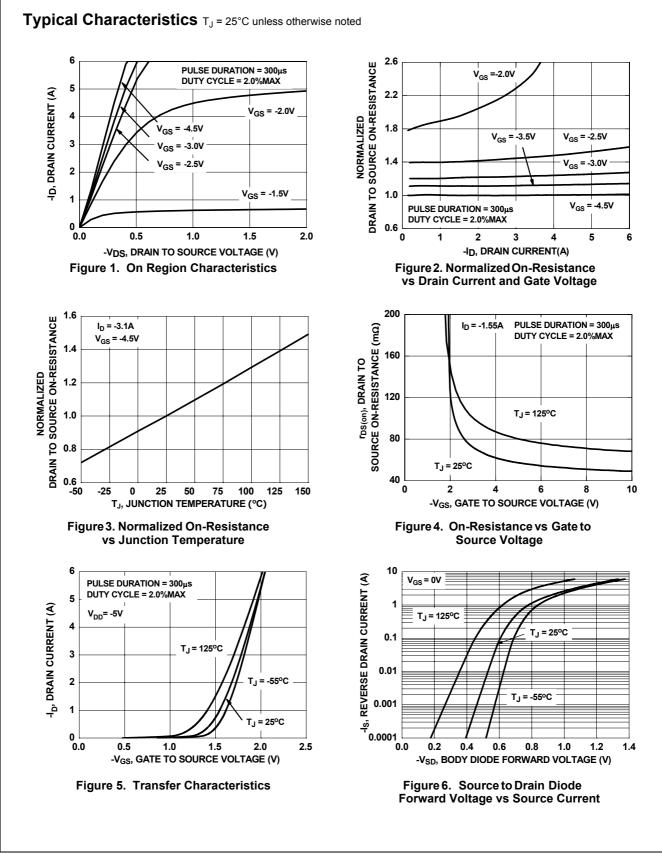
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.P29	FDFMA2P029Z	MicroFET 2X2	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = -250 \mu A, V_{GS} = 0 V$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250\mu A$, referenced to 25°C		-12		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$			-1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±12V, V_{DS} = 0V			±10	μA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.6	-1.0	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250\mu$ A, referenced to 25°C		4		mV/°C
		$V_{GS} = -4.5V, I_{D} = -3.1A$		60	95	
r _{DS(on)}	Static Drain to Source On-Resistance	$V_{GS} = -2.5V, I_D = -2.5A$		88	141	mΩ
		$V_{GS} = -4.5V, I_{D} = -3.1A, T_{J} = 125^{\circ}C$		87	140	-
9 _{FS}	Forward Transconductance	$V_{DS} = -10V, I_D = -3.1A$		-11		S
C _{iss} C _{oss}	Input Capacitance Output Capacitance Department	V _{DS} = –10V, V _{GS} = 0V, f = 1MHz		540 120	720 160	pF pF
C _{rss}	Reverse Transfer Capacitance			100	150	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time			13	24	ns
t _r	Rise Time	$-V_{DD} = -10V$, $I_D = -1A$ $-V_{GS} = -4.5V$, $R_{GEN} = 6Ω$		11	20	ns
t _{d(off)}	Turn-Off Delay Time			37	59	ns
t _f	Fall Time			36	58	ns
Q _{g(TOT)}	Total Gate Charge	V _{DD} = -10V, I _D = -3.1A		7	10	nC
Q _{gs}	Gate to Source Gate Charge	$V_{GS} = -4.5V$		1.1		nC
Q _{gd}	Gate to Drain "Miller" Charge			2.4		nC
Drain-Soເ	urce Diode Characteristics					
I _S	Maximum Continuous Drain-Source Diode	e Forward Current			-1.1	Α
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = -1.1A$ (Note 2)		-0.8	-1.2	V
t _{rr}	Reverse Recovery Time			25		ns
Q _{rr}	Reverse Recovery Charge	– I _F = –3.1A, di/dt = 100A/μs		9		nC

Schottky Diode Characteristics

V _R	Reverse Voltage	I _R = 1mA	T _J = 25°C	20			V
	Boyerro Lookago	$y_{1} = 20y_{1}$	T _J = 25°C		30	300	μA
'R	R Reverse Leakage	V _R = 20V	T _J = 125°C		10	45	mA
V _F Fo		I _E = 500mA	T _J = 25°C		0.32	0.37	v
	Forward Voltage	1 _F = 50011A	T _J = 125°C		0.21	0.26	
	Forward Voltage	1 - 10	T _J = 25°C		0.37	0.435	
		I _F = 1A	T _J = 125°C		0.28	0.33	

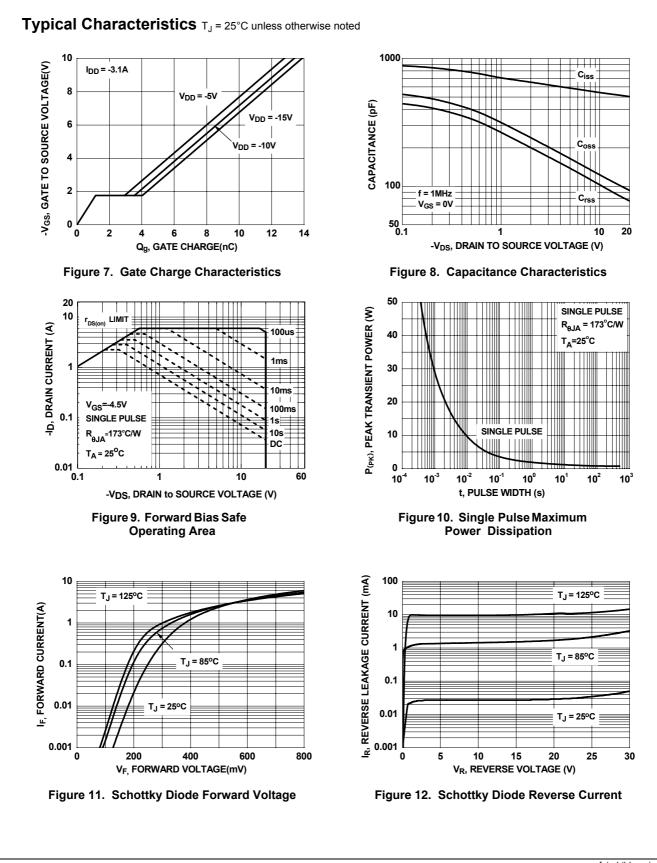
1: R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design. (a) MOSFET R_{0JA}^{-} = 86°C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB (b) MOSFET $R_{\rm 6JA}$ = 173°C/W when mounted on a minimum pad of 2 oz copper (c) Schottky $R_{\theta JA}$ = 86°C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. (d) Schottky $R_{\theta JA}$ = 140°C/W when mounted on a minimum pad of 2 oz copper. d)140°C/W b)173°C/W a)86°C/W c)86ºC/W when when mounted on a minimum pad of 2 oz when mounted on a 1in² pad of 2 oz copper. when mounted mounted on a 1in² pad of 2 oz on a minimum pad of 2 oz .**F**B 5 copper. copper. copper.


88888

2: Pulse Test : Pulse Width < 300us, Duty Cycle < 2.0%

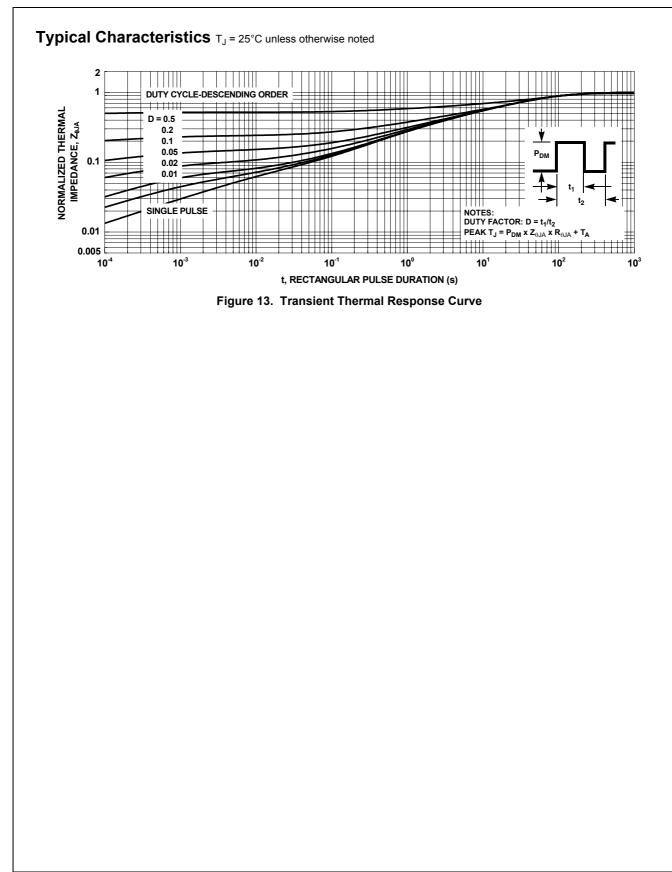
88888

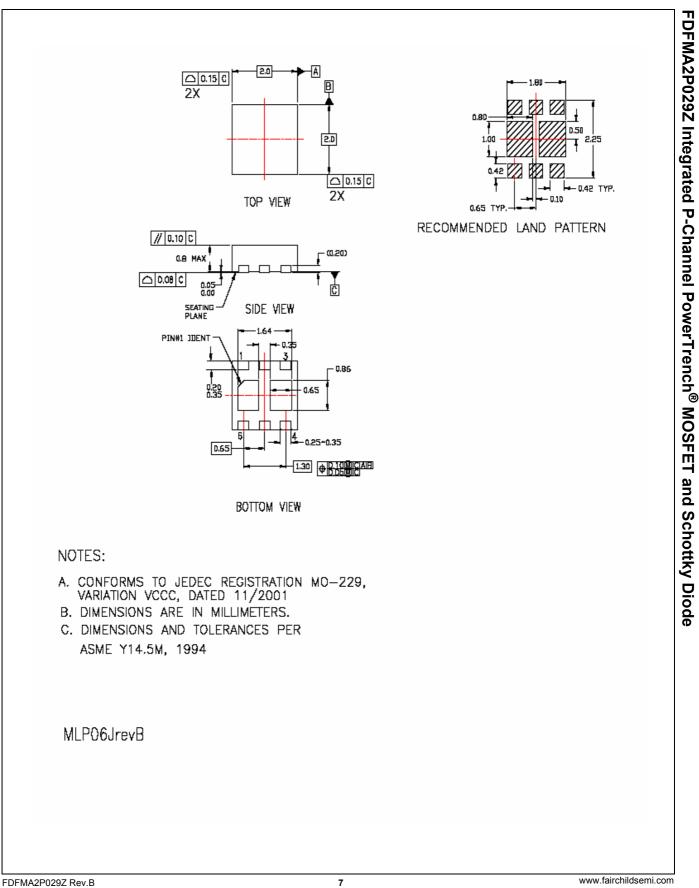
80888


888888

FDFMA2P029Z Rev.B

www.fairchildsemi.com


FDFMA2P029Z Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode


FDFMA2P029Z Rev.B

www.fairchildsemi.com

FDFMA2P029Z Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

www.fairchildsemi.com

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx TM ActiveArray TM Bottomless TM Build it Now TM CoolFET TM $CROSSVOLT^{TM}$ DOME TM EcoSPARK TM E^2CMOS^{TM} EnSigna TM FACT [®] FAST [®] FAST [®] FAST [®] FAST TM FPS TM FRFET TM	FACT Quiet Series TM GlobalOptoisolator TM GTO TM HiSeC TM l^2 C TM $i-Lo^TM$ ImpliedDisconnect TM IntelliMAX TM ISOPLANAR TM LittleFET TM MICROCOUPLER TM MicroPak TM MICROWIRE TM MICROWIRE TM MSX TM MSX TM	OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™] PACMAN [™] POP [™] Power247 [™] PowerEdge [™] PowerSaver [™] PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™]	SILENT SWITCHER [®] SMART START [™] SPM [™] Stealth [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -6 SuperSOT [™] -6 SyncFET [™] TCM [™] TinyBoost [™] TinyBoost [™] TinyBoost [™] TinyBook [™] TinyPower [™] TinyPower [™] TinyPower [™] TinyLogic [®] TINYOPTO [™]	UniFET™ VCX™ Wire™
MSXPro™ Across the board. Around the world.™ The Power Franchise [®] Programmable Active Droop™		HapidConnect™ µSerDes™ ScalarPump™	TruTranslation™ UHC [®]	
r rogrammable Active D	loop			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 122