


SEMITOP® 3

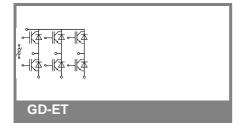
**IGBT** Module

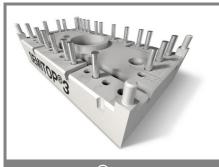
SK10GD12T4ET

**Target Data** 

#### **Features**

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor


### **Typical Applications\***


### **Remarks**

• V<sub>CE,sat</sub> , V<sub>F</sub> = chip level value

| <b>Absolute Maximum Ratings</b> $T_s = 25$ °C, unless otherwise specified |                                                    |                         |  |                  |       |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------|-------------------------|--|------------------|-------|--|--|--|
| Symbol<br>IGBT                                                            | Conditions                                         |                         |  | Values           | Units |  |  |  |
| V <sub>CES</sub>                                                          | T <sub>j</sub> = 25 °C                             |                         |  | 1200             | V     |  |  |  |
| I <sub>C</sub>                                                            | T <sub>j</sub> = 175 °C                            | T <sub>s</sub> = 25 °C  |  | 17               | Α     |  |  |  |
|                                                                           |                                                    | $T_s = 70 ^{\circ}C$    |  | 15               | Α     |  |  |  |
| I <sub>CRM</sub>                                                          | I <sub>CRM</sub> = 3 x I <sub>Cnom</sub>           |                         |  | 24               | Α     |  |  |  |
| $V_{GES}$                                                                 |                                                    |                         |  | ± 20             | V     |  |  |  |
| t <sub>psc</sub>                                                          | $V_{CC}$ = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V | T <sub>j</sub> = 150 °C |  | 10               | μs    |  |  |  |
| Inverse D                                                                 | Inverse Diode                                      |                         |  |                  |       |  |  |  |
| I <sub>F</sub>                                                            | T <sub>j</sub> = 175 °C                            | $T_s = 25 ^{\circ}C$    |  | 15               | Α     |  |  |  |
|                                                                           |                                                    | $T_s = 70  ^{\circ}C$   |  | 12               | Α     |  |  |  |
| I <sub>FRM</sub>                                                          | I <sub>FRM</sub> = 3 x I <sub>Fnom</sub>           |                         |  | 24               | Α     |  |  |  |
| Module                                                                    |                                                    |                         |  |                  |       |  |  |  |
| I <sub>t(RMS)</sub>                                                       |                                                    |                         |  |                  | Α     |  |  |  |
| T <sub>vj</sub>                                                           |                                                    |                         |  | -40 <b>+</b> 175 | °C    |  |  |  |
| T <sub>stg</sub>                                                          |                                                    |                         |  | -40 <b>+</b> 125 | °C    |  |  |  |
| V <sub>isol</sub>                                                         | AC, 1 min.                                         |                         |  | 2500             | V     |  |  |  |

| Characteristics $T_s =$            |                                                 |                                 | 25 °C, unless otherwise specified |            |       |          |
|------------------------------------|-------------------------------------------------|---------------------------------|-----------------------------------|------------|-------|----------|
| Symbol                             | Conditions                                      |                                 | min.                              | typ.       | max.  | Units    |
| IGBT                               |                                                 |                                 |                                   |            |       |          |
| $V_{GE(th)}$                       | $V_{GE} = V_{CE}$ , $I_C = 0.3 \text{ mA}$      |                                 | 5                                 | 5,8        | 6,5   | V        |
| I <sub>CES</sub>                   | $V_{GE} = 0 V, V_{CE} = V_{CES}$                | T <sub>j</sub> = 25 °C          |                                   |            | 0,001 | mA       |
|                                    |                                                 | T <sub>j</sub> = 125 °C         |                                   |            |       | mA       |
| I <sub>GES</sub>                   | V <sub>CE</sub> = 0 V, V <sub>GE</sub> = 20 V   | T <sub>j</sub> = 25 °C          |                                   |            | 120   | nA       |
|                                    |                                                 | T <sub>j</sub> = 125 °C         |                                   |            |       | nA       |
| V <sub>CE0</sub>                   |                                                 | T <sub>j</sub> = 25 °C          |                                   | 1,1        | 1,3   | V        |
|                                    |                                                 | T <sub>j</sub> = 150 °C         |                                   | 1          | 1,2   | V        |
| r <sub>CE</sub>                    | V <sub>GE</sub> = 15 V                          | T <sub>j</sub> = 25°C           |                                   | 93,8       |       | mΩ       |
|                                    |                                                 | T <sub>j</sub> = 150°C          |                                   | 156        |       | mΩ       |
| V <sub>CE(sat)</sub>               | I <sub>Cnom</sub> = 8 A, V <sub>GE</sub> = 15 V |                                 |                                   | 1,85       | 2,05  | V        |
|                                    |                                                 | $T_j = 150^{\circ}C_{chiplev.}$ |                                   | 2,25       | 2,45  | V        |
| C <sub>ies</sub>                   |                                                 |                                 |                                   | 0,49       |       | nF       |
| C <sub>oes</sub>                   | $V_{CE} = 25, V_{GE} = 0 V$                     | f = 1 MHz                       |                                   | 0,05       |       | nF       |
| C <sub>res</sub>                   |                                                 |                                 |                                   | 0,03       |       | nF       |
| $Q_G$                              | V <sub>GE</sub> =-7V+15V                        |                                 |                                   | 37,5       |       | nC       |
| $t_{d(on)}$                        |                                                 |                                 |                                   | 16         |       | ns       |
| t <sub>r</sub>                     | $R_{Gon} = 32 \Omega$                           | V <sub>CC</sub> = 600V          |                                   | 14         |       | ns       |
| E <sub>on</sub>                    | di/dt = 1375 A/µs                               | I <sub>C</sub> = 8A             |                                   | 0,41       |       | mJ       |
| t <sub>d(off)</sub>                | $R_{Goff} = 32 \Omega$                          | T <sub>j</sub> = 150 °C         |                                   | 273        |       | ns       |
| t <sub>f</sub><br>E <sub>off</sub> | di/dt = 1375 A/μs                               | V <sub>GE</sub> = ±15 V         |                                   | 85<br>0,76 |       | ns<br>mJ |
| R <sub>th(j-s)</sub>               | per IGBT                                        |                                 |                                   | 2,2        |       | K/W      |





SEMITOP® 3

**IGBT** Module

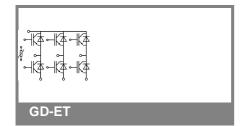
SK10GD12T4ET

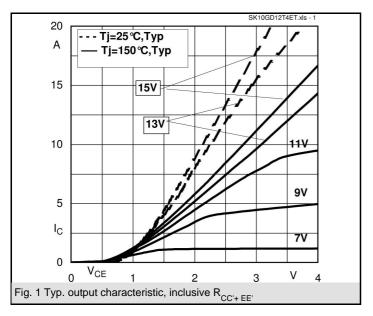
**Target Data** 

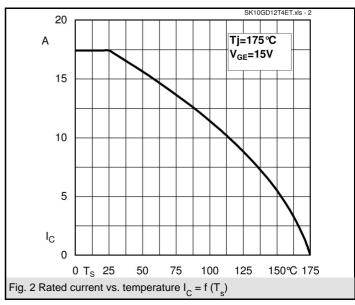
#### **Features**

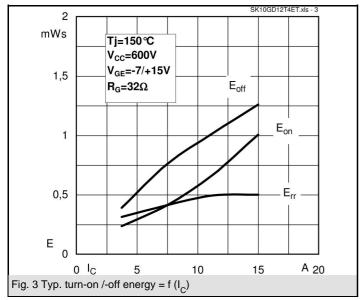
- · One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

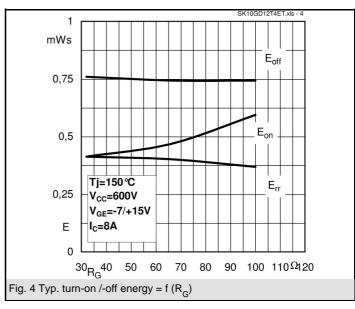
### **Typical Applications\***

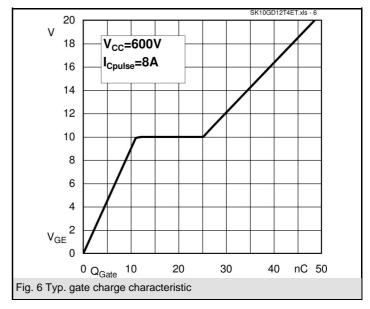

#### Remarks

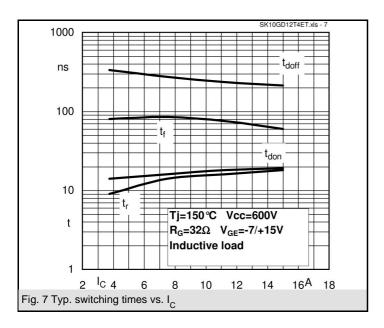

V<sub>CE,sat</sub> , V<sub>F</sub> = chip level value

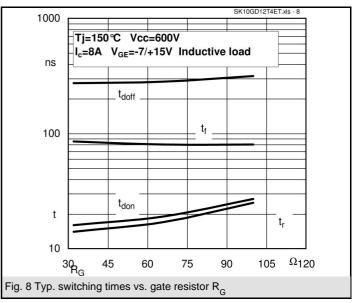

| Characteristics    |                                  |                                          |      |        |       |           |  |
|--------------------|----------------------------------|------------------------------------------|------|--------|-------|-----------|--|
| Symbol             | Conditions                       |                                          | min. | typ.   | max.  | Units     |  |
| Inverse D          | iode                             |                                          |      | •      |       |           |  |
| $V_F = V_{EC}$     | $I_{Fnom}$ = 8 A; $V_{GE}$ = 0 V | $T_j = 25  ^{\circ}C_{\text{chiplev.}}$  |      | 2,38   | 2,71  | V         |  |
|                    |                                  | $T_j = 150  ^{\circ}C_{\text{chiplev.}}$ |      | 2,44   | 2,77  | V         |  |
| V <sub>F0</sub>    |                                  | T <sub>j</sub> = 25 °C                   |      | 1,3    | 1,5   | V         |  |
|                    |                                  | T <sub>j</sub> = 150 °C                  |      | 0,9    | 1,1   | V         |  |
| r <sub>F</sub>     |                                  | T <sub>j</sub> = 25 °C                   |      | 135    | 151,3 | mΩ        |  |
|                    |                                  | T <sub>j</sub> = 150 °C                  |      | 192    | 208,8 | $m\Omega$ |  |
| I <sub>RRM</sub>   | I <sub>F</sub> = 8 A             | T <sub>j</sub> = 150 °C                  |      | 15     |       | Α         |  |
| $Q_{rr}$           | di/dt = 1375 A/µs                |                                          |      | 0,2    |       | μC        |  |
| E <sub>rr</sub>    | V <sub>CC</sub> = 600V           |                                          |      | 0,41   |       | mJ        |  |
| $R_{th(j-s)D}$     | per diode                        |                                          |      | 2,7    |       | K/W       |  |
| M <sub>s</sub>     | to heat sink                     |                                          | 2,25 |        | 2,5   | Nm        |  |
| w                  |                                  |                                          |      | 30     |       | g         |  |
| Temperature sensor |                                  |                                          |      |        |       |           |  |
| R <sub>100</sub>   | $T_s$ =100°C ( $R_{25}$ =5kΩ)    |                                          |      | 493±5% |       | Ω         |  |

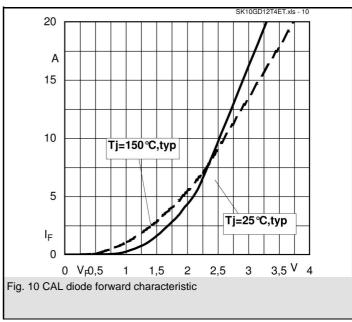

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

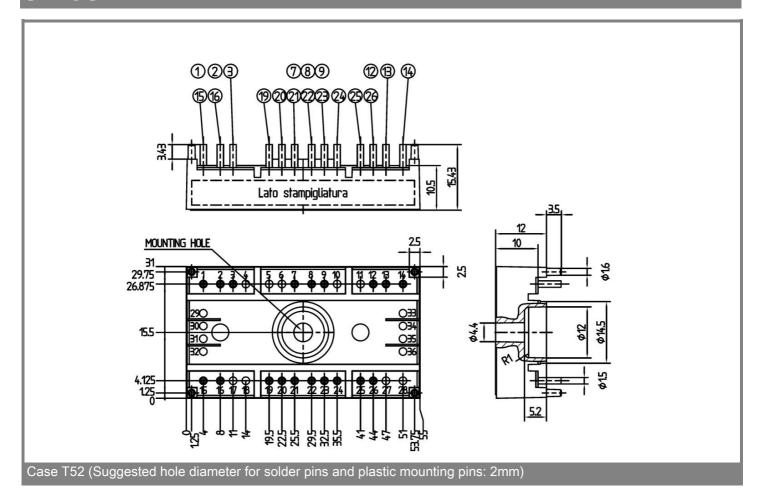


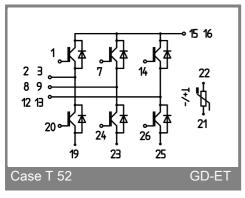










4 27-05-2009 DIL © by SEMIKRON





5 27-05-2009 DIL © by SEMIKRON