CIRRUS LOGIC*®

CL-CD1284

Data Book

FEATURES
Parallel Port (Peripheral-side)

High-speed, bidirectional, multi-protocol parallel port:

B Hardware implementation of all modes of the IEEE
STD (Standard) 1284 specification (including
automatic negotiation)

— Centronics®-compatible mode

— Reverse Byte mode

— Reverse Nibble mode

— ECP (extended capabilities port) mode with run-length
encoding/decoding

— EPP (enhanced parallel port) mode

— Up to 2-Mbytes/sec. transfer rate in ECP and EPP
modes

B 64-byte parallel FIFO with DMA interface

Two Serial UARTs

B Serial channel asynchronous protocol support to
115.2 kbps (register-set-compatible and function-
ally identical to CL-CD1400)

— Twelve-byte FIFOs for each transmitter and receiver with

programmable threshold for receive FIFO interrupt
generation

— Improved interrupt schemes: Good Data™ interrupts
eliminate the need for character status check

— User-programmable and automatic flow control for serial
channels

— Special character recognition and generation.

— Special character processing, particularly useful for
UNIX® environments, optionally handled automatically
by the serial channels.

— Six modem control signals per channel (DTR, DSR,
RTS, CTS, CD, and RI)

IEEE 1284-Compatible Parallel
Interface Controller with Two
High-Speed Asynchronous
Serial Ports

OVERVIEW

Ideal for printers, scanners, tape drives, set-top
boxes, and data acquisition applications, the
CL-CD1284 is a multi-function interface controller
that implements a high-speed, multi-protocol paral-
lel port and two asynchronous serial ports. The
device has both programmed I/O and DMA opera-
tion (parallel port only), providing flexibility in local
CPU interface design and high-speed data transfers
between the device and main memory.

The parallel port implements all modes of the IEEE
STD 1284 Standard Signaling Method for Bidirec-
tional Parallel Peripheral Interface for Personal
Computers specification, including EPP, ECP,
Reverse Byte, Reverse Nibble, and Compatible.
Data transfer rates (up to 2 Mbytes/sec.) are achiev-
able on the parallel port when the device operates
with a 25-MHz clock. The parallel port data and con-
trol signals implement the IEEE STD 1284-defined
Level-2 interface in drive type (symmetrical), current
capability (t14 mA), slew rate (0.4 V/ns), and 0.8 V
hysteresis (2.0 V to +7.0 V protection is not imple-

m ented) . (cont. next page)

Functional Block Diagram

GENERAL-
PURPOSE

il
-

™| 1o PORT

COMPRESSION/
DECOMPRESSION

64 BYTES

DATA PIPELINE FIFO

¢ Y
REGISTERS

MPU AND FIFO SERIAL
RAM PORT #2

LEVEL-2
ELECTRICAL
INTERFACE

CONTROL
STATE
MACHINE

DMA

™| cONTROL DATA
MOVER

A
Y

A
\

LOCAL CPU
INTERFACE

|IEEE1284 PERIPHERAL
PARALLEL PORT

SERIAL
PORT #1

MODIFIED CL-CD1400 CORE

Version 3.0 October 1996

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

OVERVIEW (cont.)

The two serial ports implement the standard asyn-
chronous protocol. Functionally, the serial ports are
identical and register-set-compatible with the
CL-CD1400. The table below, shows the differences
between the CL-CD1283 and CL-CD1284.

Device Number of Number of
Serial Channels |Parallel Channels
CL-CD1283 0 1
CL-CD1284 2 1

Also included is a general-purpose port that pro-
vides eight bits of individual direction programmable
I/O that can be used for status and control of exter-
nal functions.

Theory of Operation

The CL-CD1284 is an efficient high-performance
communications controller using an on-chip RISC
processor, which off-loads much of the work of
sending and receiving data from the CPU. Specifi-
cally for data communications applications, the
RISC processor employs a high-performance archi-
tecture developed by Cirrus Logic. This internal
CPU executes all instructions in one clock cycle,
and uses a windowed architecture to ensure zero-
overhead context switching for each type of internal
interrupt. The processor is transparent to the user
and does not require any programming. It manages
all serial data movement between the CPU and the
two serial channels and provides a flexible interrupt
interface for the parallel channel. The parallel chan-
nel, being separate and having its own intelligence,
implements a very high-speed, peripheral-side par-
allel data interface.

Each of the serial channels consist of separate 12-
byte receive and transmit FIFOs. The parallel chan-
nel has a single 64-byte FIFO to support the higher
speeds obtainable on the parallel data port. The
serial receive FIFOs all have programmable thresh-
olds to minimize interrupt latency requirements. The
parallel port FIFO has a programmable DMA thresh-
old in both the receive and transmit directions. The
deep FIFOs reduce both the number of interrupt
requests made of the CPU and the time required to

service them. The time required to service the
requests is reduced by four unique vectors that pro-
vide internal interrupt conditions. Whether it is
receive, transmit, modem signal change, or parallel
port, the system spends less time determining the
source of the interrupt. The serial receive interrupt
service time is further reduced by providing two
types of receive vectors: one for ‘good’ data and the
other for ‘exception’ data. The CPU does not spend
time determining the status of every character.
When the receive vector signifies good data, the
CPU removes the data from the FIFO. Checking sta-
tus is not necessary. Exception data (framing error,
overrun, break, etc.) causes an interrupt with a vec-
tor that the CPU can immediately identify and man-
age.

The RISC processor is assisted in the process of
sending and receiving serial data by specialized
hardware called ‘bit engines’. These logic blocks
perform the actual task of sending and receiving the
individual bits of a character, thus removing the task
of timing the bit duration from the on-chip processor.
The processor assembles the bits into characters
and tests various parameters (for example, parity,
framing, etc.) then places the characters in the
FIFO. Since it is managing every character, special
character processing is possible such as looking for
and responding to flow-control characters
(XON/XOFF) and performing UNIX®-style charac-
ter substitutions and range checking. This reduces
interrupt overhead by automatically performing
many of the operations that the CPU normally does.
Flow-control, for example, can be performed without
CPU involvement. Those operations can be com-
pletely removed from its responsibility.

The CL-CD1284 can be daisy-chained with other
CL-CD1284 or CL-CD1400 devices to implement
larger and more complex systems. The Fair Share
feature assures equal access for service requests
across multiple devices (Fair Share is not imple-
mented on a parallel port interrupt request).

The parallel channel within the CL-CD1284 imple-
ments all protocols defined for the peripheral side by
the IEEE STD 1284. This specification defines four
bidirectional protocols that allow a peripheral device
to communicate with a host system (IBM® PC or
equivalent) through the parallel printer channel. The
modes include Reverse Nibble, Reverse Byte

2 I OCtO ber 1996

OVERVIEW

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

OVERVIEW (cont.)

(IBM® PS/2® style), ECP, and EPP (as imple-
mented on the Intel® 80386SL processor). ECP and
EPP both operate at data rates as high as 2
Mbytes/sec.

The IEEE 1284 port is implemented as two func-
tional blocks: a data pipeline, which includes the 64-
byte FIFO and the DMA interface, and a high-speed
state-machine, which controls the parallel port and
implements the slave-side IEEE 1284 protocols.
The internal RISC processor assists the parallel
channel by providing interrupt generation, acknowl-
edgment functions, and a data interface to the Par-
allel Port registers.

As defined in the IEEE 1284 specification, the
CL-CD1284 in ECP mode, provides RLE (run length
encoded) data compression in both directions. This
data compression is performed automatically (if
enabled) and is capable of compressing long strings

(up to 128 bytes) of identical data into a two-byte
sequence (command/count and data). Since it is
common for bit patterns to have large amounts of
identical data, the CL-CD1284 greatly reduces data
transmission times in printer applications.

EPP mode defines a means of sending address and
data over the parallel channel much like a processor
address and data interface. This has found wide-
spread use in LAN and SCSl interface adapters that
provide these services on laptop computers.

The following figure shows a possible configuration
for a CL-CD1284 in a laser-printer application. In
this example, the CL-CD1284 provides a parallel
and serial data interface to a host system or server.
It also provides a serial channel for control commu-
nication with the printer console, as well as general-
purpose /O for static control/status.

CL-CD1284 Sample System Block Diagram

ROM RAM
A A A A
ADDRESS BUS
conTRoL | >
PROCESSOR Y DATABUS v
<) >
Y Y
IEEE 1284
> pARALLEL CHANNEL
GP I/O: CL-CD1284
INTERNAL STATUS <———> HIGH-SPEED
AND CONTROL «——— SERIAL CHANNEL #1
i (RS-232, INFRARED)
HIGH-SPEED
SERIAL CHANNEL #2
Y
LASER
PRINTER
CONSOLE

OCtO ber 1996 L]

DATA BOOK v3.0

OVERVIEW

i

——

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

CIRRUS LOGIC

Before beginning any new design with this device, please contact Cirrus Logic for the latest errata
information. See the back cover of this document for sales office locations and phone numbers. This

data book applies to CL-CD1284 Revision E or newer device.

—h
.

A

©

Table of Contents

LIST OF FIGURES........cccoceereeeeeaee 7
LIST OF TABLES.........cooeeeeeeceeeaee 8
REVISION HISTORYccoeeereeceenees 9
CONVENTIONS. ... 10
PIN INFORMATION ... 11
1.1 Pin Diagramcccoooiiiiiiiiiien, 11
1.2 PinList. ..o 12
1.3 Pin Descriptionscccccvvviieiniiniiiinnn, 13
REGISTER SUMMARYccccecuueeee. 16
2.1 Register Summary Tables 16
2.2 RegisterUsageccoeviiiiiiniiniinnnnn, 20
FUNCTIONAL DESCRIPTION............ 24
3.1 Device Architectureccceieenen. 24
3.2 CPUInterface..........cccovviiiicineiiinnnn, 25
3.2.1 Read Cycles........cccevvvenneen. 26
3.2.2 Write Cycles.........cccooveeee. 26
3.23 Service-Acknowledge
Cycles ...cooveeviiiieeeeiieeee, 26
3.24 DMA CycleScccvvvvvvinnnnnn, 26
3.3 Serial Port Service Requests.................. 27
3.3.1 Interrupts........ooooiiie, 28
3.32 DMAREQ* as Parallel Interrupt
SOUICE....vvvveeiciiiee e, 28
3.33 Serial Service Request
Pollingoooi i, 31
3.34 Daisy-Chaining Setrvice
Requests with CL-CD1400s...32
3.4 Parallel Port Service Requests 34
3.4.1 Hardware-Activated Context
Switch, Parallel 38
3.4.2 Software-Activated Context
Switch, Parallel 39
3.5 Serial Data Reception and
TransSMISSIONooooeiiiiii e 39
3.5.1 Receiver Operation................. 40
3.5.2 Receiver Timer Operations41
353 Receive Exceptions 41
3.54 Transmitter Operation 43
3.6 Flow Control............ccoeveviiiiiiiieeiiiiieee 44
3.6.1 In-Band Flow Control 44

3.7

3.8

3.9
3.10

3.1

3.12

3.6.2 Receiver In-Band Flow

Control ..., 44
3.6.3 Out-of-Band Flow Control 46
364 Modem Signhals and

General-Purpose 1/0O.............. 47
Receive Special Character
Processingcccccveviiiiiiiiiiii 49
3.7.1 UNIX® Character

Processingccccoceevieeiinn 49
372 Non-UNIX® Receive Special

Character Processing 50
Transmit Special Character
Processingcccccveviiiiiiiiiiii 54
3.8.1 Line Terminating Characters .. 54
3.8.2 Embedded Transmit

Commands.........cccceeeviieeieenns 54
3.8.3 Send Special Character

Commandcccceeeeviiiiieene 55
Baud Rate Generationcc..c.co.. 59
Serial Diagnostic Facilities —
Loopback.........ccoocueeiiiiiiiie 59
Parallel Port FIFO and Data Pipeline,
OVEIVIEW ...t 59
3.11.1 IEEE STD 1284 Protocols......59
3.11.2 BusInterface.............cccoeeene 60
3.11.3 Parallel Port FIFO 60
3.114 Receive Direction.................... 60
3.11.5 Receiving Compressed

Datacccocovevviiiie 61
3.11.6 Stale Data (Stale, OneChar, and

Timeout Status Bits)............... 61
3.11.7 Transmit Direction 62
CL-CD1284 Parallel Port Overview........ 63
3.121 Terminology.........ccocevvevinnnnnn. 63
3.122 Signal Names.............cccoeeeeee. 63
3.12.3 State Machine.............c.......... 63
3.12.4 Configuration...............ccc........ 63
3.125 InterruptS....ccccoviiiiiiii 64
3.12.6 Manual Modecooeee 64
3.12.7 Control Signals....................... 64
3.12.8 Parallel Port Interface to the

FIFO oo, 65
3.12.9 1284 Negotiations................... 65
3.12.10 Data Transfers............ccceeenne 66

| October 1996
CONTENTS

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

3.12.11 Compatible Mode Status........ 66

3.13 1284 Parallel Protocol Support 66
3.13.1 Compatibility Mode 66
3.13.2 Reverse-Nibble and Reverse-

Byte Modes..........c.cccvviennnen 66
3.13.3 IDRequest......ccccueeiiiiiiiinnnnn, 66
3.134 ECP Mode.......cccooeovvrvieennen. 67
3.135 EPPMode......ccoeviiiiieeen, 67

3.14 Protocol Timingccocooviiiiiiiiiee, 67

3.15 General-Purpose /0 Port 67

3.16 Parallel Port Interface...........cccccoevvnneenes 68

3.17 Hardware Configurations 70
3.17.1 Interfacing to an Intel® Micropro-

cessor-Based System............ 70

3.17.2 Interfacing to a Motorola® Micro-
processor-Based System....... 70

3.17.3 Interfacing to a National Semi-
conductor® Microprocessor-

Based System..........ccccoeene 70
4. PROGRAMMING.........ceeccceccrrerrenenns 74
41 OVEIVIEW ... 74
4.2 Initializationcccooee i 74
4.21 Device Reset........cccoeeeveevenne. 74
4.2.2 Global Function
Initializationc.ccoooeennee. 76
4.2.3 Serial Channel Initialization....76
4.3 Serial Poll Mode Examples 77

4.3.1 Polling Routine Examples 78
4.4 Hardware-Activated Service

Examples ..., 81
4.41 Serial Receive Service........... 82
4.4.2 Serial Transmit Service 83
4.4.3 Modem Service.........c..coc...... 83
4.5 Parallel Channel Service Routines......... 84

451 Software-Activated Service
Examples (Poll).........cccc......... 85

452 Hardware-Activated Service
Examplesccccoviinnn, 87
4.6 Baud Rate Derivation.................c..oooue.... 87
47 BaudRateTables..........ccccccveeieeriinnnnnn.. 88
48 ASCllCodeTables........cccoeeveeveeeiineenennn. 92
4.8.1 Hexadecimal — Character.....92
4.8.2 Decimal — Character............. 92

5. DETAILED REGISTER

DESCRIPTIONS...........c e ccccrcerreeeens 93
51 Global Registers..........ccccovericiiiriiinns 93

51.1 Channel Access Register....... 93

51.2 Global Firmware Revision Code
Register........cccccoiviiiiinnnn, 93

5.2

53

54

r————
——
—— e
—
——= CIRRUS LOCGIC
51.3 General-Purpose I/0O Direction
Register.........ccoceiiiiiiieiennnn, 94
514 General-Purpose 1/0
Register.........ccoceiiiiiiieiennnn, 94
51.5 Modem Interrupting Channel
Register.........ccoceiiiiiiieiennnn, 95
51.6 Modem Interrupt Register 96
51.7 Parallel Interrupt Register 97
51.8 Prescaler Period Register 97
51.9 Receive Interrupting Channel
Register.........cccoiiiiiiii 98
5110 Receive Interrupt Register98
5.1.11 Service Request Register 98
5.1.12 Transmit Interrupting Channel
Register.........ccoceiiiiiiieiennnn, 99
5.1.183 Transmit Interrupt Register.....99
Virtual Registers.........cooceeeviiennn 100
5.2.1 Modem Interrupt Status
Register........ccoooiiiiiiiiinnn 100
522 Modem Interrupt Vector
Register.........ccocceeviiiineienn 101
523 Parallel Interrupt Vector
Register........ccoooiiiiiiiiinnn 101
524 Receive Data/Status
Registers.......c.ccccoviiiiinnn 102
525 Receive Interrupt Vector
Register.........ccocceeviiiineienn 104
52.6 Transmit Data Register 104
527 Transmit Interrupt Vector
Register........ccoooiiiiiiiiinnn 105
528 End of Service Request
Register.........ccocceeviiiineienn 105
Channel Registers...........ccccovecoiriinrns 106
5.3.1 Channel Command
Register........ccoooiiiiiiiiinnn 106
53.2 Channel Control Status
Register........ccoooiiiiiiiiinnn 111
Channel Registers —
Parallel Pipeline...........cccoceeeeiiiniins 112
54.1 Channel Option
Register 1......c.ccccoiiiiinn 112
542 Channel Option
Register 2........cccccvviieeenn 113
543 Channel Option
Register 3..........ccoi i 114
54.4 Channel Option
Register4.........ccccovveeennn. 115
54.5 Channel Option
Register 5.........cccoiiiinnn 117
54.6 Local Interrupt Vector
Register.........ccocceeviiiineienn 118
5

OCtO ber 1996 L]

DATA BOOK v3.0

CONTENTS

i

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

54.7 LNext Character Register118 5.7.7 Parallel Channel Reset
5.5 Modem Change Option Registers........ 119 Register........cccoiiiiiiie. 132
551 Modem Change Option 57.8 Parallel FIFO Control
Register 1.......c.ccovveveerenan. 119 Register........cccoiiiiiiie. 132
552 Modem Change Option 57.9 Parallel FIFO Empty Pointer
Register 2..........cccocoveevennn. 120 Register........cccoiiiiiiie. 133
5513 Modem Signal Value 5710 Parallel FIFO Fill Pointer
Register 1.......c.ccovveveerenan. 120 Register........cccoiiiiiiie. 134
554 Modem Signal Value 5711 Parallel FIFO Holding
Register 2...........cccccveurernn.... 120 Register 1. 134
555 Receive Baud Rate Period 5.7.12 Parallel FIFO Holding
ReGISter.......oovveceeeccecea, 121 Register 2., 134
556 Receive Clock Option 5.7.13 Parallel FIFO Quantity
ReGISter......ocovveieeeiccea, 121 Register.........oooiiin, 135
557 Received Data Count 5714 Parallel FIFO Status
ReGISter.......oovveceeeccecea, 122 Register.........oooiiin, 135
558 Receive Timeout Period 5.7.15 Parallel FIFO Threshold
ReGISter.......oovveceeeccecea, 122 Register.........oooiiin, 136
5.6 Special Character Registers 123 5.7.16 Run Length Count
5.6.1 Special Character Register.........ccccceevviiiieeennnn. 137
ReQISter 1.....ovvrivreiierienenne, 123 5.7.17 Stale Data Timer Count
562 Special Character Register.........ccccceevviiiieeennnn. 138
ReQISter 2......covvivrriieinenne, 123 5.7.18 Stale Data Timer Period
56.3 Special Character Register.........ccccceevviiiieeennnn. 138
Register 3........cocovovevueeeennnn. 123 5.8 Channel Registers — Parallel Port....... 139
56.4 Special Character 5.8.1 EPP Address Register 139
Register4.........cccoovvieviinnnn. 123 5.8.2 Host Timeout Value
56.5 Received Character Register........cccoiiiiiiie. 140
Range Detection.............. 123 58.3 Input Value Register............. 141
5.6.6 Special Character Range — 584 Manual Data Register 141
ngh 124 585 Negotiation Enable
5.6.7 Special Character Range — Register........ccoovveevineeeeen, 142
LOW oo, 124 586 Negotiation Status
5.6.8 Serial Service Request Enable Register.......ccccovvieiiiiiis 143
Register 125 587 Ones Detect Register ___________ 144
5.6.9 Transmit Baud Rate Period 58.8 Output Value Register 144
Register 125 58.9 Parallel Channel Interrupt
5.6.10 Transmit Clock Option Enable Register 145
Register 126 58.10 Parallel Channel Interrupt Status
5.7 Channel Registers — RegiSter.........ccovveveeeeerennn, 145
Parallel Pipeline 127 58.11 Parallel Configuration
5.7.1 Data Error Register 127 REJISter........ooveveeeeeeenenn 146
572 DMA Buffer Data Register — 58.12 Special Command
ngh 128 Register ________________________________ 147
5.7.3 DMA Buffer Data Register — 58.13 Short Pulse Register............ 148
LOW ...oocoennns RO 128 5.9 Pin Control Registersc.ccc.......... 149
574 Holding Register Status 5.9.1 Signal Status Register 149
Register........cccccviiiniininnn. 129 59.0 Zeros Detect Register 149
575 Local Interrupt Vector
RegiSter.........ccooveviniien 130 6. ELECTRICAL SPECIFICATIONS..... 150
576 Parallel Auxiliary Control 6.1 Absolute Maximum Ratings 150
Register........cccccviiiniininnn. 131
6 C___|] OCtOber 1996

CONTENTS

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

———.
——rER.
—

6.2 Recommended Operating APPENDIX A...eeeeeeeeeeeee e vn e e
Conditions ... 150

6.3 DC Electrical Characteristics 150 APPENDIX B..ooveoeersrsemerenseees

6.3.1 Synchronous Timing 160 BIT INDEX ...

7. PACKAGE DIMENSIONS.................. 166 INDEX ..oeeeiemeeineeeesnnmsmnssnans s snmmmsnnmmnnns
8. ORDERING INFORMATION 167

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 4-1.
Figure 4-2.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6a.
Figure 6-6b.

Figure 6-7a.
Figure 6-7b.

Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 6-11.

Figure 6-12.

October 1996 |
DATA BOOK v3.0

List of Figures

CL-CD1284 Functional BIOCK Diagramc.cccooieriiriiiiie e 24
Internal Address Generationcccooiiiiiie i 25
Control Signal Generation............c..oooiiii i 29
CL-CD1284 Daisy-Chain CONNECIONSccueviiiiieiieie e 33
Interrupt Generation LOQICc.uvviiiiei e 36
Interrupt Generation LOQICc.uvviiiiei e 37
FIFO Timer PrOCESSINGceeieiii ittt 42
CL-CD1284 Receive Character ProCesSing..........cccevoveiiieeaiiensiieeeeeene 51
CL-CD1284 Transmit Character ProCesSingcccevoeeeiivieeiieiniiieenieene 56
FIFO Data Path Functional Diagram — Receivec.cccooooveiiiii e, 64
FIFO Data Path Functional Diagram — Transmit.............c.occceeviiiiiieeenen. 65
Cable CONNECLION ..o 69
External Buffer CONtIOL...........oooiiiiiii e 70
Intel® 80x86 Family INtEHaCecc.oveveee oo, 71
MOtorola® 68020 INEEITACEocvumeereeirirreseeieeseess s 72
National Semiconductor® 32000 INterface..............cccoovvevoveeeeeeeeeeeeeeen. 73
Flow Diagram of CL-CD1284 Master Initialization Sequence..................... 75
POIlING FIOW Chart ... e 84
RESEE TIMING ...eeeee e 154
L0 T To: G] 113 T PSS 154
Asynchronous Read Cycle TiMiNgooooeiiiiriiraie e 155
Asynchronous Write Cycle TimiNgooooeiiiiniie e 156
Asynchronous Service Acknowledge Cycle Timingcccoeeeeviiieenenn. 157
Asynchronous DMA Read Cycle Timing........cccoov i, 158
Asynchronous DMA Read Cycle Timing

(Two Back-t0-Back DMA Reads)........coovueeeeiiiiiiiie e 158
Asynchronous DMA Write Cycle Timingcocvvireiiiin e, 159
Asynchronous DMA Write Cycle Timing

(Two Back-10-Back DMA WIEES)ccooiiiiiiee e 159
Synchronous Read Cycle TimMiNg...........ooierriiiiiiiie e 161
Synchronous Write Cycle TImMINgooooorriiiiiiiiie e 162
Synchronous Service Acknowledge Cycle Timingccoceeeveeriiieeneen. 163

Synchronous DMA Write Cycle Timing
(Two Back-to-Back 3-Cycle DMA WItES)covviieiiiii e 164

Synchronous DMA Read Cycle Timing
(Two Back-to-Back 3-Cycle DMA Reads)ccccceevvvivieeeviiieie e 165

CIRRUS LOGIC

CONTENTS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

List of Tables

Table 2-1. GIobal REJISIEISoiii s 16
Table 2-2. Virtual Registers — Serialccooooiiiiiii e 16
Table 2-3. Virtual Registers — Serial and Parallel..............ccccoooiiiiiiciiiieee e, 17
Table 2-4. Channel Registers — Serial ..o, 17
Table 2-5. Channel Registers — Parallel Pipeline

(Selected by Channel 0in CAR)cveeieiiiiiiie e 18
Table 2-6. Channel Registers — Parallel Port (Selected by Channel 0 in CAR) 19
Table 2-7. GIODal REJISIEISoiiiiee s 20
Table 2-8. Virtual REJISIEIS ..o 20
Table 2-9. Virtual Registers — Serial and Parallel..............ccccoooviiiiciiiie e, 21
Table 2-10. Channel Registers — Serialcooooiiiiiii e 21
Table 2-11. Channel Registers — Parallel Pipeline

(Selected by Channel 0in CAR)ooiiiiie e 22
Table 2-12. Channel Registers — Parallel Port (Selected by Channel 0 in CAR) 23
Table 3-1. Request-Type Bit ASSIGNMENTSoooiiiiiiiii e 30
Table 3-2. CCSR[6:5] ENCOAING.......ceeiieiiiiieeiie sttt 45
Table 3-3. CCSR[2:1] ENCOAINGeeeiieii ittt 45
Table 3-4. COR CONIOI BItSoiiiiiiie e 46
Table 3-5. Out-of-Band Pin CONNECLIONScccooiiiiiiiiie e 47
Table 3-6. Modem Control Pin FUNCHONSccoiiiiiiiiie e 47
Table 3-7. SigNal NAIMESoooiiiiiiiii ettt e e e rees 63
Table 3-8. System Clock SettingScoo i 67
Table 4-1. Baud Rate Constants — CLK =25 MHz...........cccci i, 88
Table 4-2. Baud Rate Constants — CLK = 20.2752 MHz..........cccccooiiiiiiiniie e, 89
Table 4-3. Baud Rate Constants — CLK =20.00 MHz............occooeiiiiiiii e, 89
Table 4-4. Baud Rate Constants — CLK = 18.432 MHz...........cccoiiiiiiiiii e, 90
Table 4-5. Baud Rate Constants — CLK = 16 MHz...........cccco i, 91
Table 6-1. Asynchronous Timing Reference Parameters............cccccccvviieniiin e 152
Table 6-2. Synchronous Timing Reference Parameterscccocooeviieeiiiin e, 160

8 C___|] October 1996

CONTENTS DATA BOOK v3.0

CL-CD1284 ——

IEEE 1284-Compatible Parallel Interface Controller e —
CIRRUS LOGIC

——

Revision History

Major changes between the previous data book (dated September 1995) and this version are listed below.

Section Revision

1

Ring indication pins (RI2*, RI3*) added to pin diagram and descriptions provided.

3 Interrupt generation logic diagrams provided, Figure 3-5 and Figure 3-6.
Device usage caution added to Figure 3-12.

5 Register reset default values provided.

6 Asynchronous timing values and diagrams provided.

Index A bit index has been added.

OCtO ber 1996 L]

DATA BOOK v3.0 CONTENTS

— CL-CD1284
e —— IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC
CONVENTIONS Acronym Definition
HDLC high-level data link control
Abbreviations IC integrated circuit
Symbol Units of Measure IDC instruction and data cache
°C degree Celsius ISA industry standard architecture
Hz hertz (cycles per second) LSB least-significant bit
Kbyte kilobyte (1,024 bytes) MPU microprocessing unit
kHz kilohertz MSB most-significant bit
kQ kilohm PIO programmed I/O
Mbyte megabyte (1,048,576 bytes) PPP point-to-point protocol
MHz megahertz (1,000 kilohertz) PQFP plastic quad-flat pack
uF microfarad RAM random-access memory
us microsecond (1,000 nanoseconds) RLE run-length encoded
mA milliampere R/W read/write
ms millisecond (1,000 microseconds) SDLC synchronous data link control
ns nanosecond SRAM static random-access memory
pV picovolt SWiI software interrupt instruction
TLB translation look-aside buffer
The use of ‘tbd’ indicates values that are ‘to be B transiation table base
determined’, ‘n/a’ designates ‘not available’, and
‘N/C’ indicates a pin that is a ‘no connect'. TTL transitor-transitor logic
VRAM video random-access memory
Acronyms -
WB write buffer
Acronym Definition
AC alternating current
BIOS basic input/output system
CISC complex instruction set computer
CMOS complementary metal-oxide semiconductor
DC direct current
DMA direct-memory access
DRAM dynamic random-access memory
ECP extended capibilities port
EPP enhanced parallel port
FIFO first inffirst out
GPIO general-purpose 10
1 0 C___|] OCtOber 1996

CONVENTIONS

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

———.
—

1. PIN INFORMATION

1.1 Pin Diagram

Veo

GND

DB[7] t—»
DB[6] —p-
DB[5] —p
DB[4] t—»
DB[3] t—
DB[2] —»
DB[1] t—»
DB[O] t—»
GND

0 N oW N

Veg ———
DMAACK* — g
DMAREQ" ~——

RI3* —

RI2Y ——

TXD3 ~——
RXD3 — pm
TXD2 ——
RXD2 — g
DTR3* ———»
RTS3* ——
CTS3* ———p»
DSR3* wf——
CD3* ———
DTR2" -——
RTS2* -——
CTS2" ——
DSR2* ——
CD2* —
GND

A_1284 ——p»
HstBsy ———»

HSICk —— g

ninit ——-

AkDaRq

CL-CD1284

PerBsy -——

100-Pin QFP

NOTE: (*) Denotes negative-true signal.
‘N/C’ indicates no connection; make
no connection to these pins.

v

Voo

-——— BYTESWAP

-¢——— QOUTEN

—» CLK/?2
~f——— RESET"
-——Cs*
-—— Ds*
~-——— R/W*
—» DTACK*

N/C

-— CLK

GND

—» DPASS*

~€——— DGRANT*
~€——— SVCACKP*
—» SVCREQP*
~—— SVCACKM*
—» SVCREQM*

Vee

~#—— SVCACKT*
—» SVCREQT*
~—— SVCACKR*
—» SVCREQR*

~—» GP[]

- GP[1]

- P2

> GP[3]

> GP[4]

~—» GP[5]

-«—» GP[5]

~—» GP[7]

————GND

—» PDBEN
= 220K EBEYomN=TS T g
CEgéoooooooags
Q % [T T s T T s T A T A H A i}

Pin | Compatibility |, Reverse | Reverse | popyioge |EPP Mode
Names Nibble Mode| Byte Mode
Inputs
A 1284 SLCTIN* A 1284 A 1284 A 1284 nAStrb
HstBsy AUTOFD* HstBsy HstBsy HstAck nDStrb
HstClk STROBE* HstClk HstClk HstClk nWrite
ninit INIT* ninit ninit nRevReq ninit
Outputs

AkDaRq PError AkDaRq AkDaRq nAkRev USER1
PerBsy BUSY PerBsy PerBsy PerAck nWait
PerClk ACK* PerClk PerClk PerClk Intr
nDatAv FAULT* nDatAv nDatAv nPerReq USER2
XFlag SELECT XFlag XFlag XFlag USER3

OCtO ber 1996 L]

DATA BOOK v3.0

PIN INFORMATION

——= CIRRUS LOGIC

11

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

1.2 Pin List

The following conventions are used in the pin-description tables:

e () after a name indicates that the signal is active-low
e ‘I'indicates the pin is input-only

e ‘O’ indicates the pin is output-only

e ‘I/O indicates the pin is bidirectional

e ‘OD’indicates an open-drain output that the user must tie to Vg through a pull-up resistor
(usually about 1 kQ)

e ‘AR’indicates active release (pin drives to ‘1’ and releases to ‘OD’)
e ‘TS’indicates tristate

e a - indicates ascending pin humbers

e a ‘’indicates descending pin numbers

Pin Name | Tvpe Number Pin Reset Pin Name | Tvoe Number Pin Reset
yp of Pins | Number State yp of Pins | Number State
11, 50, A 1084 [7 31
5v - 5 65, 81,
100 HstBsy | 1 32
7030, HstClk [1 33
GND - 7 40, 52, ninit | 1 34
72, 91 AkDaRq o) 1 35
RESET" I 1 79 PerBsy (@] 1 36 Low
OUTEN ' 1 83 PerCIk o) 7 37 High
CLK ' 1 73 nDatAv o) 1 38 High
CLK2 o 1 80 n/a Xflag o) 1 39 Cow
DB[15:0] 1o 16 o Ts EBDIR 0 1 49 High
PDBEN o) 1 51 Low
A[6:0] | 7 84—90
TXD3 o) 1 16 High
RIW* [1 76
RXD3 [1 17
cs* [1 78
TXD2 o) 1 18 High
DS* [1 77
RXD2 [1 19
BYTESWAP [1 82
RTS2* o) 1 26 High
DTACK AR 1 75
: RTS3* o) 1 21 High
DMAREQ* [6) 1 13 High
DTR2* o) 1 25 High
DMAACK* [1 12
DTR3* o) 1 20 High
SVCREQR® | OD 1 61
CTS2* [1 27
SVCACKR® [1 62
CTS3* [1 22
SVCREQT* oD 1 63 < | 1
SVCACKT* [1 64 2 28
SVCREQP* | OD 1 68 DSR3 ' 1 23
SVCACKP* [1 69 High CD2] 1 59
SVCREQM® | OD 1 66 CDh3* I 1 24
SVCACKM* [1 67 RI2* I 1 15
DGRANT" [1 70 RI3* I 1 14
DPASS* o) 1 71 High N/C = 1 74
PD[7:0] 70 8 41-48 TS
GP[7:0] 70 8 5360 TS
1 2 | October 1996

PIN INFORMATION DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

1.3 Pin Descriptions

Symbol Pin No. Type Description

ACTIVE-LOW RESET: This input initializes the device to the default condition. All
RESET* 79 | internal registers are set to their reset condition and all transfer operations are set to
the default state.

OUTPUT ENABLE: This pin must be ‘1’ to enable output pin functions. When OUTEN
OUTEN 83 | is ‘0’, it forces all output pins to remain in a tristate condition. Typically, OUTEN is used
only for test purposes. User designs must tie this pin to Vg through a pull-up resistor.

SYSTEM CLOCK: This input has a 25-MHz maximum; 16 MHz is the recommended

CLK 73 | - f -

minimum for satisfactory device performance.

SYSTEM CLOCK DIVIDED BY TWO OUTPUT: This signal is equivalent to the internal
CLK/2 80 o - :

operating clock of the device.

BIDIRECTIONAL DATA BUS: Only DMA transfers and writes to the DMA Buffer regis-
DB[15:0] 92-99, 2-9 e ter are true 16-bit operations. During all register writes other than to the DMA Buffer

register, bits [7:0] are written to the addressed register. Register reads duplicate the
register contents on both the lower byte [7:0] and upper byte [15:8].

ADDRESS BUS: Together with CS* or one of the SVCACK* inputs and DS*, this input
A[6:0] 84-90 | selects an On-Chip register for a read or write operation or an acknowledgment to an
service request.

READ/WRITE*: This input must be “1’ for a register read operation, and must be ‘0’ for

RW 76 | a register write. R/W* is ignored for DMA operations.

ACTIVE-LOW CHIP SELECT: When active, the input CS* combines with DS*, initiates

CS 8 : an I/O cycle with the CL-CD1284. CS* must be ‘1’ during DMA read/write operations.

ACTIVE-LOW DATA STROBE: During an active /O cycle, the input DS* strobes data
DS* 77 | into On-Chip registers on write cycles or enables data onto the data bus during read
cycles. DS* is ignored during DMA operations.

BYTESWAP: This input determines the byte order for 2-byte DMA transfers and for
writes to the DMA Buffer register. When BYTESWAP is ‘1, then Data Bus bits [15:8]
are driven with the byte transferred first on the parallel port bus. Data Bus bits [7:0] are
driven with the byte transferred second on the parallel port bus. When BYTESWAP is
‘0’, the data order is reversed, bits [7:0] are driven with the byte transferred first and
bits [15:8] are driven with the byte transferred second.

BYTESWAP 82 |

ACTIVE-LOW DATA TRANSFER ACKNOWLEDGE: This output indicates: 1) when
the device completes the requested I/O operation, and, 2) when the current cycle can
DTACK* 75 AR finish. This signal can implement wait-state insertion for the local CPU. DTACK* does
not activate on DMA cycles. It is an active-release output, driving to a logic ‘1’ then
releasing to OD. DTACK* must be ties to external V. through a pull-up resistor.

ACTIVE-LOW DMA REQUEST: When the internal control bit DMAen is set, the output
DMAREQ* is asserted if internal FIFO conditions warrant a DMA transfer. DMAREQ*
is deasserted on the falling edge of DMAACK* when DMA transfers cannot continue
past the current transfer.

DMAREQ* 13 O

ACTIVE-LOW DMA ACKNOWLEDGE: This input is never asserted unless in response
to a DMAREQ* from the chip. DMAACK* is the only bus handshake signal recognized
during a DMA transfer. (CS* must be high whenever DMAACK* is asserted). The direc-
tion of DMA transfer is determined by internal control bit DMAdir.

DMAACK* 12 |

October 1996 | 13
DATA BOOK v3.0 PIN INFORMATION

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

1.3 Pin Descriptions (cont.)

Symbol Pin No. Type Description

ACTIVE-LOW SERVICE REQUEST RECEIVE:This is an open-drain output and must
be tied to external Vg through a pull-up resistor. When active, the device serial-

SVCREQR 61 oD receive FIFO has either reached the programmed threshold or an exception condition
exists that requires CPU attention.
ACTIVE-LOW SERVICE ACKNOWLEDGE RECEIVE: This input is driven low during
SVCACKR* 62 | service acknowledge cycles to begin servicing a receive-service request. It must not

be driven active except in response to a receive-service request presented by the
device.

ACTIVE-LOW SERVICE REQUEST TRANSMIT: This is an open-drain output and
SVCREQT* 63 OD must be tied to external Vg through a pull-up resistor. When active, the device serial
transmit FIFO or serial transmitter is empty and requires CPU attention.

ACTIVE-LOW SERVICE ACKNOWLEDGE TRANSMIT INPUT: This input is driven
low during service acknowledge cycles to begin servicing a transmit-service request. It
must not be driven active except in response to a transmit-service request presented
by the device.

SVCACKT* 64 |

ACTIVE-LOW SERVICE REQUEST PARALLEL:This is an open-drain output and
SVCREQP* 68 OD must be tied to external Vgg through a pull-up resistor. SVCREQP* is not activated by
FIFO threshold or FIFO full/lempty conditions.

ACTIVE-LOW SERVICE ACKNOWLEDGE PARALLEL:This input cannot be driven

SVCACKP 69 : active except in response to a parallel service request presented by the device.

ACTIVE-LOW SERVICE REQUEST STATUS (Modem): This is an open-drain output
SVCREQM* 66 OD that must be tied to external Vg through a pull-up resistor. When active, a pro-
grammed modem signal change occurs and requires CPU attention.

ACTIVE-LOW SERVICE ACKNOWLEDGE STATUS (Modem): This input is driven low
during service acknowledge cycles to begin servicing a modem-service request. It

SVCACKM* 67 | - - - -
must not be driven active except in response to a modem-service request presented
by the device.
ACTIVE-LOW DAISY GRANT: This input is driven active during service acknowledge
DGRANT* 70 | cycles to enable the daisy-chain function. This input, when qualified with DS* and a

valid service acknowledge (SVCACKR*, SVCACKT*, SVCACKM*, or SVCACKP*),
activates the CL-CD1284 service-acknowledge cycle.

ACTIVE-LOW DAISY PASS: This output is driven active during service acknowledge
cycles to enable the next device in the daisy chain. It is driven active when no valid ser-

DPASS* 71 O vice request exists for the type of service acknowledge input active. In multiple
CL-CD1284 designs, this signal is normally connected to the DGRANT* input of the
next device in the chain.

PARALLEL PORT DATA LINES [7:0]: Bidirectional (depending on the protocol being
PD[7:0] 41-48 I’O used), these signals are used to transfer data through the interface between the mas-
ter and slave.

GENERAL PURPOSE 1/0 [7:0]: General-purpose input/output port data lines. These
GP[7:0] 53-60 /o signals are individually direction programmable and act as inputs or outputs. The corre-
’ sponding bit in the GPDIR register controls the direction of each signal. The GPIO reg-

ister provides the control/status of the actual signals.

A_1284 31 | 1284 ACTIVE INPUT: (SLCTIN* in Compatibility mode). Active-high.
ninit 34 | INIT SIGNAL: (INIT* in Gompatibility mode). Active-low.
14 C___|] OCtOber 1996

PIN INFORMATION DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

1.3 Pin Descriptions (cont.)

Symbol Pin No. Type Description
HstBsy 32 | HOST BUSY: (AUTOFD* in Compatibility mode). Active-high.
HstClk 33 | HOST CLOCK: (STROBE* in Compatibility mode). Active-low.

The above four parallel handshake signals are driven by the master in an IEEE STD 1284 interface, and as such are inputs to
the CL-CD1284. Their functions depend on the transfer protocol selected. Refer to the IEEE STD 1284 document for protocol
functions.

PerClk 37 O PERIPHERAL CLOCK: (ACK* in Compatibility mode). Active-low.
PerBsy 36 O PERIPHERAL BUSY: (BUSY in Compatibility mode). Active-high.
AkDaRq 35 o ACKNOWLEDGE DATA REQUEST: (PError in Compatibility mode).
Xflag 39 o EXTENSIBILITY FLAG: (SELECT in Compatibility mode).

nDatAv 38 O DATA AVAILABLE: (FAULT* in Compatibility mode). Active-low.

The above five parallel handshake signals are driven by the slave in an IEEE STD 1284 interface and are outputs from the
CL-CD1284. Their functions depend on the transfer protocol selected. Refer to the IEEE STD 1284 document for protocol func-
tions.

EXTERNAL BUFFER DIRECTION: This signal is controlled by the internal parallel-
port-control state machine and is used to control the direction of an external buffer
connected to the parallel-port data bus. An external buffer could be desirable in appli-

EBDIR 49 o cations that require higher drive capacity than those provided by the CL-CD1284.
EBDIR can be used in conjunction with PDBEN to control this buffer. EBDIR is a logic
‘0’ when the parallel data bus is in an output mode and a logic ‘1’ when in an input
mode. It can be connected directly to the direction control input of a 74245-type
device.

PARALLEL DATA BUS ENABLE: This signal can be used to control a buffer on the
parallel port data lines in applications requiring more signal drive capability than that
provided by the CL-CD1284. The signal is controlled by the internal parallel port con-
trol state-machine. When low, the parallel port data bus is off (not driving); when high,

PDBEN 51 (@] L : b -)
the port is in an output mode and is actively driving. The signal toggles between on
and off states during output modes and is active (high) only when the data bus pins are
in the active driving state. This signal can be logically connected to the enable control
of 74245 (or equivalent) bidirectional buffers.
TXD[3,2] 16,18 O TRANSMIT DATA: TXD[3,2] are outputs of serial channel numbers two and three.
RXD[3,2] 17,19 | RECEIVE DATA: RXD[3, 2] are outputs of serial channel numbers two and three.
RTS[3,2]* 21,26 o :’:]IrEeQeUESTTO SEND: These are active-low outputs of serial channel numbers two and
DTR[3,2]* 20, 25 o m;r: TERMINAL READY: These are active-low outputs of serial channels two and
CTS[3,2]" 22,27 | CLEAR TO SEND: These are active-low inputs for serial channels two and three.
DSR[3,2]* 23,28 | DATA SET READY: These are active-low inputs for serial channels two and three.
CD[3,2] 24,29 | CARRIER DETECT: These are active-low inputs for serial chanels two and three.
RI[3,2] 14, 15 | RING INDICATOR: These are active-low inputs for chanels two and three.
OCtOber 1996 __| 1 5

DATA BOOK v3.0 PIN INFORMATION

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

——

2. REGISTER SUMMARY

2.1 Register Summary Tables

Table 2-1. Global Registers
Name | Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
CAR 68 Poll Poll Poll Poll Poll 0 C1 Co 94
GFRCR 4F Firmware Revision Code 94
GPDIR 71 Dir 7 Dir 6 Dir 5 Dir 4 Dir 3 Dir 2 Dir 1 Dir 0 95
GPIO 70 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0 95
MICR 45 X X X X C1 Co X X 96
MIR 69 Mdlreq Mdbusy Mdunfair 0 1 0 ch[1] ch[0] 97
PIR 61 PPIreq PPort Pipeline 0 0 0 0 0 98
PPR 7E 8-Bit Binary Value 98
RICR 44 X X X X C1 Co X X 99
RIR 6B Rxlreq Rxbusy Rxunfair 1 1 0 ch[1] ch[0] 99
SVRR 67 DMAREQ ExtM ExtT ExtR SRP SRM SRT SRR 99
TICR 45 X X X X C1 Co X X 100
TIR 6A Txlreq Txbusy Txunfair 1 0 0 ch[1] ch[0] 100

Table 2-2. Virtual Registers — Serial
Name | Hex Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
MISR 4C DSRch CTSch Rlch CDch 0 0 0 0 101
MIVR 41 X X X X X IT2 IT1 ITO 102
PIVR 40 X X X X X IT2 IT1 ITO 102
:::aDtaS)R 62 Received Character 103
(F:t'ajfj 62 | Timeout | SCDet2 | SCDet! | SCDeto | Break PE FE OE 103
RIVR 43 X X X X X IT2 IT1 ITO 104
TDR 63 Transmit Character 104
TIVR 42 X X X X X IT2 IT1 ITO 105

1 C___|] OCtOber 1996

REGISTER SUMMARY

DATA BOOK v3.0

CL-CD1284 e
- ' e

IEEE 1284-Compatible Parallel Interface Controller CIRRUS LOGIC

Table 2-3. Virtual Registers — Serial and Parallel
Name | Hex Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0 Page
EOSRR 60 X X X X X X X X 105

Table 2-4. Channel Registers — Serial
Name | Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
CCRa 05 | ResChan | COR Chg | Send SC | Chan Ctl D3 D2 D1 DO 106
CCSR 0B RxEN RxFloff RxFlon 0 TxEN TxFloff TxFlon 0 111
COR(1 08 Parity ParM1 ParMO Ignore Stop1 Stop0 ChL1 ChLO 112
COR2 09 IXM TxIBE ETC LLM RLM RtsAO CtsAE DsrAE 113
CORS3 0A | SCDRNG SCD34 FCT SCD12 RxTh3 RxTh2 RxTh1 RxThO 115
COR4 1E IGNCR ICRNL INLCR IGNBRK | —BRKINT | PEH[2] PEH[1] PEH[0] 116
COR5 1F ISTRIP LNE CMOE 0 0 EBD ONLCR | OCRNL 118
LIVR 18 X X X X X IT2 IT1 ITO 119
LNC 24 LNext Character 119
MCORT 15 DSRzd CTSzd Rlzd CDzd DTRth3 DTRth2 | DTRth1 DTRthO 120
MCOR2 16 DSRod CTSod Rlod CDod 0 0 0 0 121
MSVR1 6C DSR CTS RI CD 0 0 0 RTS 121
MSVR2 6D DSR CTS RI CD 0 0 DTR 0 121
RBPR 78 Binary Divisor Value 121
RCOR 7C 0 0 0 0 0 CkSel2 | ClkSell ClkSel0 122
RDCR OE 0 0 0 0 CT3 CT2 CT1 CTO 123
RTPR 21 Binary Gount Value 123
SCHR1 1A Special Character 1 124
SCHR2 1B Special Character 2 124
SCHRS3 1C Special Character 3 124
SCHR4 1D Special Character 4 124
SCRH 23 Character Range — high 125
SCRL 22 Character Range — low 125
SRER 06 MdmChg 0 0 RxData 0 TxRdy TxEmpty NNDT 126
TBPR 72 Binary Divisor Value 126
TCOR 76 0 0 0 0 0 CkSel2 | ClkSell ClkSel0 127

a The CCR contents and offsets apply to any of the channels; the channel being access at any given time is controlled by the
CAR. See Section 5.3.1.1 through Section 5.3.1.4 for channel-specific bit settings.

October 1996 | 17
REGISTER SUMMARY

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

——

Table 2-5. Channel Registers — Parallel Pipeline (Selected by Channel 0 in CAR)

Name Hex Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
DER 33 DMAwrerr | DMArderr | Bufwrerr Bufrderr HR1wrerr HR1rderr HR2wrerr HR2rderr 128
'(DH'\)"ABUF 30 15 14 13 12 11 10 9 8 129
I(DL';AABUF 30 7 6 5 4 3 2 1 0 129
HRSR 34 HR1full HR1tag HR2full HR2tag DMAfull DMAmpty DMAact Ctnot0 130
LIVR 18 User-Defined Bits IT2 IT1 ITO 131
PACR 3F ShrtTen ShrtStal StaleOff | FIFOlock ClearTO 0 AsyncDMA Unfair 132
PCRR 6C 0 0 0 0 0 0 0 PChReset 133
PFCR 31 FIFOres DMAen DMAdir IntEn RLEen setTAG ErrEn DMAbufWe 133
PFEP 39 0 0 6-Bit Binary FIFO Pointer Value 134
PFFP 38 0 0 6-Bit Binary FIFO Pointer Value 135
PFHR1 35 8-Bit Character Data 135
PFHR2 36 8-Bit Character Data 135
PFQR 3A Data or Space Available in FIFO — Max 0x'40 136
PFSR 32 FFfull FFempty Timeout HRtag HRdata Stale OneChar DataErr 136
PFTR 3B 0 DMA Transfer Threshold 137
RLCR 37 0 7-Bit Unsigned Binary Count 138
SDTCR 3D 8-Bit Stale Data Timer Count 138
SDTPR 3C 8-Bit Stale Data Timeout Value 139

1 | October 1996

REGISTER SUMMARY DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——

CIRRUS LOGIC

Table 2-6. Channel Registers — Parallel Port (Selected by Channel 0 in CAR)
Name | Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
EAR 25 8-Bit Binary Value 140
HTVR 24 HTVR[7] | HTVRI6] | HTVRI5] HTVR[4] HTVR[3] | HTVR[2] | HTVR[1] | HTVR[0] 141
IVR 2E 0 0 0 0 A1284 ninit HstBsy HstClk 142
MDR 21 8-Bit Binary Data 142
NER 28 0 RID 0 EPP RLE ECP RvVB RVN 143
NSR 29 NegOK NegFl HostTO | ImedTerm 4-Bit Negotiation Result Code 144
ODR 2D 0 0 0 0 A1284 ninit HstBsy HstClk 145
OVR 2B PerBsy PerClk AkDaRq xFlag nDatAv 0 0 0 145
PCIER 22 0 TimEn NegCh SigCh EPPAW DirCh IDReq nINIT 146
PCISR 23 0 TimeOvr | NegCh SigCh EPPAW DirCh IDReq nINIT 146
PCR 20 ManMd E1284 ETxfr lg_SEL HTmrTst[1:0] MMDir ManOE 147
SCR 2A 0 0 0 TstMux ClIrPs SetPs EPIrq RevRqg 148
SPR 26 8-Bit Binary Value 149
SSR 2F 0 0 0 0 A1284 ninit HstBsy HstClk 150
ZDR 2C 0 0 0 0 A1284 ninit HstBsy HstClk 150

OCtOber 1996 __| 1 9

DATA BOOK v3.0

REGISTER SUMMARY

———.
———rR.
——r

—
——

CIRRUS LOGIC

2.2 Register Usage

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

Table 2-7 through Table 2-12 present register functionality.

Table 2-7. Global Registers
Name Reset Pa;a&lel Pa.':("el Pa;::lel Serial Init | Serial Tx | Serial Rx GCP;;)t::)ir

CAR v v v v v v v
GFRCR v
GPDIR v
GPIO v
MICR v v v
MIR v v
PIR v v
PPR v
RICR v v v
RIR
SVRR v
TICR v v v
TIR v

Table 2-8. Virtual Registers

Name Reset P"‘Ir:‘i't'e' Parallel Tx | Parallel Rx | Serial Init | SerialTx | Serial Rx

MISR v v
MIVR v v
PIVR v v
RDSR (data) v
ESSR (sta- v
RIVR v
TDR v
TIVR v

2 __| OCtObE?’ 1996

REGISTER SUMMARY

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Table 2-9.

Virtual Registers — Serial and Parallel

Name

Reset

Parallel
Init

Parallel Tx

Parallel Rx

Serial Init

Serial Tx

Serial Rx

EOSRR

v

v

v

v

Table 2-10. Channel Registers — Serial

Name

Reset

Parallel
Init

Parallel Tx

Parallel Rx

Serial Init

Serial Tx

Serial Rx

CCR

v

v

CCSR

v

COR1

COR2

CORS3

COR4

COR5

LIVR

LNC

MCOR1

MCOR2

N I N O I N O I O I N O B N N BN

MSVR1

MSVR2

RBPR

AN

RCOR

AN

RDCR

RTPR

SCHR1

SCHR2

SCHR3

SCHR4

SCRH

SCRL

SRER

TBPR

N I N N I N I N O I N N B N

October 1996

DATA BOOK v3.0

REGISTER SUMMARY

e CL-CD1284

e — IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC

Table 2-10. Channel Registers — Serial

Name Reset P"‘Ir:‘i't'e' Parallel Tx | Parallel Rx | Serial Init | SerialTx | Serial Rx

TCOR v

Table 2-11. Channel Registers — Parallel Pipeline (Selected by Channel 0 in CAR)

Name Reset | Parallel Init | Parallel Tx | Parallel Rx | Parallel Error | Parallel Status | Serial Init

DER v

DMABUFH) v v

DMABUF(L) v v

HRSR v

HTVR v

LIVR

AN

PACR v

PCRR v

PFCR v

PFEP

PFFP

PFHR1

PFHR2 v

PFQR

AN

AN N B N IR N

PFSR v

PFTR v

RLCR v

SDTCR 4 v

SDTPR v

22 | October 1996
REGISTER SUMMARY DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

Table 2-12. Channel Registers — Parallel Port (Selected by Channel 0 in CAR)

———.
——rER.
—

——= CIRRUS LOGIC

Name Reset Parallel Init Parallel Tx Parallel Rx Parallel Error Parallel Status
EAR EPP)
IVR v v
MDR v v
NER v
NSR v v
ODR v
OVR (Ma‘:ual) (Ma‘:ual)
PCIER v
PCISR v v
PCR v
SCR (RevR:quest)

SPR v
SSR v v
ZDR v

a ltems in parentheses () denote Operational mode.

October 1996

DATA BOOK v3.0

REGISTER SUMMARY

23

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

3. FUNCTIONAL DESCRIPTION

3.1 Device Architecture

The CL-CD1284 can be described as a small com-
puter system designed for the purpose of sending
and receiving both serial and parallel data. It com-
prises a RISC processor (Multi-Channel Processing
Unit or MPU), RAM, ROM, local CPU bus interface
logic, two serial data channels, and one IEEE 1284-
compliant parallel port with a specialized data pipe-
line designed for high-speed transfers.

Architecturally, the CL-CD1284 is two devices
merged into a single unit. One part is a modified,
two-channel version of the Cirrus Logic
CL-CD1400. The other part is a specialized parallel
interface port supported by its own deep FIFO and
DMA interface logic. The interrupt structure of the
CL-CD1400 has been enhanced to include the inter-
rupt requirements of the parallel port. This section
describes the modified CL-CD1400 core and overall
device architecture. Further sections provide details
specific to the parallel channel. Chapter 5 provides
detailed bit descriptions and encoding for the regis-
ters discussed in this chapter.

The MPU is a true RISC processor. In addition to
having compact and efficient instructions, the MPU
has a ‘windowed’ architecture that allows it to handle
one channel and its registers at a time. Before
beginning operations on a given channel, it loads an
internal Index register that forces all accesses to the
appropriate set of registers. The Index register
becomes part of the internal address and allows
direct addressing of the register bank and all hard-
ware resources of the selected channel. No address
computation is required to select the proper chan-
nel.

This same windowed scheme is carried through to
the CPU interface as well (see Figure 3-2). For all
channel-specific accesses, the CPU first loads the
CAR (Channel Access register) with a pointer to the
channel to be accessed. Thereafter, all read and
write operations occur with the proper channel. The
software defines the register address once and this
is valid for all channels because the CAR is part of
the internal addressing.

_ PARALLEL L PARALLEL
> PORT FIFO > PORT LOGIC
A]
» _| conTROLSTATE
- > MACHINE
BUS
INTERFACE | Y
AND DMA
Loaic | INTERRUPT [
~ LOGIC <
CHANNEL 2
<«—>»| LOGIC AND BIT
Y TIMING
MPU
»| RAM
* CHANNEL 3
<«—»| LOGIC AND BIT
ROM TIMING
Figure 3-1. CL-CD1284 Functional Block Diagram
24 C___|] October 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

CPU »
ADDRESS ADDRESS
GENERATION
_>
CAR

RAM REGISTER
ARRAY

PARALLEL PORT
REGISTERS
(CHANNEL 0)

CHANNEL 2 REGISTERS

CHANNEL 3 REGISTERS

Figure 3-2. Internal Address Generation

The serial data channels are made of ‘bit engines’
that off-load the task of receiving and transmitting
each bit from the MPU. When receiving data and
after processing a complete bit, the bit engines inter-
rupt the MPU so that it can perform the next required
task. For example, the MPU takes the bit and adds
it to a character being assembled. When transmit-
ting, it sends the bit engine the next bit of the char-
acter being transmitted. The MPU is not concerned
with basic bit timing; this task is handled by the bit
engines, leaving the MPU free to perform higher-
level processing, such as detecting special charac-
ters.

As described above, Channel 0 is a separate entity
comprised of its own FIFO and DMA data interface,
as well as a high-speed state machine that handles
all of the modes defined in the IEEE STD 1284
specification. Channel 0 performs the slave, or
peripheral, function of the IEEE STD 1284 interface
and can be programmed to accept hegotiations into
any or all of the defined modes. The MPU aids the
parallel port by providing the local access (through
the CAR) and provides interrupt support (generation
and response). However, this is the only action
where the MPU is involved in parallel port service-
request activities.

3.2 CPU Interface

The CPU interface comprises an 8-bit bidirectional
data bus, a 7-bit address bus, a 16-bit DMA port and
control inputs to identify the type of /O cycle occur-

October 1996
DATA BOOK v3.0

ring. Although the strobe nhames and basic timing
match that of the Motorola® 68000 family, the
CL-CD1284 fits easily into any CPU environment.

In most cases, when the CPU reads or writes an
internal CL-CD1284 location, it actually accesses a
location in a RAM array to serve as a bank of regis-
ters. Some locations however, are mapped to actual
hardware resources for example, when a hard out-
put signal is required (such as a service-request out-
put in the SVRR) or when it is necessary to read the
actual state of an input (such as a modem input).

The CL-CD1284 is a synchronous device. All inter-
nal operations occur on edges and levels (phases)
of the internal clock. The internal clock is generated
by dividing the external (system) clock by two. When
the CPU performs an |/O cycle with the CL-CD1284,
it strobes; address, and data are sampled on the ris-
ing edges of the internal clock. As illustrated in
Chapter 6, the external control signals must meet
setup times with respect to system clock edges.
Once a cycle starts, the sequence of events is
locked to the clock of the CL-CD1284. With events
(address setup, write data setup, and read data
available) occurring at predictable times.

It is not necessary to design a synchronous inter-
face to the CL-CD1284. In an asynchronous
design, the DTACK* (Data Transfer Acknowledge)
signal indicates that the CL-CD1284 has com-
pleted the requested data transfer for all I/O cycles
except DMA. DTACK* can be an input to wait-state
generation logic that pauses the CPU until the

L 25

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

operation is complete. If the CS* and DS* strobes
(Chip Select and Data Strobe) do not meet the
minimum setup time with respect to the system
clock edge, the CL-CD1284 does not detect the I/O
request, and the cycle delays for two full-system
clock cycles, meeting the setup time. The 1/O cycle
commences and follows the predictable timing with
DTACK™* signaling the end.

3.2.1 Read Cycles

Read cycles are initiated when both the CS* and
DS* inputs are activated and the R/W* (read/write)
input is high. All strobes and address inputs must
meet the setup times as specified in Chapter 6. Both
the CS* and DS* signals must be valid for a cycle to
start. Cycle times are measured from whichever of
the two signals goes active last. The CL-CD1284
signals the completion of the read cycle (placing the
data from the addressed register on the data bus
pins) by activating DTACK*. The read cycle termi-
nates when the CPU removes CS* and DS*.

3.2.2 Write Cycles

Write cycle timing and strobe activity is nearly iden-
tical to read cycles except that the R/W* signal must
be held low. Write data, strobes, and address inputs
must meet setup and hold times as specified in
Chapter 6. DTACK* indicates that the cycle is com-
plete and the CL-CD1284 has accepted the data.
Removing both CS* and DS* terminates the cycle.

3.2.3 Service-Acknowledge Cycles

Service-acknowledge cycles are a special-case
read cycle. Timing is basically the same as a normal
read cycle, but one of the SVCACK” inputs is acti-
vated instead of the CS* input (a slightly longer
setup time is required on the SVCACK* input than
on the CS* input). The data that the CL-CD1284 pro-
vides during the read cycle is the contents of the
Interrupt Vector register associated with the type of
request being acknowledged (RIVR for receive,
TIVR for transmit, MIVR for modem, and PIVR for
parallel port) of the channel requesting service (see
Section 3.3.1 on page 28 for more information). As
with read and write cycles, DTACK* indicates the
end of the cycle. When the CPU removes DS* and
SVCACK?* the cycle terminates.

When the CPU has completed the service routine
and writes to the EOSRR, a subsequent I/O cycle, if
started immediately, is delayed by approximately
1 ps. This is due to the time required by the internal
processor to complete activities associated with the
switch out of the service-acknowledge context.
These activities involve FIFO pointer updates and
restoration of the environment prior to the service-
request/service-acknowledge procedure. These
must be completed before any internal registers are
modified by the CPU.

If the situation occurs that the CPU attempts an
access before the internal procedures are complete,
the CL-CD1284 holds off the cycle until it is ready.
This does not cause a problem in system designs
that monitor DTACK*; the cycle is extended until
DTACK* becomes active and the delay is automati-
cally met. If a system design does not monitor
DTACK*, a mechanism must be provided to intro-
duce the required delay.

A WARNING: Failure to observe the delay require-
ment can cause a device malfunction.

3.2.4 DMA Cycles

The CL-CD1284 provides a bidirectional 16-bit DMA
interface to the parallel port. This is the only direct
data interface to the port; other 8-bit register
accesses use of the normal CPU interface, as
described above.

The handshake between the CL-CD1284 and the
DMA circuitry uses two signals: the DMAREQ*
(DMA Request) and the DMAACK* (DMA Acknowl-
edge). The address bus is ignored during DMA
transfers. When internal conditions warrant a DMA
transfer (as when the FIFO falls below the pro-
grammed threshold in the forward direction or rises
above the threshold in the reverse direction) and
DMA transfers are enabled by the PFCR, the device
requests a DMA service by driving the DMAREQ*
signal low. DMAREQ* remains active until the FIFO
has less than two empty locations remaining (for-
ward direction) or until the FIFO has less than 2
bytes remaining (reverse direction).

In the forward direction, the DMA controller logic
responds by placing data on the 16-bit data bus and
driving DMAACK™* low. This cycle is repeated until
the FIFO has less than two empty locations

26 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

remaining or there is no more data to send. In the
reverse direction, the CL-CD1284 responds to the
active DMAACK* signal by driving the contents of
the DMABUF register onto the data bus.

Odd-byte transfers in the reverse direction are han-
dled on an interrupt basis. When the humber of
bytes in the FIFO is odd, all bytes, except the last,
are transferred by a number of 16-bit DMA cycles
(two bytes per cycle). The odd byte remaining is held
in the PFHR1 and an interrupt generated when the
stale data timer expires. Status indicating that
PFHR1 has data is shown in the PFSR. The CPU
interrupt service routine must manually remove the
remaining byte from the interface. In the forward
direction, an odd remaining byte can be directly writ-
ten to the PFHR1 once the last DMA cycle is com-
plete.

One additional input signal determines the endian
format (whether the least-significant byte is on data
bits 7:0 or 15:8) of the 16-bit DMA buffer.
BYTESWAP selects whether the lower or upper
byte of the DMA buffer moves into the FIFO data
pipeline firstin the forward direction or from the FIFO
data pipeline to the DMA buffer first in the reverse
direction. If BYTESWAP is low, the least-significant
byte (DB[7:0]) immediately moves into or out of the
data pipeline. If BYTESWAP is high, the opposite
occurs (DB[15:8] move into or out of the pipeline
first).

The effective duration of the DMA transfer block
(burst) is determined by the threshold value in the
PFTR. Regardless of where the port is moving data,
when this threshold is reached (exceeded in
receive; less than in transmit) a DMA cycle begins
and remains active until the FIFO has less than 2
bytes remaining (receive) or less than two empty
locations remaining (transmit).

The SVRR provides a way to determine if a DMA
cycle is being requested. SVRR[7] is true if a DMA
cycle is currently being requested. This status indi-
cation is provided as a general system status.

Refer to Chapter 6 for detailed information on DMA
cycle options and timing values.

October 1996
DATA BOOK v3.0

3.3 Serial Port Service Requests

This section describes the service-request structure
of the serial ports in the CL-CD1284. Refer to
Section 3.4 for a detailed description of the parallel
port service-request architecture.

From the CPU point of view, the CL-CD1284 oper-
ates in one of three modes: normal operation, ser-
vice request/acknowledge, and DMA. Normal mode
allows the CPU to make changes and obtain current
operating status on a global and per-channel basis.
Service-request/acknowledge mode determines
when a particular channel requires service, for
example, when a serial receive FIFO has reached
its programmed threshold and requires emptying.

A unique behavior of the CL-CD1284 is that a ser-
vice request can only be responded to after the
device is placed in a service-acknowledge ‘context’.
This context switch occurs when the request is
acknowledged, either by activating the appropriate
SVCACK?* input pin or by proper manipulation of two
internal registers (software-activated mode).

When the MPU detects a condition on a channel
that requires CPU attention, it posts a service
request internally and externally. The external
request is the activation of one of the SVCREQ* out-
put pins, depending on whether the type of service
needed is for receive, transmit, or modem signal
change. Included with the internal request is a chan-
nel pointer to the channel requiring service. When
the service acknowledge begins, this pointer is
loaded into the CAR, thus the request automatically
services the proper channel. This is the purpose of
the context switch, it prepares the CL-CD1284 for
servicing of the proper channel.

At the completion of the acknowledge procedure,
the CL-CD1284 must be taken out of the acknowl-
edge context by informing it that the procedure is
complete. This restores the original internal state
before the context change. This operation occurs
after the CPU performs a ‘dummy’ write to the
EOSRR.

Several registers within the serial channel portion of
the CL-CD1284 can only be accessed when the
context switch has been made. These are the Virtual
registers. For example, the CPU cannot place data
directly in the serial transmit FIFO at an arbitrary

FUNCTIONAL DESCRIPTION

i

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——== CIRRUS LOGIC

time. It must wait for a transmit service request indi-
cating that the FIFO is empty, then acknowledge it.
Once the acknowledge procedure begins, the trans-
mit FIFO is available for loading.

The CL-CD1284 makes requests for service when
an enabled need exists. The two basic ways that the
CPU can be made aware of these service requests
is through hardware (interrupt) or software (polling
internal CL-CD1284 registers). Which method is
dependent on the hardware/software design of the
system; the CL-CD1284 functions well in either
environment. The following section discusses the
trade-offs of either basic method and how to com-
bine the two for maximum performance.

3.3.1 Interrupts

The term interrupt is a generalized description of the
method where the CL-CD1284 gains the attention of
the CPU. Interrupt is used interchangeably with ‘ser-
vice request’ as the two are the same function. Inter-
rupt often describes an unconditional response on
the part of the CPU. Whether or not this is the case,
the source is still the same — a service request from
the CL-CD1284. Hardware signals generated by the
CL-CD1284 (SVCREQR*, SVCREQT™", and
SVCREQM*) can be connected to the CPU interrupt
input to start an interrupt service routine. The ser-
vice routine can then begin servicing the request
from the CL-CD1284 by starting an acknowledge
sequence.

The SVCREQ* outputs can be connected to the
interrupt circuitry individually using three unique
interrupt-level inputs or they can be logically OR’ed
together (not wire-OR’ed) into a single interrupt and
applied to one interrupt-level input. In the latter case,
the CPU can examine the SVRR to determine which
service requests are active. The method (single or
multiple interrupts) chosen by the designer is
dependent on the system requirements and hard-
ware and/or board-space limitations. The
CL-CD1284 has no restrictions. It is likely that inter-
rupt latency is slightly shorter with the first method
since the individual interrupt levels can cause a soft-
ware vector directly to the correct service routine
without first checking for the source of the interrupt.

No matter which interrupt method is used, the end
result is the same. Once the CPU has recognized
that a service request is active, a service-acknowl-
edge routine must be executed to process the
request. There are two ways to start the acknowl-
edge and force the context switch: by four hardware
input pins or by making specific reads/writes to
internal registers.

3.3.2 DMAREQ* as Parallel Interrupt
Source

Interrupts are not generated by FIFO threshold con-
ditions; therefore, if the system design requires data
to move through interrupts, connect DMAREQ*
directly to a CPU interrupt input or logically OR it into
the same CPU interrupt input as SVCREQP™*. If
DMAREQ? is used to generate interrupts, the follow-
ing are required:

1) A 16-bit data interface must be implemented to
support 16-bit reads of the DMABUF register.

2) The DMA threshold value in the PFTR must be
initialized.

3) DMAREQ™ remains active until the FIFO is
nearly empty (Rx) or nearly full (Tx), followed by
the toggling of DMAen if data is moved to/from
FIFO through PIO (refer to Section 3.2.4). How-
ever, software can easily change this by clearing
the DMAen bit (PFCR[6]) at the start of the inter-
rupt service routine and resetting it at the end.

4) If SVCREQP* and DMAREQ™ are logically
OR’ed together, the service routine must start by
checking the SVRR to determine which signal is
active.

5) SVCACKP* must not be activated in response to
DMAREQ* and likewise, DMAACK™ must not be
activated in response to SVCREQ™.

6) The DMAJir bit (PFCR[5]) can determine
whether to write or read to/from the DMABUF
register.

7) The PFQR can determine how many reads of
the 16-bit DMABUF register are necessary to
empty the pipeline. Note however, four must be
added to the PFQR value, that number must
then be divided by two and truncated to the near-
est integer (to account for the extra four bytes in
the two holding registers and the 16-bit
DMABUF register, as well as 16-bit reads
instead of 8-bit reads).

28 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

3.3.2.1 Hardware-Activated Context Switch
— Serial Channels

The internal register manipulation involved in a con-
text switch can be forced by SVCACK* (Service
Acknowledge input pins on the CL-CD1284). There
is one SVCACK* for each service request type:
SVCACKR?* for receive service requests,
SVCACKT?™ for transmit service requests, and
SVCACKM* for modem signal-change service
requests. Each of these inputs is a special-case chip
select. These cause the MPU to set up the
CL-CD1284 for servicing that particular service
request type for the requesting channel.

Note that the CS* input is not activated on service-
acknowledge cycles. Instead, the appropriate
SVCACK* input and the DGRANT™ inputs are used.
Later in this section, DGRANT" is discussed in a
description about daisy-chaining the CL-CD1284
with one or more CL-CD1400s. Figure 3-3 shows a
generalized logic diagram of the hardware interface
to the SVCACK?™* inputs. For a service acknowledge,

one of the SVCACK* address locations is accessed
instead of the CS* location.

To the CPU, the service-acknowledge cycle is a
read cycle. The data that the CL-CD1284 places on
the bus for an SVCACK* during the read cycle are
the contents of the appropriate Interrupt Vector reg-
ister (RIVR, TIVR or MIVR). These IVRs are associ-
ated with the active service-acknowledge input
(SVCACKR*, SVCACKT™, or SVCACKM*). The
upper five bits of the IVR are whatever was previ-
ously loaded into the LIVR by the CPU. The lower
three bits are supplied by the CL-CD1284 and indi-
cate the type of interrupt (vector).

When the CL-CD1284 is ready to post a service
request for a serial channel, it copies the upper five
bits of the LIVR into the appropriate vector register
(RIVR, TIVR, MIVR), then places the request type
vector in the lower three bits. Table 3-1 shows the
assignment of the request type bits.

| AD[6:0]
CL-CD1284
cs*
—@ SVCACKR*
CPU | > ADDRESS Y SVCACKT*
ADDRESS DECODE
LOGIC ® SVCACKM*
SVCACKP*
CPU
DB[7:0] = DpATA
DGRANT*
CPU /O R/W*
CONTROL
DSs*
Figure 3-3. Control Signal Generation
OCtObE?’ 1996 __| 29

DATA BOOK v3.0

FUNCTIONAL DESCRIPTION

———.
———rR.
——r

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——= CIRRUS LOGIC

Table 3-1. Request-Type Bit Assignments
Bit 2 Bit 1 Bit 0 Request Type
0 0 0 Not used
0 0 1 Group 1: Modem signal change service request
0 1 0 Group 2: Transmit data service request
0 1 1 Group 3: Received good data service request
1 0 0 Parallel port state-machine requests service (refer to Section 3.4)
1 0 1 Parallel port data pipeline request service (refer to Section 3.4)
1 y 0 Both_ the parallel port state-machine and data pipeline request service (refer to
Section 3.4)
1 1 1 Group 3: Received exception data service request

For transmit and modem service-acknowledge
cycles, the data in the lower three bits is redundant
to the software because the corresponding
acknowledge has occurred. These bits are impor-
tant in the case of a serial receive-data service
acknowledge because they provide an indication of
whether the request is for ‘good’ data or exception
data. They are important to the parallel port because
they indicate if the state-machine or data pipeline (or
both) are requesting service.

The value contained in the upper five bits of the
LIVR can be used for a number of purposes. The pri-
mary purpose of the LIVR is as a source of a soft-
ware vector used by the system as an index into a
interrupt dispatch table. However, systems that can-
not use this or do not need it can use these bits for
any purpose. In multiple—CL-CD1284 designs that
use daisy-chaining, a logical value to place in these
bits is a chip identification number. This is detailed in
the daisy-chaining description in Section 3.3.4.

Another use for these bits is channel encoding. This
is applicable in a single-CL-CD1284 design and any
design not using daisy-chaining (requiring a unique
address range for each device). This applies where
the value in the LIVR as a vector for a hardware
interrupt response is not necessary. Since each
channel has its own LIVR, these five bits have a
unique value identifying the channel. There is no
need to read the RICR, TICR, or MICR to find the
channel number; in a single /O operation, the CPU
determines both the type of interrupt and the num-

ber of the channel requesting service. With five bits
available, systems with small numbers of
CL-CD1284s are able to encode both the channel
number and chip identification number in the LIVR.

Once the acknowledge procedure is complete, the
CL-CD1284 is ready to be serviced for the type of
interrupt acknowledged. For example, if the interrupt
was for receive good data, the CPU would read the
RDCR to determine the number of characters avail-
able in the receive FIFO. It then reads the same
number of characters, by successive reads, from the
RDSR. Other tasks, such as disabling future inter-
rupts or changing channel parameters, could also
be performed at this time.

Once all tasks involved in servicing the interrupt are
complete, one more operation is performed. To
inform the CL-CD1284 that the service acknowl-
edge is complete, the CPU writes a dummy value to
the EOSRR. Although the data written does not
matter, the write operation is important. This write
forces the internal context switch back to hormal
operating mode.

3.3.2.2 Summary of Interrupt Driven Service
Requests, Serial Channels

The actions that occur during an interrupt
request/service are:

1) The CPU senses setvice request from one of the
CL-CD1284 service-request outputs through its
interrupt request input.

30 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

2) The CPU responds by petforming a read cycle to
activate the appropriate SVCACK* input pin.

3) The CPU decodes the value read from the vector
register during step 2, and decides on the type of
setrvice request (if necessary).

4) The CPU reads the R/T/M/ICR to determine the
channel number.

5) The CPU services the request (load transmit
FIFO, read receive FIFO, and so on).

6) The CPU writes a dummy value to the EOSRR
to terminate the service routine.

3.3.2.3 Common Service Acknowledge

One method of hardware-activated, service-
acknowledge request is the common service
acknowledge. In this method, all SVCACKXx* inputs
are tied together and are driven from the same
source. In this configuration, the CL-CD1284 inter-
nally prioritizes the acknowledge as receive, trans-
mit, parallel, and modem. If a device has both a
receive and a parallel request pending, the common
acknowledge causes it to respond with the vector for
the receiver. Then a subsequent service acknowl-
edge allows the parallel channel request to be ser-
viced.

3.3.2.4 Software-Activated Context Switch
— Serial Channels

It is possible, by CPU manipulation of some internal
registers, to cause the context switch without acti-
vating any of the SVCACK* hardware inputs. The
method is the same used in the poll-
mode—CL-CD1284 design. Once the CPU has
detected the service request through its interrupt
response circuitry, it follows the same procedures
that a polling method uses when it detects an active
service request. Refer to the context switching
description in the following section.

One reason a design might make use of this method
is that limited board space is available for the addi-
tional hardware address decoding required to gen-
erate the four SVCACK* and DGRANT™ control
signals. The advantage is that the system need not
constantly poll the CL-CD1284 for active service
requests. It is interrupted when a request is posted,
then examines internal CL-CD1284 registers to
determine the source and channel number generat-
ing the request. For this method, tie the four

October 1996
DATA BOOK v3.0

SVCACK* and DGRANT* input pins inactive (logic
‘1’). This prevents possible false activation of a ser-
vice-acknowledge cycle that occurs due to noise.
Terminate these pins with a resistor (approximately
1 kQ) not hardwired to V¢.

3.3.3 Serial Service Request Polling

In Poll mode, the CPU periodically checks the
CL-CD1284 to see if there are any active service
requests. If it detects any, it proceeds to service
them by a software-driven technique. There are sev-
eral registers within the CL-CD1284 specifically pro-
vided to facilitate Poll-mode service-request
detection and acknowledgment. These are the
SVRR, RIR, TIR, PIR, MIR, RIVR, TIVR, and MIVR.
Chapter 5 provides detailed bit definitions for these
registers.

The SVRR is the master service-request register.
The least-significant three bits (bits 2:0 — SRM,
SRT, and SRR) reflect the inverse of the state of the
three service-request output pins (SVCREQM*,
SVCREQT?*, and SVCREQR*). For example, if
SRRJ0] is ‘1’, it indicates that there is a pending
active serial receive data service request, and that
the SVCREQR* output pin is active (low). The CPU
now can determine with a single read if the
CL-CD1284 requires any service and which pins are
active.

Each service request type has an interrupt request
register: RIR for receive, TIR for transmit, and MIR
for modem. These are the special purpose registers
used with the CAR to force the context switch and
start a service-acknowledge procedure. When a
service request of a particular type is pending, the
corresponding Interrupt Request register is set by
the MPU with the appropriate data to cause the con-
text switch to the requested type and the requesting
channel.

When the CPU is ready to service the request, it
reads the contents of the request register and cop-
ies itinto the CAR. This write into the CAR forces the
context switch and the CL-CD1284 is ready to be
serviced. The result is the same as performing a ser-
vice-acknowledge cycle with the SVCACK” pin.

Each of the Interrupt Request registers provide the
channel number by requesting service in the least-
significant two bits. The most-significant three bits

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

provide status and control over internal interrupt
sequencing. The middle three bits contain a code
used by the MPU at the end of a hardware service-
acknowledge cycle (write to the EOSRR) to indicate
the type of acknowledge cycle that is ending. Each
of the three registers has a unique code in these
three bits to select the proper service-acknowledge
type, but these are meaningless in Poll-mode oper-
ation.

At the end of a service-request operation, the CPU
must inform the CL-CD1284 that the request is sat-
isfied and to take it out of the service-request con-
text. This is done by rewriting the value that was in
the interrupt request register after clearing the upper
two bits.

As with the hardware-driven request/acknowledge
procedure, the Virtual registers should only be
accessed after the context switch is made. Their
contents are undefined until this time.

3.3.3.1 Summary of Serial Poll-Mode
Service Requests

The major steps involved in a Poll-mode service-
request/service-acknowledge sequence are:

1) The CPU scans the SVRR periodically, checking
the three least-significant bits. If any of them are
true (‘1°), a service request is active.

2) Depending on which of the service-request bits
is active, reads the appropriate interrupt request
register (RIR, TIR, or MIR) and copies the con-
tents into the CAR.

3) Performs a setrvice routine.

4) Writes the original contents of the interrupt
request register back with the most-significant
two bits cleared.

3.3.4 Daisy-Chaining Service Requests

with CL-CD1400s

The CL-CD1284 can be combined with other
CL-CD1284 or CL-CD1400 devices to form systems
with more than two serial channels and one parallel
channel. There are a number of ways that these can
be connected, but one way provides a more efficient
service-request/service-acknowledge sequence.
This method allows the CL-CD1284s and/or
CL-CD1400s to arbitrate between themselves. This
mode only works if hardware-activated service
acknowledges are being utilized. The Fair Share
mechanism is not functional on the parallel channel
service-request (SVCREQP*) outputs. Therefore,
two CL-CD1284s can be daisy-chained if
SVCREQP* and SVCACKP* are kept separate. The
serial channel requests and acknowledges are iden-
tical to those on the CL-CD1400 so they can be con-
nected to the equivalent requests and
acknowledges on the CL-CD1284.

The CL-CD1284 provides a means of daisy-chain-
ing the service request and service acknowledg-
ments of two or more devices. This allows them to
arbitrate and set priorities between themselves
regarding which one can post a particular type of
service request. This is the Fair Share interrupt
scheme. Figure 3-4 on page 33 illustrates the con-
nection for two CL-CD1284s to enable the Fair
Share function.

All request outputs of a particular type from the two
CL-CD1284s (SVCREQR*, SVCREQT*, and
SVCREQM*) are wire-OR’ed together to form one
combined request for each type; the SVCREQP* of
each is kept separate. This allows both devices to
monitor the state of the others output. All of the
serial service-acknowledge inputs
(SVCACKR*, SVCACKT*, and SVCACKM*) are
connected together to form one acknowledge of
each type. Note, the SVCACKP* are driven individ-
ually. The DGRANT* input of the first CL-CD1284 is
connected to ground; the DPASS* output of the first
CL-CD1284 drives the DGRANT* input of the sec-
ond.

32 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

—e SVCACKR* SVCACKR*
ADDRESS SVCACKT*
DECODE * SVCACKT
* SVCACKM* SVCACKM*
* SVCACKP* SVCACKP*
®
DPASS* DGRANT*
" CYCLE
DGRANT* DPASS* ——— oo
SVCREQR* SVCREQR*
SVCREQT* SVCREQT*
SVCREQM* SVCREQM*
SVCREQP* SVCREQP* »
*—»
*—»
>

Figure 3-4. CL-CD1284 Daisy-Chain Connections

Before a serial request for service of a particular
type is posted, the MPU checks the current state of
the request output for that type. If it is inactive, indi-
cating that no other CL-CD1284 is driving that level,
a request can be posted; otherwise it waits. This
guarantees that each CL-CD1284 has an opportu-
nity to have a request type serviced when required.
When the CPU acknowledges the request, both
CL-CD1284s receive the acknowledge through
SVCACK*. However, only the first receives
DGRANT™. If there is an active request of this type
pending, the CL-CD1284 takes the acknowledge
and drives its vector register (RIVR, TIVR, MIVR)
onto the data bus.

If the first device does not have a request pending, it
passes the DGRANT” input to the second
CL-CD1284 through the DPASS* output. Assuming
that the second device has an active request pend-
ing, it takes the acknowledge and drives its
Vector register onto the data bus.

As previously mentioned, the upper five bits of the

used as a unique chip identification number so the
CPU can determine which CL-CD1284 responded
to the service acknowledge. These five bits can be
set to binary ‘0’ in the LIVRSs of the first CL-CD1284,
and to binary ‘1’ in those of the second. The CPU is
able to test the bit to determine which device
responded. Some examples of service-acknowl-
edge software routines that show one way of per-
forming this task are provided in Chapter 4.

The common service acknowledge described in
Section 3.3.2.3 on page 31 is also usable in daisy-
chained environments. In this case, the common
acknowledge is applied to all service-acknowledge
inputs in all devices of the chain. The daisy-grant rip-
ples down the chain until the requesting device
receives the acknowledge.

NOTE: If a CL-CD1284 further down the chain is
requesting service for a receiver and one up the
chain is requesting service for a transmitter, the
transmit request is serviced first since it pre-
cedes the receive requester. Thus, the Fair
Share mechanism is not functional in this con-

LIVR reflects what the CPU loaded into them during figuration.
its initialization of the CL-CD1284s. These bits are
October 1996 L] 33

DATA BOOK v3.0

FUNCTIONAL DESCRIPTION

i

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——== CIRRUS LOGIC

The CL-CD1284 has a fairness override, the Unfair
bit (PACRI0)). If this bit is set, the Fair Share function
of the device is defeated and the MPU posts
requests for service regardless of the state of the
external service-request signal. Even when a device
in the chain is asserting a request of a particular
type, if another device needs to post a request, it
proceeds to do so regardless of the current state of
the request pin because its fair bits are forced true.
If it is upstream from the device already posting the
request and if the CPU pipeline has not yet
responded to the previous request from the down-
stream device, then the upstream device accepts
the acknowledge on arrival and overrides the priority
normally given to the device that made the first
request. This is useful in system designs that wire-
OR the request signals together, rather than using
an external gate, since in these cases, without over-
riding fairness a request of one type within a device
holds off a request of a different type. For example,
an existing transmit request prevents the device
from posting a receive request.

IMPORTANT: If no CL-CD1284 in the chain has a
pending request, the daisy-grant passes
by the last and none respond. This
causes the bus cycle to hang (no
DTACK* is generated). The only time
this happens is when an error condition
outside the CL-CD1284s cause the
CPU to respond to a request that is not
made. A mechanism can be provided to
terminate or abort the bus cycle if this
error occurs. This is accomplished with
timeout circuitry. Otherwise the DPASS*
output of the last CL-CD1284 activates
an abort condition. Other devices, such
as the CL-CD1400, can share the daisy-
chain mechanism and can be connected
to the DPASS™ output of the last
CL-CD1284 in the chain. The actual
implementation is system-dependent,
but it is important to provide some way
for the CPU to know that the cycle did
not complete normally if no device
responds to the acknowledge cycle.

3.4 Parallel Port Service Requests

The parallel port service-request structure of the
CL-CD1284 is slightly different from that of the serial
ports. These differences are highlighted in this sec-
tion.

Service requests can derive from two internal
sources: the data pipeline or the parallel port state
machine (see Figure 3-5 on page 36). If the data
pipeline internal service request becomes active,
the Pipeline bit (PIR[5]) is set; likewise, if the parallel
port state machine internal service request
becomes active, the PPort bit (PIR[6]) is set. Internal
service requests from these sources are monitored
through the Pipeline and PPort bits by microcode
running in the internal MPU. When either (or both) of
these bits are detected active, the microcode sets
the PPireq bit (PIR[7]). The PPireq bit is also mir-
rored by the SRP bit (SVRR][3]). The SVRR is useful
in polled systems because it allows the detection of
DMA service requests, as well as parallel port ser-
vice requests with a single register read operation.

Both internal sources of service requests within the
parallel channel have their own enable functions.
Interrupts from the data pipeline are enabled
through the PFCR,; interrupts from the parallel port
state machine are enabled through the PCIER.

The PFCR has two enable bits: one for normal inter-
rupts (such as tagged data being received), and one
for data errors (such as a CPU write to a holding reg-
ister that already holds data). The first type of inter-
rupt is enabled through the IntEn bit (PFCR[4]). The
second type of interrupt is enabled through the
ErrEn bit (PFCR[1]). Note that IntEn must be set for
ErrEn to generate an interrupt; however, the CPU
need not enable error interrupts if it does not require
notification of these types of errors. The error inter-
rupt is generated if the DataErr bit (PFSR[0]) is a
non-zero. In this case, the DER indicates the cause
of the error interrupt.

34 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

The parallel channel-control state machine can
generate six types of interrupts. Each of these has
its own enable bit in the PCIER:

o NegCh for negotiation changes

e SigCh for signal changes on the port status
inputs (Manual mode only)

e EPPAW for EPP protocol address writes

e DirCh for direction changes on the parallel chan-
nel

e IDReq for slave ID requests from the remote
master.

o nINIT for initialization pulses from the master
(Compatibility mode only)

Any or all of these bits may be set, based on the
mode of operation.

October 1996
DATA BOOK v3.0

——== CIRRUS LOGIC

The NegCh interrupt is issued whenever the
remote master performs a protocol change, such
as moving from Compatibility mode to ECP; the
CPU examines the NSR to determine the new
state of the parallel interface. Signal changes can
be identified by reading the SSR. In response to
the EPPAW interrupt, the CPU would read the EAR
to retrieve the value that was written during the
EPP address write cycle.

L] 5

FUNCTIONAL DESCRIPTION

i

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

CIRRUS LOGIC

——

KEY: [|=Cunentmode
{}=Iriertace exienshity request value (see EEE 1284 Spec formore detals)

! ~) IDREQ
(register namepY) :x =bi# thatis PCIER[1] =PCER, kit PCIER[] IDREQ
PCISR[1]
FAILED NEG
(INVALID EXTCODE) TERMINATION
[COMPATIBLE MODE] [COMPATIBLEIODE] NEG-OK NEG-OK
NSR=0x41 NSR=0x82 NSR=0x86[EPP MODE] {40} NSR=0x89[RN ID REQUEST] {04}
NSR=0x88[RN MODE] {00} NSR=0x8B[RB ID REQUEST] {05}
NSR=0x8A[RB MODE] {01} NSR=0x8D[ECP w/o RLE ID REQUEST]{14}
NSR=0x8C[ECP w/o RLE]{10} NSR=0x8F[ECP w/ RLE ID REQUEST] {34}
Y NSR=0x8E[ECP w/ RLE]{30}
] NEGCH
) A NEGCH PCISR[5]
NSR=0x46 (EPP) NSR=0x16 (EPP) PCIERE]
NSR=0x48 (RN) NSR=0x18 (RN)
NSR=0x49 (RN-ID) NSR=0x19 (RN-ID)
NSR=0x4A (RB) NSR=0x1A (RB)
NSR=0x4B (RB-ID) NSR=0x22 NSR=0x1B (RB-ID)
NSR=0x4C (ECP) NSR=0x1C (ECP)
NSR=0x4D (ECP-ID) NSR=0x1D (ECP-ID)
NSR=0x4E (ECP-RLE) NSR=0x1E (ECP-RLE)
NSR=0x4F (ECP-RLE-ID) NSR=0x1F (ECP-RLE-ID)
FAILED NEG HOST-TIMEOUT INVALIDAmedTerm
MODE NOT ENABLED HOSTHASNOTRESPONDEDFOROVER1SEC.) HOST HAS VIOLATED HANDSHAKING SEQUENCE
[COMPATIBLE MODE] [COMPATIBLE MODE] [COMPATIBLE MODE]

NOTE: ID requests will fail if either the negotiation type or RID is disabled in NER.

Other negotiations will also fail if the negotiation type is disabled.

A1284 signal transition
from low-to-high, and
A1284(ODR[3]) = 1

ninikignakransitiorfrom HstBsysignaltransition
low-to-high, and from low-to-high, and
ninit(ODR[2]) =1 HstBsy(ODRI[1]) = 1

NOTE: Animmediate termination from the Host will generate
this interrupt

NOTE: Interface must be in COMPATIBLE MODE when

HstClksignaltransition) -
MANMD (PCR.7) is set or MANMD will have no affect

from low-to-high, and
HstCIk(ODR[0]) = 1

MANMD
(PCRI7]) SIGCH
SIGCH (PCISR[4])
(PCIER[4])
A1284 signal transition ninikignalransitiofrom HstBsysignaltransition HstClksignaltransition
from high-to-low, and high to low, and from high-to-low, and from high-to-low, and
A1284(ZDRI[3]) =1 ninit(ZDR[2]) = 1 HstBsy(ZDR[1]) = 1 HstCIk(ZDR[0]) = 1
HoshaseversedhalirectiorothénterfacdronECP-forwarddECP-reversdyriving EPP address received
nReverseRequest (nlnit) signal low. on parallel port EPPAW
EPPAW (PCISR[3])
(PCIER[3])
o DIRCH
= (PCISR[2])
HoshashangedhadirectiornthdnterfacdronECP-reversddECP-forwardxdriving
nReverseRequest (ninit) signal high. InCompatiblemode,thehosthas
requestedhperipheraloe-initialize
itself (ninit went low). NINIT
ninit (PCISR[0])
(PCIER[O0])
(PCISR[5]) (PCISR[4]) (PCISR[3]) (PCISR[2]) (PCISR[1]) (PCISRI[0])
NEGCH SIGCH EPPAW DIRCH IDREQ NINIT
INTEN
(PFCR[4]) PPORT
(PIR[6])
Figure 3-5. Interrupt Generation Logic
36 October 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

DMAwrerr (DER[7]) DMArderr (DER[6]) Bufwrerr (DER[5]) Bufrderr (DER[4])
(DMAACKWw/®MAREQ*) (DMAACKWw/®MAREQ*) (writdaon-emptyDMABUF) (ReadronemphyDMABUF)
ErrEn
(PFCR[1]) DataErr
(PFSR[0])
HR1wrerr (DER[3]) HR1rderr (DER[2]) HR2wrerr (DER[1]) HR2rderr (DER[0])
(writetonon-emptyHR1) (ReadromemptyHR1)) (Writetanon-emptyHR2) (ReadfromemptyHR2)

InterfacéorwardlirectionPFHR2ull, OneChar

PFHR1 empty,and ——p (PFSR[1])
Timeout (PFSR[5]) is set.

Stale (PFSR[3]) transitions from false to true and:

Timeout
o DMA is disabled. — (PFSRI5])
® DMAisenabled,butDMABUFisempty(else,a
DataErr OneChar Timeout DMAREQ1generatedtherdimeouinterrupis
(PFSRI0]) (PFSR[1]) (PFSRI5)) generatedwhentheDMABUFisemptyandall

DMA cycles are complete.

IntEn
(PFCR[4]) Pipeline
(PIR[5])
PPort Pipeline
(PIR[B]) (PIR[5])
PPireq
™ (PIR[T)
SRP
™ (SVRR[A)
Figure 3-6. Interrupt Generation Logic
October 1996 __| 37

DATA BOOK v3.0 FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

A direction change (DirCh) interrupt occurs when
the remote master has reversed the interface from
ECP forward to ECP reverse or ECP reverse to ECP
forward. The IDReq interrupt is generated when the
remote master issues an ID Request command dur-
ing IEEE 1284 negotiations. The normal response
by the local CPU is to send its ID string after revers-
ing the direction of the data pipeline by setting the
DMAdir bit to ‘1’

In an interrupt-driven system, as with the serial
channel requests, the SVCREQP* output normally
connects to one of the local CPU interrupt control
inputs. It can also be OR’ed together, through an
external gate, with the serial request outputs to pro-
duce a single interrupt request to the local CPU. The
interrupt service routine scans the SVRR and deter-
mines the actual source of the interrupt.

The parallel channel has the same Vector register
arrangement as the serial channels. The LIVR must
be initialized by the local CPU in the same manner
as the serial channels; the upper five bits are
defined by the local CPU and can be any value
appropriate to the system design. The lower three
bits should be initialized to zero during the program-
ming of the LIVR, however they are ‘don’t cares’ and
masked in the PIVR to provide the vector indicating
the source and type of request from the parallel
channel.

Access to the parallel channel LIVR is made by first
setting the CAR to X’00’, making the Channel Zero
register set accessible. Since the LIVR is a
read/write register, the local CPU can read it at any
time. When read during a normal read cycle, it
returns the original value written to it. When a ser-
vice acknowledge is performed, the upper five bits of
LIVR are copied into PIVR.

The encoding of the three least-significant bits of
PIVR during a service acknowledge cycle indicates
which of the functional blocks in the parallel channel
is requesting service and is as follows:

The encoding of the parallel channel service-
request status was designed using the remaining
unused states of the CL-CD1400: ‘100, ‘101’, and
‘110’. The other states of these three bits are already
used to indicate serial interrupt status in RIVR,
TIVR, and MIVR.

3.41 Hardware-Activated Context Switch,
Parallel

When conditions within the parallel channel require
attention, a request is made by the SVCREQP* out-
put. If the system is interrupt driven, this output
would be connected to the CPU interrupt generation
circuitry. In a hardware-activated service-acknowl-
edge system, the CPU responds to the request by
activating the SVCACKP* input (along with
DGRANT* and DS*) in the same manner as the
serial channels; the CS* input is not used and must
remain inactive (high). The CL-CD1284 responds to
the SVCACKP* cycle by driving the contents of the
PIVR onto the data bus with IT2—-ITO encoded as
shown above. The SVCACK cycle also places the
device in the correct context to service the parallel
channel request.

The vector supplied by the PIVR indicates which
block of the parallel channel requested service; the
cause of the request is indicated in the Request Sta-
tus registers of each: the PCISR in the channel con-
trol state-machine block and/or the PFSR in the data
pipeline block. Refer to Chapter 5 for detailed
descriptions of the various status bits in these regis-
ters.

The 1/O cycle that activates the SVCACKP* input
also removes the active SVCREQP* output. The
request output is inactive until after the CPU termi-
nates the acknowledge routine by writing to the
EOSRR. As with the serial channels, this is a
dummy operation and the data written is ‘don’t care’.
The purpose of the write is to clear the internal logic
of the current request context and allow it to gener-
ate another request when the need arises. Until this
write occurs, no further service requests are made

Bl'il;zz Bl'il;11 Bl'il;oo Requestor from the parallel channel. When the MPU detects
()| ()| () the write to the EOSRR, it zeros-out the PIVR in
] 0 0 Channel control state preparation for the next service-request cycle.
machine
1 0 1 Data pipeline
1 1 0 Both
38 C___|] OCtObE?’ 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

|

——== CIRRUS LOGIC

3.4.2 Software-Activated Context Switch,

Parallel

Software-activated acknowledges of the parallel
channel differ somewhat from those of the serial
channels. The start of a software acknowledge of
the parallel channel is the same as for the serial
channels: the CPU copies the contents of the PIR
into the CAR (after first saving the current contents
of the CAR) to set the device context. However, at
this point the methods (serial versus parallel)
diverge. The CPU can read either the LIVR or PIVR
(or read the status from the two status registers in
the Parallel Port register set) to determine which of
the parallel channel blocks is requesting service,
copy the PIR into the CAR (or just load it with ‘x’00’)
to set the context, then proceed to service that
request. Once the CPU has satisfied the request
needs of the parallel channel, it must toggle the
IntEn bit (PFCR[4]) or clear the PIR. Toggling IntEn
clears the PPort and Pipeline bits and the PPIreq bit
(PIR[7]). This action informs the MPU to clean up the
PIVR and remove the external request. The soft-
ware should then restore the CAR to its previous
contents and exit the service routine.

The PPlreq bit can be cleared at any time by the
CPU. If the system design requires the request be
removed quickly, the procedure can be performed at
the beginning of the polled service routine. If the
CPU waits until the end of the service routine, it
clears the bit itself or terminates the service in the
manner described, letting the MPU do it.

3.5 Serial Data Reception and
Transmission

The CL-CD1284 has two serial channels, each with
areceiver and a transmitter. Although a receiver and
a transmitter pair are associated with each channel,
in many respects they operate independently, shar-
ing only parameter settings regarding character for-
mat including length, parity type if any, and number
of stop bits. Each receiver and transmitter has its
own baud rate generation function, allowing a chan-
nel to send at one rate and receive at another.
Shared and independent parameters are shown in
the following diagram.

October 1996
DATA BOOK v3.0

RECEIVER TRANSMITTER
BAUD RATE BAUD RATE
PARITY

CHARACTER LENGTH

STOP BITS
PRESCALE PERIOD REGISTER

FIFO THRESH
RCVTIMEOUT

Channel service needs, such as an empty transmit
FIFO, are indicated to the CPU by one of three ser-
vice-request indicators: one for all receivers, one for
all transmitters, and one for all modem signal
changes. The internal processor (MPU) scans each
channel sequentially for service needs, posting a
request when it detects a particular type. It contin-
ues the Fair Share scheme used in the external
daisy-chain configuration by not allowing a channel
to post another request of one type until all other
channels have posted their requests of that type, if
any. For example, if channel two is currently being
serviced for a transmit request and channel three
has one pending, the request from channel three is
posted before channel two is able to make another
request for transmit service.

Each receiver and transmitter has a 12-character
FIFO. The receiver has two additional character
holding locations: the Receive Character Holding
and Receiver Shift registers. The transmitter also
has two additional locations, the Transmitter Holding
and Transmitter Shift registers. The receive FIFO
has a programmable threshold that sets the level at
which a service request is posted. When data
reaches this FIFO-full threshold, a request is made
of the CPU to empty the FIFO (for details see
Section 3.5.1). Receive FIFOs also have a program-
mable threshold that, when reached, causes the
DTR output to be deasserted (see the flow-control
description).

In the asynchronous serial data protocol, a mes-
sage consists of one ‘character, made up of bits,
either high or low, representing a ‘1’ or ‘0’ value. A
character can be from five to eight bits plus an
optional parity bit bracketed by a start bit and a stop
bit. Each bit has a time duration that sets the data

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

transmission rate — or baud rate. The start bit indi-
cates the beginning of a character bitstream and is
indicated by a transition from a logic ‘1’ to a logic ‘0’
(mark to space) on the transmission media. The
start bit lasts one ‘bit-time’ and is immediately fol-
lowed by the data bits (8:5), the parity if any, and the
stop bit.

As previously discussed, the CL-CD1284 incorpo-
rates special hardware to receive and transmit each
bit. These are the ‘bit engines’. They perform all tim-
ing associated with sending or receiving one serial
data bit. A bit engine behaves differently depending
on whether it is sending or receiving. When a com-
plete bit is received, the bit engine interrupts the
MPU so that it can handle the bit on the character
level. This usually entails its addition to the character
being assembled. For transmitting, a transmit bit
engine interrupt causes the MPU to give it the next
bit to transmit. The bit engine interrupt occurs at the
end of a bit time that is timed by the engine, thus
removing that duty from the MPU.

3.5.1 Receiver Operation

Each channel can be programmed to receive char-
acters with several different parameters, such as
character length, parity, number of stop bits, FIFO
threshold, and baud rate. Each receiver is indepen-
dent of any other receiver. It can also be set to a dif-
ferent baud rate from its corresponding transmitter.

Before valid data can be received, the CPU must set
up each channel by programming the desired oper-
ational parameters in the COR1—-CORS5, the BRRR,
RCOR, and RBPR. Once these registers are set,
the channel is enabled by issuing the receiver
enable command through the CCR and enabling
service requests in the SRER.

Once a receiver is enabled, its bit engine begins to
scan the RxD input for a valid start bit. It does this by
detecting a falling edge transition on the input. When
the transition is detected, the bit engine delays until
the middle of the programmed bit time and rechecks
the input. If the input is still low, the start bit is con-
sidered valid and character assembly begins. At
each subsequent full bit time, the input is checked
and its level recorded as the value of the next bit. If,
at the center of the bit time, the RxD input returns to
a mark state, then the start bit is considered invalid

and the bit engine returns to the start bit detect
mode.

Following a valid start bit, the bit engine begins
receiving data bits. At the end of the programmed
number of bits, following bits are checked for parity
(if enabled) and a valid stop bit. A valid stop bit is
defined as a mark or logic ‘1’ on the input. If a valid
stop bit is not detected, a framing error is noted for
the character. After a properly assembled (no fram-
ing error) character has been received, it is checked
for several special conditions (see Section 3.6 and
Section 3.7) and the overrun condition before it is
placed in the receive FIFO. If no errors or special
character processing is required, the character is
considered ‘good’ data and placed directly in the
FIFO. If errors exist, it is placed in the FIFO as
‘exception’ data along with status indicating the type
of error. As each good character is placed in the
FIFO, the RDCR (Receive Data Count register) is
updated to reflect the number of good characters
currently in the FIFO.

The receive FIFO has a programmable threshold to
determine the level where the CL-CD1284 requests
receive data service. This level is programmed
through the RxTh[3:0] bits (COR3[3:0]). The CPU
can set the threshold to any number of characters
from 1 to 12.

NOTE: This only sets the level where the CL-CD1284
posts a service request and not the depth of the
FIFO.

When the CPU responds to a receive good data ser-
vice request, it can read any number of characters
out of the FIFO, from zero up to the number indi-
cated in the RDCR before exiting the service rou-
tine. If the number read is zero, the CL-CD1284
posts another request for service almost immedi-
ately. If the number of characters read is less than
the number indicated by the RDCR, but enough so
that the number in the FIFO falls below the thresh-
old, a new request is not made until the threshold is
once again exceeded. Since the MPU circularly
scans the channels, another channel can post a
receive service request before this channel has the
opportunity, this is why the request for service is
posted ‘almost immediately’.

40 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

3.5.2 Receiver Timer Operations

Also associated with each receiver FIFO is a timer
that has its duration set in the RTPR. This timer pro-
vides two services in relation to the receive FIFO
operation: a timeout to prevent ‘stale’ data in the
FIFO and a timeout after the last character is
removed from the FIFO.

The first type, type 1, occurs if the receive FIFO
does not reach the set threshold before the pro-
grammed time period expires. The second type,
type 2, occurs if the timer expires and no new data
has been placed in the FIFO after the last character
is removed — this is the NNDT (No New Data Tim-
eout) service request.

The timer is driven by the prescaled clock selected
in the PPR in the Global register set. This timer is
loaded with the value contained in the RTPR each
time a character is placed in the receive FIFO or
when the last character is removed from the FIFO.
Each ‘tick’ of the prescaler decrements the timer. If
the timer reaches zero and the receiver interrupts
are enabled, the MPU generates a receive data ser-
vice request for the valid timeout condition.

Type 1

If there are characters in the FIFO but the threshold
level has not been reached, a good data service
request is posted when the timer expires. This func-
tion is provided to prevent data from remaining in the
FIFO for long (potentially infinite) periods of time
because the remote did not send enough data to fill
the FIFO to the threshold level. This timeout cannot
be disabled.

Type 2

If there is no data in the FIFO when the timer expires
and the NNDT service request is enabled in the
SRER, a receive exception service request is
posted with status indicating the timeout condition.
This timeout is optional and is provided so that driver
software can detect the possible end of a block of
data and allow its buffers to be flushed to the higher,
operating system level. The NNDT is posted only on
the first occurrence of a timeout after the FIFO
becomes empty. Also note that the NNDT timer is
not started if the last character removed from the
FIFO was an exception character, such as a break
or parity error.

October 1996
DATA BOOK v3.0

Figure 3-7 on page 42 shows the timer process
evaluation performed by the MPU when the timer
reaches zero.

3.5.3

Several conditions can cause the CL-CD1284 to
post the receive exception service request. If an
exception condition occurs, two bytes are placed in
the receive FIFO. The first byte contains the status
indicating the type of error; the second byte contains
the data.

Receive Exceptions

Exception data is sent to the CPU one event at a
time. That is, there is a separate service request for
each character received with special conditions. If,
when an exception condition occurs the receive
FIFO contains good data, a good data receive ser-
vice request is immediately posted upon receipt of
the bad data. This happens regardless of the num-
ber of characters in the FIFO and the programmed
threshold. This allows the CPU to remove the data
in the FIFO ahead of the exception data so that the
CL-CD1284 can post the service request for the
error condition. Once the service-acknowledge pro-
cedure for the good data is terminated, a hew ser-
vice request is posted for the exception data.

When the CPU acknowledges the receive exception
service request, it first reads the RDSR to determine
the status and then to retrieve the data. Reading the
data is optional: if the FIFO is not read twice during
the service routine, the CL-CD1284 updates the
internal FIFO pointers appropriately and discards
the second byte.

NOTE: The CPU need not actually read any data from
the FIFO during an exception service acknowl-
edge — the FIFO pointers are correctly
updated at the end of the service routine, dis-
carding both the status and the data. In this
way, the CPU must at least read the status or it
is permanently lost.)

Another special case of exception data handling is
received line break conditions. A line break is a char-
acter with a start bit, ‘0’ data, and no parity or stop
bit. In this case, a null (‘0’) character is placed in the
FIFO with the break condition indicated in the
accompanying status, and a receive exception ser-
vice request is posted. However, regardless of the
length of the break, only one character is placed in
the FIFO. Resumption of normal character recep-
tion causes new data to again be placed in the FIFO.

FUNCTIONAL DESCRIPTION

|

CIRRUS LOGIC

——

BACKGROUND SCANNING
DETECTS NEW CHARACTER
ARRIVED

Y

PUT CHARACTER IN FIFO
RELOAD TIMER

Y

RESUME BACKGROUND
SCANNING LOOP

l

42
FUNCTIONAL DESCRIPTION

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

FROM OTHER
BACKGROUND PROCESSING

FIFO EMPTY

?

Y

POST RECEIVE ‘GOOD DATA’
SERVICE REQUEST

NO NEW DATA

Y

TIMEOUT
ENABLED

NO NEW DATA

Y

INTERNAL FLAG

ARMED
?

CLEAR NONEWDATA
INTERNAL FLAG

POST RECEIVE EXCEPTION
SERVICE REQUEST

f)
’ ot 3

\
RESUME BACKGROUND
SCANNING LOOP

Figure 3-7. FIFO Timer Processing

October 1996
DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

3.5.4

Each of the two serial channels on the CL-CD1284
are capable of transmitting characters with a hum-
ber of programmable characteristics such as length,
parity, and baud rate. The channels operate inde-
pendently and the settings in one have no effect on
the operation of the other.

Transmitter Operation

After being reset from either hardware (RESET*
input pin) or software (by the master reset command
in the CCR), all transmitters are disabled with the
TxD output held at a logic ‘1’ condition. This is the
‘off’ or ‘mark’ condition of the asynchronous proto-
col.

Before any operation of the transmitter can begin,
the CPU must program the appropriate parameters
in the CORs, TCOR, and TBPR. Once these regis-
ters are set, the channel is enabled by issuing a
transmit enable command through the CCR, and
enabling service requests by setting the appropriate
transmit enable request bits in the SRER.

The channel then immediately posts a transmit ser-
vice request since its FIFO is empty. The CPU
responds to the request by loading up to 12 charac-
ters into the transmit FIFO through the TDR after it
places the CL-CD1284 in the Service-Request
Acknowledge mode (see description of service-
request/service-acknowledge procedures in
Section 3.2.3).

The transmitter does not begin transmitting the
characters until the CPU terminates the service rou-
tine and writes the EOSRR. Transmission begins by
sending a start bit (a logic ‘0’) followed by five to
eight data bits (depending on the programmed
value), least-significant bit first. The last data bit is
followed by the appropriate parity bit, if enabled, and
a minimum of one stop bit.

All bit transmission is handled by the transmit bit
engine with the MPU sending each bit as requested.
If there are still characters in the FIFO, the next one
is transmitted immediately after the last stop bit of
the previous character. This process continues until
all characters in the FIFO are transmitted. At that
time the CL-CD1284 posts a service request for
more data.

There are actually 14 transmit character holding
locations for each channel: 12 in the FIFO, one in

October 1996
DATA BOOK v3.0

the Transmitter Holding register, and one in the
Transmitter Shift register. The CL-CD1284 can be
programmed on a per-channel basis to request
transmit data when one of two conditions exist:

1) When the last character in the FIFO is trans-
ferred to the holding register, or

2) When the last data bit of the last character is
shifted out of the Transmitter Shift register.

Option number one allows the CPU two character
transmit times to reload the FIFO and prevent a
transmit data underrun. This is the hormal mode of
operation. Option nhumber two ensures that the
transmitter is empty before reconfiguring the chan-
nel. It is likely that transmitter underrun occurs if
option number two is selected, unless the CPU is
sufficiently fast to respond to a transmit service
request and reload the FIFO during transmission of
the stop bit(s) of the last character.

If the transmitter underruns, it continues to send
stop bits (mark) until more data is placed in the
FIFO. Normally, when a string of characters greater
than 12 is being transmitted, the software programs
the CL-CD1284 transmitter to post a service request
when the FIFO is empty. When the last of the data to
send is placed in the FIFO, the service request
enable is changed so that requests are made after
the last character is sent. This notifies the CPU that
all the data was transmitted before disabling a chan-
nel.

If a channel is disabled without first being emptied,
any characters other than the one currently being
transmitted are held and the transmitter enters the
marking state. If the channel is subsequently reen-
abled, any remaining data is transmitted.

The transmitter is capable of performing several
special functions such as break generation, inter-
character delays, and automatic flow control. These
functions are discussed in Section 3.6, Section 3.7,
and Section 3.8.

As with the receiver, the transmitter has a timer
associated with it. This timer generates the timing for
embedded transmit commands that send line
breaks and inter-character delays. Whenever the
MPU detects an embedded transmit command
specifying the delay command, this timer is loaded
with the value contained in the parameter byte. Then

I ——— 43

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

the timer is decremented on each tick of the PPR
(prescaler timer) until it reaches zero. At that time,
the delay terminates unless the next character in the
FIFO is the beginning of another delay command
sequence.

3.6 Flow Control

In all data communications applications, data is sent
from one system to another by a protocol. Most sys-
tems have a method of buffering data for transmis-
sion and reception.

In asynchronous protocol, there is no way at the pro-
tocol level to determine the length of a data trans-
mission. Therefore, it is hot normally possible to
designate a buffer area to handle the entire length of
the transmission. Also, the hardware receiving the
data generally has a limited amount of buffer area —
usually a FIFO — and, if the CPU does not unload
data fast enough, the buffer or FIFO can overflow.
For these reasons, two methods are provided to
stop the remote from sending data until there is
space to receive data. This is known as flow control.

Flow control can be in-band or out-of-band. In-band
flow control uses special characters that can be sent
to the CPU to stop data transmission. Out-of-band
flow control are signals outside the serial data chan-
nel that perform the same function: the RTS*
(Request To Send) and CTS* (Clear To Send) signal
set, and the DSR* (Data Set Ready) and DTR*
(Data Terminal Ready) signals.

The CL-CD1284 supports manual flow control and
has built-in capabilities for automatic and/or semi-
automatic (depending on direction and options)
implementation without CPU intervention.

3.6.1 In-Band Flow Control

In-band flow control is implemented by special char-
acters imbedded in the serial data stream; one to
request that transmission stop and one to request
that data transmission resume. Any character can
be selected, although conventionally, the XON or
DC1 (x'11) and XOFF or DC3 (x'13) characters are
selected if the ASCII character set is being used.

XOFF designates the character used to stop data
transmission. XON determines the character used
to resume transmission. Whether these characters

are used, the CL-CD1284 allows the two characters
to be set to any value appropriate to the system
design by the value programmed in SCHR1 and
SCHR2 (Special Character register 1 and 2).

SCHR1 defines the XON character and SCHR2
defines the XOFF character. These registers must
be initialized by the CPU; the default value loaded
during device reset is ‘xX’00’.

3.6.2 Receiver In-Band Flow Control

When the CPU senses that the sender requires
flow-control due to the receive buffer filling too fast to
service, it can request the remote stop transmission
by the transmitter sending an XOFF character. This
is accomplished by issuing a send special character
2 command through the CCR.The CL-CD1284 then
transmits the character programmed in SCHR2.

As previously discussed, the send special character
command is preemptive to data currently in the
transmit FIFO. The XOFF character is transmitted
immediately after the current character and the
character in the Transmitter Holding register are
sent (a maximum delay of two character times).
When the CPU is again ready to start receiving
characters, the XON character is sent by another
send special character command. At this time, the
CL-CD1284 is issued the command to send the
character programmed in SCHR1.

Send special character commands override any
flow-control by a remote of the CL-CD1284. For
example, even if the CL-CD1284 transmitter is shut
off by the remote, it can still send flow control char-
acters.

The current state of the flow-control condition is
always made available to the CPU through the
CCSR. In addition to the enabled/disabled status of
the receiver and transmitter, the CCSR displays the
flow-control status.

Two bits in the CCSR pertain to receiver flow control,
RxFloff and RxFlon. Whenever the CPU issues the
send special character 2 (send XOFF) command,
the CL-CD1284 sets the RxFloff bit, indicating a
request for the remote to stop transmission.

When the CPU issues the send special character 1
(send XON) command, RxFlon is set and RxFloff
reset. RxFlon remains set until the first character is

44 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

received after XON is transmitted. Table 3-2 shows
the bit encoding for RxFloff and RxFlon.

Table 3-2. CCSRJ[6:5] Encoding
RxFloff | RxFlon Encoded Status

Transmission resumes, the

0 0 receiver is enabled/disabled, or
receiver is in the default reset
state.

0 y XON is sent, but transmission
has not restarted.

1 0 XOFF was sent.

1 1 Not used.

RxFloff and RxFlon are cleared whenever the
receiver is disabled or enabled, regardless of the
state of flow control when the disable/enable
occurred.

NOTE: Regardless of the current state of RxFloff, the
CL-CD1284 continues to receive characters. If
the remote ignores or is slow to respond to the
XOFF charactet, there an overrun condition can
occur.

3.6.2.1 Transmitter In-Band Flow Control

The CL-CD1284 can automatically flow control its
own transmitter when it receives the XON and
XOFF characters, as programmed in SCHR1 and
SCHR2. There are control bits in COR2 and CORS3
to enable or disable various aspects of automatic
flow control.

Special-character detection must be enabled
through the SCD12 bit (COR3[4]) for flow-control
characters to be acted upon. When SCD12 is set,
the CL-CD1284 scans received characters for a
match with one of the special characters pro-
grammed in SCHR1-SCHR2.

If enabled in SCD12 and a character matching the
contents of SCHR2 is received (the XOFF charac-
ter), the CL-CD1284 checks that automatic transmit
in-band flow control is enabled in COR2[6]. If this
function is enabled, the CL-CD1284 stops transmis-
sion after the current transmitting character and the
character in the Transmitter Holding register, if any,
are sent. If enabled, the CL-CD1284 also attempts
to match against errored characters. This function is
enabled by the CMOE bit (COR5[5]).

October 1996
DATA BOOK v3.0

COR2[7] enables IXM (Implied XON mode), which
determines the character that restarts transmission
after a stop by automatic flow control. If IXM
(COR2[7]) is‘0’, only a programmed XON character
(SCHR1) can restart the transmitter; all other char-
acters are received and placed in the FIFO. If IXM is
reset, any character received restarts data transmis-
sion. TxIBE (COR2[6]) must be set to active auto-
matic flow control, otherwise IXM (COR2[7]) has no
effect.

As with receiver flow control, the CPU can deter-
mine the current state of the transmitter through
TXFloff and TxFlon (CCSR[2:1]). When automatic
in-band flow control is enabled and the CL-CD1284
receives an XOFF character, TxFloff is set. When an
XON character is received, TxFlon is set. Once
transmission resumes, TxFlon is cleared. The
encoding for TxFloff and TxFlon is shown in
Table 3-3.

Table 3-3. CCSRJ[2:1] Encoding
TxFloff | TxFlon Encoded Status

Transmission resumes, transmit-

0 0 ter is enabled/disabled, or the
transmitter is in the default reset
state.

0 y XON was received, but transmis-
sion has not restarted.

1 XOFF was received, transmis-

0 .

sion has stopped.

1 1 Not used.

TxFloff and TxFlon are cleared whenever the trans-
mitter is disabled or enabled, regardless of the state
of flow control when the disable/enable occurred.
This feature can force transmission to resume
regardless of remote-initiated flow control.

One final aspect of automatic in-band flow control is
FCT (Flow Control Transparency). FCT is
enabled/disabled in COR3[5] and determines if
remote-initiated flow control is transparent to the
CPU. If FCT is not set, in addition to stopping trans-
mission when an XOFF character is received, the
CL-CD1284 places the received XOFF character in
the receive FIFO and informs the CPU with a
receive exception service request. When the XON
character is received, itis also sent to the CPU by an

I ——— 45

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

exception service request, then restarts data trans-
mission.

If FCT is enabled, received flow control characters
control transmission, but are discarded instead of
being placed in the FIFO. If the CPU does not
require to know when its transmit data has been
stopped, this bit can be set to reduce the number of
service requests that must be handled.

Table 3-4 summarizes the control bits in the CORs
that enable the various modes of in-band flow con-
trol.

Table 3-4. COR Control Bits
Bit Name | Register Function
FCT COR3 Eg:ttr)clﬁs transparent flow
IXM COR2 Enables implied XON mode
3.6.3 Out-of-Band Flow Control

Flow control can also be accomplished through the
modem handshake signal pairs RTS/CTS and
DSR/DTR. These are called out-of-band because
they are external to the data channel. The
CL-CD1284 can be programmed to automatically
respond to and generate out-of-band flow control
through these signals.

3.6.3.1 Receiver Out-of-Band Flow Control

Along with the receiver FIFO threshold that sets the
level where the CL-CD1284 posts a service request,
another threshold can be set to determine when it
automatically asserts/deasserts DTR*. This is the
DTR threshold and is enabled in the DTRth[3:0] bits
(MCOR1[3:0]). The level can be set for any number
of characters from 0 to 12. A threshold of zero dis-
ables the function and DTR”* is not controlled by the
device. If the function and the receiver are enabled,
the CL-CD1284 automatically asserts the DTR* out-
put whenever the number of characters in the
receive FIFO is less than the programmed number.
Once the level reaches the threshold, DTR* is deas-

serted. DTR” is held in the deasserted state until the
CPU removes enough characters from the FIFO to
lower the level below the threshold.

For the receiver to operate properly, the DTR thresh-
old must be set to a value equal to, or higher than the
receiver service-request threshold. If the levels were
reversed, normal character reception could not be
completed because DTR* would always be deas-
serted before the receive FIFO threshold is reached.
The CPU would then not get a receive data service
request until the receive FIFO timeout is reached.
This would result in a serial data transmission per-
formance limitation.

The DTR* output can also be manually controlled
through MSVR2[1]. Setting this bit to ‘1’ asserts the
DTR* output.

3.6.3.2 Transmitter Out-of-Band Flow
Control

Transmitter out-of-band flow control is implemented
with three modem control signals: the RTS* output
and the CTS* and DSR* inputs. The RTS* output
can be programmed to be automatically asserted
whenever there is data in the transmit FIFO and the
transmitter is cleared to send. CTS* and DSR* can
be enabled to automatically control the transmitter.

RTS Automatic Output is enabled in the RtsAO bit
(COR2[2]). If RtsAO is set, the CL-CD1284 auto-
matically asserts the RTS* output when there is data
in the FIFO to send. When the data is sent and the
FIFO is empty, RTS* is deasserted until the CPU
places more data in the FIFO. If RTSAO is not set
and if required by the remote, the CPU must manu-
ally control the RTS* output through MSVR1[0].

The CTS” input can also be monitored by the
CL-CD1284 and is a transmitter enable. The func-
tions is enabled by setting CtsAE (COR2[1]). If
CtsAE is set, character transmission occurs only
when the CTS* input signal is asserted. If the signal
is deasserted during active transmission, the cur-
rent character plus the character in the Transmitter
Holding register are transmitted and transmission
ceases. Thus, a minimum of one and a maximum of
two characters can be transmitted after the control
signal is deasserted. Transmission resumes when
the signal(s) is reasserted.

46 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

The send special character command does not
sample the CTS* or DSR* inputs. If the CPU opts to
send one of the special characters, the character is
transmitted regardless of the state of these inputs.
This is preferable as the CPU can still flow control a
remote even if it is being flow controlled. If the state
of CTS* and DSR* are important, they should be
tested through MSVR1[7:6] before the special char-
acter send command is issued.

3.6.4 Modem Signals and
General-Purpose 1/O

Each channel of the CL-CD1284 has four pins that
can be used either as modem-control or general-
purpose input/output pins. The modem signal
names assigned to these four pins provide an easy
reference for system designers. In fact, they are all
simply general-purpose inputs and outputs (if auto-
matic out-of-band flow-control is not used) are indi-
vidually controlled in the MSVRs. Since they are
general-purpose, system designers can opt to con-
nect the pins any way to suit the application.

DCE, DTE Application

When the system software design opts to use auto-
matic out-of-band flow control, then the signal nam-
ing convention no longer holds true in some cases,
depending on if the device is used as DCE or DTE.
For this case, use these pins within the CL-CD1284,
connect them accordingly, and disregard their
names. The RTS* and CTS”* pins are associated
with the transmitter; the DTR* and DSR* pins are
associated with the receiver. Table 3-5 shows the
Cirrus Logic recommended signal hook-up for auto-
matic out-of-band flow control.

For example, if the CL-CD1284 is designed for DCE
and automatic out-of-band flow control, connect
DTR* to the remote CTS* input. If the CL-CD1284 is
for the DTE side, then connect the CL-CD1284
CTS* output to the remote CTS* input.

Note, if automatic out-of-band flow control is imple-
mented, the activity of DTR* and DSR* do not imple-
ment the function assigned to those signal names
by the signaling conventions of the CCITT (and
other) standards organization. These pin names
only apply to these pins if they are under program
control and not under automatic CL-CD1284 con-
trol. In fact, the defined DTR function enables the
modem to go on- and off-line, depending on the
state of the pin. If automatic flow control is used,
then DTR* goes inactive when the receive FIFO
reaches the programmed threshold, causing the
modem to drop the connection (carrier) to the
remote, — this is not the correct use of this function.

Table 3-6. Modem Control Pin Functions
Modem Function
Control Pins
RTS* Request to send (general-purpose
output)
CTS* Clear to send (general-purpose input)
DTR* Data terminal ready (carrier
detect/general-purpose input/output)
DSR* Data set ready (general-purpose input)
CD* Carrier detect (general-purpose input)
RI Ring indicator (general-purpose input)

Modem pins are implemented as /O ports accessi-
ble by either the CL-CD1284 internal microcode or

Table 3-5. Out-of-Band Pin Connections the host. The modem pins are not connected directly
to the transmit or receive hardware. When a user
pce | pte | €L-cD1284 | Out-of-Band programs the out-of-band modem functions to be
Pins Flow Control active, the CL-CD1284 microcode reads from and
* * Signal remote to writes to these pins. Specifically, when RTS* and
CTS B DTR transmit CTS* are used for transmit flow control, the
X Not implemented CL-CD1284 microcode asserts RTS* and senses
RTS - - in this direction CTS*, as required (see Table 3-6). Also, when the
Reguest remote receive FIFO is full, DTR* is negated. The host must
- RTS* RTS* permission to not reassert DTR* inadvertently.

fransmit NOTE: The host is not ‘locked out’ of accessing these
- CTs* cTs* Enable transmitter bits; ensure that these bits are not written to
when auto out-of-band flow control is enabled

as it could cause a system malfunction.
October 1996 __|] 47

DATA BOOK v3.0

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

The user can directly control RTS* and DTR* and
can probe the state of the CTS*, CD*, and DSR*
inputs through the MSVR. Since the host is access-
ing these pins directly, there is no delay in its ability
to detect a level change.

The CL-CD1284 can be programmed to detect level
changes and generate service requests when level
changes occur. It does this in firmware by reading
DTR* and CD* and comparing them to a previously
stored value. This function is performed in the main
timing loop of the firmware; the maximum time
required to detect a level change in worst-case con-
ditions is approximately 2 ms.

When the CL-CD1284 is performing this function,
the modem pins are periodically sampled rather
than continuously monitored. In this way they have
minimal sensitivity to noise, a desirable feature in
data communication applications. However, in
extremely noisy applications, reread a modem line
that caused a modem signal change service
request to verify it has changed and is not malfunc-
tioning. This eliminates even the slightest possibility
of a noise pulse causing erratic operation.

When the CL-CD1284 is monitoring modem pins to
control transmit or receive functions, it does not rely
on the previously stored value, but instead checks
the pins at the appropriate time. Thus, there is very
little delay in this response. For example, before
deciding to transmit another character, it examines
the CTS” pin at that time. The CL-CD1284 makes
this decision when moving characters from the FIFO
to the Holding register, not from the Holding register
to the Shift register.

Note that the logical sense of the modem bits is
inverted; that is, a write of ‘1’ to MSVR1 or MSVR2
causes the output pin to go to nominal zero volts.
Likewise, a low-voltage input is sensed as ‘1°.

3.6.4.1 Generating Service Requests with
Modem Pins

The CL-CD1284 can generate service requests
when any one of the input pins changes state. Either
or both edges can be detected by setting bits in
MCOR1 and MCOR2. For each pin, the user can
individually enable an on-to-off or off-to-on transition
detection of the inputs. When the CL-CD1284
detects such a transition, the corresponding bit in
the MCR is set. If the corresponding IER bit in the
channel is set, the CL-CD1284 asserts the
SVCREQM* output.

The user must clear the MCR during the service
request service routine before writing to the EOIR.
The CL-CD1284 performs this task by reading the
modem input signals and comparing the current
value with the value read in the last pass through the
outer scanning loop. Because this is the lowest-pri-
ority event in the CL-CD1284 scanning loop,
changes can not be detected unless they are sev-
eral hundred microseconds long.

For example, the modem input pins can be used to
detect the closing of a switch. However, consider the
relatively slow speed of response when using
modem input pins for this purpose. The CL-CD1284
does not latch the modem input signals.

3.6.4.2 Using Modem Pins as
General-Purpose 1/0

Since the modem pins can be directly accessed by
the host, they can be used as general-purpose /O
pins if they are not needed for flow control or modem
interfacing. Simply read from and write to these pins
as with any I/O port.

48 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

3.7 Receive Special Character
Processing

The CL-CD1284 has several ways to send special
characters and to process these characters when
received. Some special characters have fixed defini-
tions and others are user-defined. Figure 3-8 on
page 51 defines the processing that the
CL-CD1284 performs for receive data. This flow
chart illustrates the special character handling pro-
cess.

3.7.1 UNIX® Character Processing

The CL-CD1284 incorporates special character pro-
cessing of particular benefit in systems designed to
run the UNIX® operating system. The processing
performs some of the functions normally handled by
the ‘line discipline’ part of a serial device driver pro-
gram. This provides higher overall performance in
serial communication than could otherwise be
obtained because character manipulation occurs at
the hardware level without any CPU interaction. This
processing includes CR (carriage return) and NL
(new line) substitution, programmable response to
errored characters (framing, parity and overrun
errors), the LNext function and ISTRIP. Each type of
processing is optional and can be enabled/disabled
with control bits in the CORs 2, 4, and 5. The follow-
ing sections describe of each of these functions.

3.7.1.1 Line-Terminating Characters

The CL-CD1284 can be programmed to perform
automatic substitution of the CR and NL characters
on both received and transmitted data. Received
character processing has five unique substitutions
based on the value of IGNCR, ICRNL, and INLCR
(CORA4[7:5]); some combinations cause identical
actions.

000 Do nothing — function not enabled

001 Received NL changed to CR

010 Received CR changed to NL

011 Received CR change to NL; NL changed to CR
100 Received CR discarded

101 Received CR discarded; NL changed to CR
110 Received CR discarded

111 Received CR discarded; NL changed to CR

October 1996
DATA BOOK v3.0

——== CIRRUS LOGIC

3.7.1.2 Errored Character Processing

The CL-CD1284 can easily manage received char-
acters with errors (such as, parity, framing, and over-
run). If none of the special processing functions are
enabled, errored characters are delivered to the
CPU through a receive exception service request.
As defined by the PEH[2:0] bits (COR4[2:0]), these
characters can be handled in one of the following
ways:

e Parity errors can be ignored — the character is
placed in the FIFO as good data and is given to
the CPU as any other received good data.

e An errored character can be replaced with a
NULL (x’00) character in the FIFO.

e An errored character can be replaced in the
FIFO with the 3-byte string X’ FF-NULL-charac-
ter. If this mode is enabled and an actual good
x’FF character is received, it is replaced in the
FIFO with the two character sequence x’FF-x’FF.

e An errored character can be discarded.

Received breaks are handled differently from other
errored characters. They can be processed, based
on the settings of the IGNBRK and -BRKINT bits
(COR4[4:3)), as:

e Reported as an errored character by a received
exception service request.

e Replaced with a good NULL (x’00) character in
the FIFO.

e Discarded.
3.7.1.3 LNext

LNext (Literal Next) allows ‘escaping’ or ignoring any
special meaning of special characters and consid-
ers them as normal data. The escape character is
defined by the value in the LNC register. If the
CL-CD1284 receives this character, places it and
the next character in the FIFO without further pro-
cessing. As an example, this allows a flow-control
character to be received without it causing actual
flow-control activity. LNext can be enabled to oper-
ate on characters received with errors (such as, par-
ity, framing, and overrun), otherwise errored
characters are handled normally and the next char-
acter is not escaped.

I ——— 49

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

3.7.1.4 ISTRIP

ISTRIP is a simple function that, if enabled, resets
the most-significant bit (bit 7) of all received good
characters. If the character has a parity or framing
error, the ISTRIP function does nothing and the
character is sent to the CPU as a normal receive
exception service request.

3.7.2 Non-UNIX® Receive Special
Character Processing

In addition to UNIX special-character processing,
the CL-CD1284 provides other special character
recognition capabilities. The CL-CD1284 has four
registers that define special characters,
SCHR1-SCHR4. SCHR1 and SCHR2, are used in
flow-control activities and (see Section 3.6). SCHR3
and SCHR4 define two additional special characters
that the CL-CD1284 can scan for in the receive data
stream. Recognition of special characters 3 and 4

are enabled by the SCD34 bit (COR3[6]). If either of
these characters are received, a special character
detect (receive exception) service request is sent.
Note that if automatic in-band flow control is not
enabled, SCHR1 and SCHR2 can still be used as
special characters. They are detected and reported
as receive exceptions, but they do not cause flow-
control activities to be envoked.

The range detect function is another special charac-
ter function. If this mode is enabled (COR3[7] set),
the CL-CD1284 compares all received characters
against the values in the SCRL and SCRH registers.
If the character received falls between these two val-
ues (inclusive), a special character detect service
request is posted.

The status shown in the RDSR indicates which of
the special character recognition conditions were
met and caused the receive exception service
request.

50 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

|

October 1996

CHARACTER
RECEIVED

Y

PARITY,

FRAMING,
OVERRUN

SET ERRORED

| CHAR FLAG

ERROR

SET BREAK

FLAG

ISTRIP
ENABLED

<

N
CHAR MATCH

SETD7=0

SCHR12

——== CIRRUS LOGIC

ENABLED

CLEAR LNEXT
FLAG

Y

DATA BOOK v3.0

Y

SET LNEXT
FLAG

®

Figure 3-8. CL-CD1284 Receive Character Processing

FUNCTIONAL DESCRIPTION

|

——= CIRRUS LOGIC

——

52

IMPLIED
XON MODE

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

SET FLOW

TOGGLEFLOW|

STATE

O,

Y

OFF

CLEAR FLOW
OFF

Y

CLEAR FLOW
OFF

SCHR34

ENABLED

ENABLED

SET SPECIAL
CHARACTER
EXCEPTION

FLOW
CONTROL

Figure 3-8. CL-CD1284 Receive Character Processing (cont.)

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

October 1996

CL-CD1284 ——

IEEE 1284-Compatible Parallel Interface Controller e —

® ©
COR4[7:5]

000 - No action

001 -NL to CR

010 - CRto NL

011 - CRto NL; NL to CR
100 - Discard CR

101 - Discard CR; NL to CR
110 - Discard CR

111 - Discard CR; NL to CR

CHAR =
CRORNL

PUT CHAR
IN FIFO

HANDLING

UT FF,00, CHAR PUT FF, CHAR
IN FIFO IN FIFO
[|

Y

POST EXCEPTION
SERVICE REQUEST

Y

HANDLING
=017

HANDLING
=‘0071

PUT 00 PUT CHAR
IN FIFO DISCARD CHAR IN FIFO

POST EXCEPTION
SERVICE REQUEST

A

PUT CHAR PUT 00

IN FIFO DISCARD CHAR IN FIFO Y

' ' ' »{ DONE

Figure 3-8. CL-CD1284 Receive Character Processing (cont.)

October 1996 53

DATA BOOK v3.0 FUNCTIONAL DESCRIPTION

———.
———rR.
——r

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——= CIRRUS LOGIC

3.8 Transmit Special Character
Processing

The CL-CD1284 also provides some special char-
acter handling on the transmit side — embedded
transmit commands and direct commands to trans-
mit predefined special characters. Figure 3-9 on
page 56 illustrates the process of special character
handling.

3.8.1 Line Terminating Characters

On transmit, there are four possible substitutions
based on the setting of two flags, the ONLCR and
OCRNL bits (COR5[1:0]):

00 Do nothing — function not enabled

01 Change all <CR> characters to <NL>

10 Change all <NL> characters to <CR> <NL>
11 CR characters changed to NL or NL

When both flags are set (‘11°), only one translation
occurs — a CR that changed to NL is not changed to
CRNL.

3.8.2 Embedded Transmit Commands

The CL-CD1284 has a special feature that option-
ally allows specific ‘escape’ character sequences in
the transmit data stream to be interpreted as com-
mands. These are called ETCs (embedded transmit
commands) and are enabled in COR2[5]. These
sequences can insert programmed time delays
between characters and generate a line break on
the transmit data output.

If enabled, an ETC is detected when the two- or
three-character escape sequence is detected in the
transmit FIFO. An escape-character sequence is
comprised of the special escape character followed
by the command character and an optional count for
the delay period. The escape character is an all-zero
character (null or NUL in the ASCII character set
map). Five commands are supported in the ETC
command set:

e NUL NUL
e NUL x’81
o NUL x’82 x’xx
e NUL x’83
e NUL x’01—x3F

NUL NUL - Send One NUL Character

This command sequence allows the NUL character
to be sent alone. Thus, this ‘escapes’ the escape
when it is desired to send a null character.

NUL x°81 — Send BREAK

This sequence forces the transmitter to enter the
line-break condition for at least one character time.
Several conditions control the continuation and/or
termination of the line break.

o If there is no more data in the FIFO following the
send break command, the break continues
indefinitely until terminated by a stop break com-
mand.

e Ifthere is aninsert delay command (see the next
command) immediately following the send break
command, the break duration is set by the value
programmed in the delay command. Any other
character in the FIFO immediately following the
send break command carries an ‘implied’ end-
of-break condition, causing the break to be ter-
minated and the next character to be sent.

NUL x°82 x’xx — Insert Delay

This command causes a delay between the previ-
ous character transmitted and the next character to
be transmitted. The hex value contained in the third
byte of the sequence determines the time of the
delay based on the basic time period set by the
PPR. The value is treated as an unsigned binary
value loaded into an internal counter. The counter
decrements once for each tick of the prescale period
timer. Thus, if the PPR sets a basic timing period of
10 ms and the value set by the command is 100
(x’64), then a delay of 1 second is generated. Multi-
ple insert delay commands can be placed in the
FIFO if time delays longer than that generated by a
single delay period are needed.

This command is useful when a delay is required
after sending a carriage return. A printer is an exam-
ple of this type of situation. Often, the carriage return
causes the printer to start a print cycle and the send-
ing device must wait for the print to complete before
sending the next line of text (unbuffered input).
Using the insert delay command allows the delay to
be performed automatically without the need for the
CPU to time it. The delay command is placed in the
FIFO directly following the carriage return and

54 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

preceding the first data for the next line. The
CL-CD1284 automatically executes the delay fol-
lowing the carriage return, then restarts sending
characters.

Another useful application of the delay command is
as a built-in timer that the CPU uses as an interrupt
source causing it to periodically check its internal
buffers for data to transmit. This assumes that the
channel is not currently transmitting data. When the
CPU services the transmit FIFO service request
after a delay timeout (as set by the delay value) it
can start transmission of a buffer if data is available
or resend the insert delay command and wait for the
next service request. An internal timer interrupt set
by the CPU is now unnecessary to perform this
function.

NUL x’83 — Stop BREAK

This command terminates a break in progress
regardless of other conditions. This command can
be preceded by insert delay commands to set a spe-
cific, programmed break period if more than one
character time is required. Any character in the FIFO
causes the break to terminate. NUL x’83 is required
only if it is necessary to stop the break and there is
no more data to be sent. A break continues until
another character is sent or ESC x’83 is encoun-
tered in the FIFO.

NUL x’01-x’3F — Send Repeat Space

This command causes the CL-CD1284 to send
repeated space characters. The character following
NUL is interpreted as a binary count specifying the
number of ASCII space (x'20) characters to send.
The count must be in the range of x’'01 through x’3F
(1-63 decimal).

October 1996
DATA BOOK v3.0

3.8.3 Send Special Character Command

One command of the CL-CD1284 transmits any one
of the four special characters programmed in
SCHR1-SCHR4. The command is issued by the
CCR[5] set to '1’, and the least-significant three bits
encoding a selection of one of the four characters.
This function is preemptive, meaning that the
selected character is transmitted immediately fol-
lowing the currently transmitting character and any
character in the Transmitter Holding register. This
preempts any characters in the transmit FIFO. If
there are characters in the transmit FIFO, transmis-
sion resumes after the special character is sent.

One important use of this command is that it allows
the CPU to flow-control a remote without having to
wait for the transmit FIFO to empty before the flow
control character is placed in it. This is a special
case different from the normal transmitter operation
of the CL-CD1284, in that the character can be sent
without waiting for a transmit service request. The
only requirement is that the transmitter must be
enabled (interrupts need not be enabled).

FUNCTIONAL DESCRIPTION

———.
———rR.
——r

——= CIRRUS LOGIC

——

56

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

READY FOR NEXT
CHARACTER

N
v DECREMENT
»|COUNT, SEND
‘SPACE’
N
N EMBEDDED
COMMAND IN
PROGRESS
Y
CLEAR REPEAT
CHAR MODE
RESET EMBEDDED
COMMAND IN
PROGRESS)
SEND _
BREAK >
SET DELAY
TIME USING »
NEXT CHAR
Y /
c

Figure 3-9. CL-CD1284 Transmit Character Processing

October 1996
DATA BOOK v3.0

FUNCTIONAL DESCRIPTION

———.
——rER.
—

CIRRUS LOGIC

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

OO ©

STOP BREAK

SEND “00° _
AS CHAR >

1. INITIALIZE REPEAT
CHAR COUNT

2. SET REPEAT
CHAR =‘SPACF’

3. SET REPEAT

CHAR MODE

Y

Y

ILLEGAL CONDITION:
SEND THIS AS A CHAR

ETC SET EMBEDDED
ENABLED COMMAND IN >
PROGRESS FLAG

Figure 3-9. CL-CD1284 Transmit Character Processing (cont.)

FUNCTIONAL DESCRIPTION

October 1996
DATA BOOK v3.0

57

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

|

CIRRUS LOGIC

——

PERFORM CR, NL
PROCESSING AS
SPECIFIED

[
Lol

y

SEND CHAR

Figure 3-9. CL-CD1284 Transmit Character Processing (cont.)

| October 1996
DATA BOOK v3.0

58
FUNCTIONAL DESCRIPTION

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

3.9 Baud Rate Generation

The CL-CD1284 provides a separate baud rate gen-
erator both directions of each channel. Each receive
and transmit baud rate generator can be driven from
one of five available clock sources. The source
being used is selected by the value inthe R/TCOR1.
The selected clock is divided by the value in the
R/TBPR to yield the desired bit rate.

The five clock sources are:

Clk0 System clock +~ 8, RI'TCOR=0
Clk1 System clock + 32, R”TCOR = 1
Clk2 System clock + 128, R‘'TCOR =2
Clk3 System clock + 512, R'TCOR=3
Clk4 System clock + 2048,

The system clock is the external clock driving the
CLK input of the CL-CD1284. Three example baud
rate tables are provided at the end of Section 4.7 on
page 88. A sample program for automatically deriv-
ing the baud rate clock selection and divisor is also
provided in Chapter 4.

3.10 Serial Diagnostic Facilities —
Loopback

The CL-CD1284 provides the capability to perform
internal loopback testing for both local and remote
loopback modes. Loopback mode is enabled by the
LLM (Local Loopback mode) and RLM (Remote
Loopback mode) bits (COR2[4:3]).

In Local Loopback mode, the output of the transmit-
ter bit engine is directly connected to the input of the
receiver bit engine; the input and output pins (TxD
and RxD) are disconnected. The TxD output is left in
the mark condition so that remote equipment does
not sense any line activity. Input conditions on the
RxD are ignored. All channel parameters and ser-
vice-request functions are in effect and operate
normally. If enabled, special characters in the loop-
back data are detected and acted upon and UNIX
translations occur.

Remote Loopback mode causes the CL-CD1284 to
echo any received data back immediately to the
transmit output. This is done on a character-by-char-

acter basis rather than on a bit-by-bit basis. In other
words, characters are echoed once they are com-
pletely received and assembled. Received data is
not placed in the FIFO, thus no data is sent to the
CPU. The received character is retransmitted with
parity and stop bit options as defined by COR1.
Note, if the transmit baud rate is lower than the
receive baud rate, overrun errors and loss of data
are likely to occur.

3.11 Parallel Port FIFO and Data

Pipeline Overview

The parallel port within the CL-CD1284 implements
all modes defined for the ‘slave’ (peripheral) side in
the /EEE STD 1284 Standard Signaling Method for
a Bidirectional Parallel Peripheral Interface for Per-
sonal Computers. This specification defines four
methods of performing bidirectional data transfers
between a computer system and a peripheral
device, in addition to the generally accepted unidi-
rectional Centronics®-compatible mode. These
modes include Compatibility mode, Reverse-Nibble
mode, Reverse-Byte mode, ECP (Extended Capa-
bilities Port) with and without RLE (run length
encoding), and the EPP (enhanced parallel port).

The IEEE 1284-compliant parallel port consists of
two major functional blocks:

e A data pipeline that moves data between the
parallel port and the CPU and includes a FIFO,
holding registers, DMA control, interrupt control
logic.

e A channel control state machine to perform all
control and handshake generation on the paral-
lel port interface side of the device.

3.11.1 |IEEE STD 1284 Protocols

The following sections discuss data movement
within the pipeline for the various IEEE STD 1284
operating modes. For a complete description of
these modes, refer to the IEEE STD 1284 specifica-
tion; it is beyond the scope of this data book to give
complete information on the specification. A copy of
the IEEE STD 1284 standard can be obtained from:

IEEE Standards Department
445 Hoes Lane

P.O. Box 1331
1 R/T is used as a register abbreviation indicating Pascataway, NJ 08855-1331
Receive / Transmit followed by the register acronym. USA
OCtOber 1996 __|] 59

DATA BOOK v3.0

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

3.11.2 Bus Interface

DMA transfers are the preferred means of transfer-
ring data to/from the FIFO. However, it is also possi-
ble to transfer data to/from the data pipeline by
reading and writing the holding registers directly
through the P1O. DMA request and acknowledge
handshake signals support transfers to/from the 16-
bit-wide DMABUF register. The direction of transfer
is determined by the DMAJir bit (PFCRI[5]).

In the transmit direction, with DMAbufWe (PFCRI0])
set, the CPU can write 2 bytes at a time directly to
the DMABUF register. However, most applications
are not concerned with speed on the parallel port in
the reverse direction and do not require 16-bit writes
to the FIFO. The CPU must avoid writing to these
registers when they are already full or reading from
them if they are empty. The status bits in the HRSR
indicate if the holding registers and the DMA buffer
are full or empty. When writing a block of data to the
CL-CD1284 (DMAbufWe is set to ‘1°), the CPU can
determine how much data the FIFO can accommo-
date by reading the PFQR.

Should data become ‘trapped’ in the DMABUF
register in the receive direction because of a failure
of the external DMA controller or because the exter-
hal buffer area is full, it can either remain until the
DMA transfer can be resumed or the CPU can read
the data directly from the DMA buffer.

NOTE: The DMA buffer can only be read when
DMAREQ” is active because data is not moved
into the DMABUF register until DMAREQ* is
activated by the threshold logic or a timeout
condition.

Once a DMA request is initiated by the CL-CD1284,
it is maintained until the last data transfer the FIFO
can accommodate occurs, or the CPU either clears
DMAen or clears the FIFO and data-transfer logic by
setting FIFOres. In the transmit direction, the DMA
request is removed by the CL-CD1284 when it
determines that the FIFO is nearly full. (If RLEen is
set, the pipeline does not fully drain into the FIFO,
but the logic does not factor that into the decision to
conclude the DMA transfer.)

In the receive direction, the DMA request is removed
when there are not at least two more bytes available
to transfer or a tagged byte has moved into the data
pipeline. In the latter case, an interrupt is generated

to the CPU (IntEn must be true) to remove the
tagged data from the pipeline.

The quantity of data transferred within a single DMA
request can significantly exceed the capacity of the
FIFO if RLEen is set, the parallel port is in ECP
mode, and compressed data is being transferred.
This is because the FIFO always stores the data in
compressed form. Since other modes do not sup-
port RLE compression, the CPU should only set
RLEen when the parallel port interface is in ECP
mode.

3.11.3 Parallel Port FIFO

The CL-CD1284 has a dedicated 64-byte FIFO with
counters to maintain the fill/empty pointer
addresses, logic to manage data transfers, auto-
matic DMA handshake, and status interrupts to the
CPU. A simple register interface provides control
over setting the direction of the pipeline, initializ-
ing/resetting the DMA pointers, setting the DMA
threshold, and so on. The FIFO management logic
responds to data-transfer requests from the dedi-
cated |IEEE 1284 parallel port state machine.

Byte-alignment issues on transfers to/from the FIFO
are avoided by having the FIFO byte-oriented with
2-byte word packing/unpacking occurring between
the DMABUF register and PFHR1 and PFHR2. The
order of byte transfers to/from the DMA buffer is con-
trolled by the BYTESWAP input. If BYTESWAP is
high, the upper byte (bits 15:8) is transferred first. If
BYTESWARP is low, the lower byte (bits 7:0) is trans-
ferred first.

Data transfers to/from the CPU are initiated by a
DMA request whenever the quantity of data or
space in the FIFO equals or exceeds the threshold
value stored in the PFTR. The DMA request is deas-
serted during the DMA cycle determined by the logic
to be the last because of filling/emptying the FIFO or
the presence of tagged data in the receive pipeline.

3.11.4 Receive Direction

In the receive direction (DMAdir = 0), the first two
bytes of data placed into the FIFO by the parallel
port are immediately moved into the data pipeline,
PFHR1 and PFHR2 (see Figure 3-10 on page 64).
This is done in part to make the tagged status of the
data visible to the pipeline control logic. If RLEen is

60 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

‘0’, any tagged data from the FIFO must move
through the pipeline. However, tagged data cannot
be transferred to the CPU by a DMA transfer from
the DMABUF register. Therefore, the presence of
tagged data in the pipeline causes an interrupt to the
CPU. The CPU must then examine the HRSR to
determine the pipeline status.

If there is tagged data in one of the holding registers,
the CPU must read that register to empty it and clear
the tag. If more data is available in the FIFO, data
immediately moves forward to fill the pipeline. If the
FIFO is empty, the pipeline does not move. If the
CPU emptied PFHR2 and PFHR1 is full, the data in
PFHR1 moves forward to PFHR2 only if the FIFO is
not empty.

The pipeline logic keeps the pipeline full in the
receive direction. The value in the threshold register
is tested against the quantity of data in the FIFO.
Therefore, a humber of characters equal to the
PFTR-threshold value plus two must arrive before a
DMA request is made to the CPU to remove the
data.

3.11.5 Receiving Compressed Data

RLE compressed-data sequences that consist of a
tagged RLE count followed by the compressed data
character are stored in the FIFO in compressed
form. As data moves from the FIFO into the data
pipeling, the tag bit is inspected. If the tagged data
is an RLE count (HostAck signal is high) and RLEen
is true, the RLE count is loaded into the RLCR
instead of PFHR1; the next data character is loaded
into PFHR1. Decompression occurs by holding the
compressed character in PFHR1 as copies of the
character are shifted forward into PFHR2. As each
copy of the character is shifted, the RLCR value dec-
rements. When the RLCR reaches zero, the hold on
PFHR1 is released and it can shift forward in the
pipeline as ordinary data.

Tagged data from the FIFO is recognized as an ECP
mode address and shifts into the pipeline where it
causes an interrupt to the CPU to remove the
tagged data from the pipeline. If RLEen is ‘0’, all
tagged data from the FIFQ is shifted into the pipeline
and produces CPU interrupts.

If an immediate termination occurs between the
reception of the RLE count and the corresponding

October 1996
DATA BOOK v3.0

data, then the RLE count is stored in RLCR and the
next data byte received in ECP mode is uncom-
pressed into the FIFO (based on the values in RLCR
and if RLEen is still set). If the next byte received in
ECP mode is a new RLE count, then that value over-
writes the old value in RLCR.

3.11.6 Stale Data (Stale, OneChar, and
Timeout Status Bits)

Data transfer to the CPU can also be initiated by the
‘stale’ data timer. This timer is reloaded with the
value in the SDTPR and restarts each time data is
placed into the FIFO from the parallel port. When the
timer reaches zero, the status indication stale (visi-
ble in the PFSR) is set true unless StaleOff
(PACR[B]) is true.

StaleOff keeps the stale status false, even though
the SDTCR counter value is zero. Should the stale
status become true with at least two characters of
data available, a DMA request is made to transfer
the data. If the stale is true and there is exactly one
character available, the OneChar status bit is set
(PFSR[1]) and an interrupt is generated to the CPU
to transfer the single residual character.

The Parallel FIFO Status register indicates the Stale
and OneChar conditions, and FFmpty. The HRSR
(Holding Register Status register) shows that hold-
ing register PFHR2 contains the final character. An
odd number of bytes can not be transferred by DMA.
If a DMA transfer completes with 1 byte of data left,
the data is held pending arrival of additional data or
the expiration of the stale data timer.

The OneChar status is latched true when the FIFO
and DMA buffer are empty and there is one charac-
ter in the pipeline in PFHR2. While the OneChar sta-
tus is true, further pipeline operations are inhibited.
If additional data arrives in the FIFO, it remains there
until the CPU:

1) Services the interrupt caused by the OneChar
status, and

2) Reads the data character from PFHR2.

When the CPU reads the single character from
PFHR2, any newly arrived data in the FIFO immedi-
ately moves forward into the pipeline and a DMA
transfer can begin if conditions warrant.

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

Another latched status condition associated with the
stale data timer is the Timeout status bit (PFSR[5]).
Timeout is reset by the FIFOres bit (PFCRJ[7]) and
the CIrTO bit (PACRI[3]). Timeout, OneChar, and
DataErr are pipeline interrupt conditions and, if
enabled, generate an interrupt. In the receive direc-
tion, the Timeout condition is armed when Stale is ‘0’
and CIrTO and FIFOres are also ‘0’. When Stale
becomes ‘1, the timeout is triggered, but is not set
until a DMA transfer is complete, the FIFO is empty,
and there is no more than one character remaining
in the pipeline. To clear the timeout condition, set the
CIrTO bit. To reenable the timeout function, clear the
CIrTO bit.

The CPU can arm the timeout by a write of ‘01h’
directly to the SDTCR. If the timer expires before
any data arrives, an interrupt is generated for the
timeout condition. If data arrives before the timer
expires, the interrupt delays until the data becomes
stale.

3.11.7 Transmit Direction

NOTE: In the transmit direction, the pipeline behaves in
one of two ways depending on the RLEen con-
trol bit. RLEen should only be set by the CPU
after the parallel port is in ECP mode, otherwise
compression of data occurs, but cannot be sup-
ported in data transfers on the parallel port. If
RLEen is ‘0’, data written to the DMABUF regis-
ter by a DMA (DMAen true) or CPU write
(DMAbufWe true) is moved through PFHR1 to
PFHR2 and immediately transferred into the
FIFO (if space is available).

If RLEen is ‘1°, run-length encoding is enabled and
comparators among the pipeline stages recognize
repeated strings of characters and compress them
(see Figure 3-11 on page 65). To allow the compar-
ator-based logic to work, the pipeline registers,
PFHR1 and PFHR2, must be kept full. One compar-
ator determines if the characters in PFHR1 and
PFHR2 are identical.

Another comparator determines if the next charac-
ter coming from the DMABUF register and the char-
acter in PFHR1 are identical. Compression begins
when the pipeline is full (immediately after a DMA or
CPU write to the DMA buffer) and both comparators
show identical characters in their pipeline stages.
This starts the compression process and the char-
acter in PFHR1 and the DMA buffer shift forward.
The (same) character in PFHR2 is not loaded into
the FIFO, but rather the RLCR increments to ‘1°.

As long as identical additional characters are loaded
into the DMA buffer, the RLCR value continues to
increment and the data in PFHR2 does not move
into the FIFO. When the repeated sequence is
finally broken, or the RLCR count reaches 127, the
RLCR value transfers into the FIFO, the RLCR
zeros, and the character in PFHR2 transfers into the
FIFO. Compression resumes when both compara-
tors indicate the presence of a string of at least three
identical characters. During intervals between DMA
transfers, the last two data characters are held in
PFHR1 and PFHR2.

After the entire block transfer is complete, the CPU
must either zero RLEen or ensure that both DMAen
and DMAbufWe are zeros. When either of these
conditions is true, the pipeline is released and data
held in PFHR1 and PFHR2 transfers into the FIFO.

The timeout interrupt can be a general timer inter-
rupt in the transmit direction. Unlike the receive
case, when DMAdir is true, the timeout status is
immediately set when the timeout is triggered by a
‘0’-to-"1’ transition of Stale. To use the timeout inter-
rupt, the CPU must load the desired time delay
directly into the SDTCR. When the timer expires,
Stale becomes true and the timeout interrupt is gen-
erated.

62 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

3.12 CL-CD1284 Parallel Port Overview

3.12.1 Terminology

This document uses the terms ‘master’ and ‘slave’
for the IEEE STD 1284 specification terms ‘host’ and
‘peripheral’ that describe the two sides of a parallel-
port interface.

Table 3-7. Signal Names

3.12.2 Signal Names

The IEEE STD 1284 specification uses different
names for the nine control signals, depending on the
current mode of operation (see Table 3-7 on
page 63). The CL-CD1284 uses fixed names for
each of its pins. The names were selected to repre-
sent the most commonly used names of the various
protocols. The CL-CD1284 device operates as a
slave only. There are four input-control signals
driven by the master-side device, and five output-
control signals driven by the slave-side device. The
Parallel Data bus (PD[7:0]) is bidirectional.

Names Compatibility Rev. NB Rev. BT ECP EPP
Inputs
A_1284 SLCTIN* A_1284 A_1284 A_1284 nAStrb
HstBsy AUTOFD* HstBsy HstBsy HstAck nDStrb
HstClk STROBE* HstClk HstClk HstClk nWrite
ninit INIT* ninit ninit nRevReq ninit
Outputs

AkDaRq PError AkDaRq AkDaRq nAkRev USERT1
PerBsy BUSY PerBsy PerBsy PerAck nWait
PerCIk ACK* PerClk PerClk PerClk Intr
nDatAv FAULT* nDatAv nDatAv nPerReq USER2
XFlag SELECT XFlag XFlag XFlag USER3

3.12.3 State Machine

The parallel port is controlled by a large synchro-
nous state machine. The state machine is based on
the IEEE STD 1284 specification and conforms to all
the functional modes (except extensibility link
options, none of which are currently — as of the print
date of this document — defined).

October 1996
DATA BOOK v3.0

3.12.4 Configuration

At power-up, the interface begins in Compatibility
mode (Centronics mode) ready to accept data from
the master. Only the ETxfr bit (PCR[5]) is required to
allow transfers in Compatibility mode (parallel port
only; datapath section is separate). PCR[7:5]
enable transfers and Negotiation and Manual
modes.

FUNCTIONAL DESCRIPTION

i

CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——

(RECEIVE)
PFSR
TAGBIT |
TAG BIT
TAG |= TAG |= TAG (64 BITS) -
|_
1
I O
< [% STATUS STATUS z
DB[15:8] «— > [7y 7y i
2 |le < j
= <
o o
<
o
N [-
o 1 >
a T I FIFO (64 BYTES) -—
< -t % | o I -
DB[7:0] «—]| 5 o |
2 |l <<
=
o
Figure 3-10. FIFO Data Path Functional Diagram — Receive
3.12.5 Interrupts 3.12.7 Control Signals

Interrupts are enabled in the PCIER and interrupt
status can be read in the PCISR. These two regis-
ters have the same format.

3.12.6 Manual Mode

Manual mode allows direct control of the five output
control signals and the PD bus. It is not intended for
data transfers, but rather for advanced diagnostics.
Enter Manual mode by setting the ManMd bit
(PCRI[7]) when the interface is in Compatibility
mode.

The MMDir bit (PCR[1]) sets the direction of the PD
bus: 0 = input; 1 = output. When the MMDir bit is set
to ‘1°, data for the PD bus comes from the MDR. The
ManOE bit controls the tristate buffer on the PD bus:
0 = floating; 1 = driving. When MMDir is ‘0’, ManOE
is ignored, PD[7:0] are inputs, and the data can be
read in the MDR.

64
FUNCTIONAL DESCRIPTION

Output signals are controlled by the OVR. The
degree of control depends on the current mode. In
Manual mode, all five signals are under user control.
In Compatible and EPP modes, only three signals
are available; the others are set by the state
machine.

IVR, ZDR, ODR, and SSR monitor the four input sig-
nals. These four registers have a common format.
The IVR always shows the values of the four input
pins. The ZDR and ODR allow the user to force inter-
rupts on specific signal transitions. Bits set in ZDR
generate an interrupt if the specified signal changes
from ‘1’ to ‘0’. Similarly, bits set in ODR cause an
interrupt if the specified signal changes from ‘0’ to
‘1”. Setting both bits generates interrupts on either
transition. The SSR shows the status of signal
changes according to ZDR and ODR. SSR indicates
which signal changed. (It is necessary for the user
to read IVR to determine how the signal changed.)
The signal change interrupt is enabled with the
SigCh bit (PCIER[4]).

I OCtO ber 1996

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

(TRANSMIT)

PFCR
TAG BIT

——== CIRRUS LOGIC

TAG TAG

TAG (64 BITS)

STATUS

DB[15:8] —»

STATUS

A A

DMABUFH

Y
Y

PFHR1
PFHR2

Y

DB[7:0]

DMABUFL

PARALLEL PORT

\i

FIFO (64 BYTES)

Figure 3-11. FIFO Data Path Functional Diagram — Transmit

3.12.8 Parallel Port Interface to the FIFO

The DMAdir bit indicates the current direction
(0 =in; 1 = out) of transfers between the FIFO and
the DMA logic. Due to a recent negotiation, this can
differ from the current parallel-port interface direc-
tion. The CPU must change the direction after it
receives an interrupt showing a direction change.
The FIFOlock bit (PACR[4]) stops the DMA pipeline,
useful in diagnostics.

3.12.9

All |IEEE STD 1284 protocol negotiations are initi-
ated by the master side. The role of the CL-CD1284
is to accept or reject the attempted negotiation. The
NER contains bits to individually enable specific
IEEE 1284 modes.

1284 Negotiations

The various IEEE 1284 modes require negotiations
on the parallel interface before they can be entered.
Until a successful negotiation sequence is com-
plete, the interface remains in Compatibility mode.
These negotiations occur in two stages; both stages
occur automatically after the device is commanded
to begin the negotiation procedure to a particular
mode. The first stage determines if the slave is IEEE
1284-compatible. Once determined, the interface

October 1996
DATA BOOK v3.0

continues the process to determine if the mode
requested is supported. The result of the requested
negotiation appears in the NSR.

For negotiations to occur, the slave must enable the
E1284 bit (PCR[6]). Data transfers require that the
ETxfr bit (PCR[5]) be set; negotiations can occur
without data transfer enabled.

Negotiation Status Register

After any IEEE-1284 negotiation or termination, the
current protocol status can be read in the NSR.
NegOK and NegFl (bits 7:6) indicate successful and
failed attempts. Invalid (bit 4) indicates that the
mode terminated from an invalid state. Termination
from valid states are reported as successful with
NegOK.

A 4-bit code is displayed in the lower portion of the
NSR to indicate the results of successful negotia-
tion. This 4-bit code also indicates the mode that the
interface was in when an invalid termination was
detected, as well as a failed negotiation. Interrupts
indicating a successful negotiation into a reverse
mode should prompt the CPU to load reverse data
into the FIFO.

L] 5

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

Special Command Register

The bits in the SCR cause actions on the parallel
port. SetPs and ClIrPs (bits 3:2) control data move-
ment into the CL-CD1284 from the remote master.
In Compatibility mode this function posts error sta-
tus to the remote. Errors can only be presented to
the master by the slave during the active BUSY
period. SetPs causes the CL-CD1284 to stop trans-
fers by asynchronously asserting the BUSY signal.
To protect against the possibility of data loss, one
more byte can be strobed into the CL-CD1284 after
BUSY goes active due to the setting of SetPs. When
the error status is delivered, CIrPs restores the par-
allel interface to the normal running state.

EPIrg sends an interrupt pulse in EPP mode. Setting
the RevRq bit indicates to the host parallel port that
data is available for reverse transfer in either Com-
patible or ECP mode. These operations are further
described in the relevant protocol sections.

3.12.10 Data Transfers

In Compatibility mode, incoming HstClk (STROBE™)
pulses activate PerBsy (BUSY), and the data on the
PD lines is held in latches. PerBsy protects the data
latches by signaling the master it is not ready for
more transfers. After the HstCIk pulse ends, a pulse
is sent on PerClk (ACK*) to acknowledge the receipt
of the data into the holding latches. After the data
moves from the latches to the FIFO, PerBsy goes
low to signal readiness for the next character.

All other data transfer modes require IEEE-1284
negotiations.

3.12.11 Compatible Mode Status

The IEEE 1284 specification requires that the three
Compatibility mode status lines (SELECT, FAULT™,
and PError) must not be asserted unless PerBsy
(BUSY) is high. PerBsy can only be activated in
response to a received character, and must remain
high until the status condition (for example, paper
out) changes.

To send these status signals to the master device,
set the SetPs bit (SCR[2]) and the appropriate bit in
the OVR for each of the status signals. The SetPs bit
activates PerBsy, which remains active until CIrPs
(SCRJ3]) is set. No data is lost in this operation.

3.13 1284 Parallel Protocol Support

3.13.1 Compatibility Mode

Compatibility mode provides backward compatibility
with Centronics and PC-compatible printer inter-
faces. When the host parallel port is in Compatibility
mode (with no data transfer in progress), the host
can initiate data transfers in Compatibility mode or
initiate negotiations to a new operating mode.

Only Busy-while-Strobe and Ack-in-Busy timing is
supported in Compatibility mode. Busy-after-
Strobe, Ack-after-Busy, and Ack-while-Busy timings
are not supported.

nStrobe | |

nAck I_I
BUSY | L

3.13.2 Reverse-Nibble and Reverse-Byte
Modes

These modes support reverse transfers only, from
slave to master. Reverse-Nibble mode is enabled
with NER[0]; Reverse-Byte mode is enabled with
NER([1]. Reverse-Nibble mode sends 4 bits at a time
over four of the peripheral status lines. With software
drivers the advantage of this scheme is that any uni-
directional PC parallel port can be used for bidirec-
tional data transfers. Reverse-Byte mode requires
bidirectional buffers on the PC hardware, but allows
substantially faster transfers because it moves one
byte at a time.

There is no mechanism in Compatibility mode for
the slave to indicate that data is available for reverse
transfers. The master must poll the slave by negoti-
ating into a reverse mode and examining the nDatAv
signal. During negotiation, RevRq (SCRI[0])
instructs the CL-CD1284 to post the availability of
data to the master through the nDatAv signal.

3.13.3 ID Request

An ID request is enabled with a combination of
NER[6] and one of four other transfer mode bits. ID

66 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

requests can be made in conjunction with ECP,
ECP/RLE, Reverse-Byte, and Reverse-Nibble
modes; there is no ID request function defined for
EPP mode. The CL-CD1284 can accept an ID
request in any mode where it is enabled to do trans-
fers. IDReq is set when an ID request is received in
any enabled mode.

3.13.4 ECP Mode

ECP mode allows bidirectional transfers and sup-
ports the RLE-compression scheme. The ability to
expand RLE data is required of all IEEE-1284, ECP-
compliant devices, but the ability to compress data
is optional. The CL-CD1284 handles both expan-
sion and compression in the data path section. The
parallel port simply passes the inverse of the com-
mand signal to/from the FIFO on the ninth tag bit in
the FIFO. ECP mode is enabled by NER[2]. RLE
mode enabling requires both NER bits 2 and 3.

The handshake is identical for both ECP and RLE
modes. The control signals, HstBsy and PerBsy (in
the forward and reverse directions, respectively),
indicate command and address options. If
HstBsy/PerBsy is low, the upper bit of the byte is
examined: ‘0’ indicates to interpret the lower 7 bits
as an address; ‘1’ indicates to use the lower 7 bits as
an RLE repeat count. This count shows the number
of times to consecutively repeat that the next data
character in the datastream.

The master device is responsible for determining
the direction of the transfer. The slave can request a
direction change, but the master actually changes
the direction. ECP mode always begins in the for-
ward direction, from master to slave. The CPU sets
the RevRq bit (SCR[0Q]) to request reverse transfers.
Once the master changes direction, RevRq is auto-
matically cleared and the DirCh interrupt status
appears in PCISR (if enabled in the PCIER).

The master device switches the direction of the
interface for forward transfers when the slave indi-
cates no more data is available.

3.13.5 EPP Mode

Data transfers use the DMA pipeline and the FIFO.
Address transfers are handled out-of-band, not in
the FIFO stream. When the slave receives an
address write command, it deposits the address into
the EAR and asserts an EPPAW interrupt request.

October 1996
DATA BOOK v3.0

When the slave receives a read address command,
the contents of the EAR are returned.

3.14 Protocol Timing

The |IEEE-1284 specification timing parameter Tp
specifies the minimum pulse width and the minimum
setup time as 500 ns. The SPR must be loaded with
the number of system clock ticks equivalent to
500 ns.

Table 3-8. System Clock Settings
CLK Freq. | Time/Tick .
(MHz) (ns) SPRValue | Tp Width
16 62.5 8 500
20 50 10 500
25 40 13 520

3.15 General-Purpose 1/0 Port

The CL-CD1284 provides an 8-bit general-purpose
port (GP[7:0]) to control or give status of external
functions. Each of the eight signals is individually
programmable for direction, so the port can be com-
prised of any humber of inputs and outputs. Each
port signal is implemented with a standard, bidirec-
tional HCMOS pad and is fully TTL compatible. The
port is controlled by two internal registers — GPDIR
and GPIO.

Each bit in the GPDIR sets the direction of the cor-
responding bit in the GPIO; ‘1’ sets the signal as out-
put; ‘0’ sets it as input. When writing to the GPIO,
only the bits programmed as outputs are affected by
the contents of the data bus. When reading the
GPIO, bits programmed as inputs reflect the true
state of the condition of the external pin; bits pro-
grammed as outputs reflect the state of the last
value written to the register and the current state of
the output pins.

At reset, all bits in the GPIO are cleared and the sig-
nals are programmed as inputs.

NOTE: Interrupts are not generated on signal changes
within the General-Purpose 1/0 port; the CPU
must periodically poll GPIO to detect changes
in external conditions. Therefore, if it is neces-
sary to detect changes, use the port with sig-
nals that change with low-duty cycles.

L] 7

FUNCTIONAL DESCRIPTION

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

3.16 Parallel Port Interface

The CL-CD1284 parallel port signals are imple-
mented with Level 2 characteristics — as defined in
the IEEE STD 1284 specification with the exception
of transient protection. The port can be directly con-
nected to the interface cable with the addition of a
few external components. The components consist
of passive pull-up resistors, series-impedance-
matching resistors, and clipping diodes. Additional
noise-filtering may be required in an end system.
Figure 3-12 on page 69 shows a typical interface
with the components listed above.

Some system designs may require buffers between
the CL-CD1284 and the cable. Systems that require
drive cables longer than the specified maximum of
10 m or those that need to protect the CL-CD1284
require inexpensive buffers between it and the
cable. The device provides two signal outputs,
PDBEN and EBDIR, that can to connect and control
buffers (such as, 74AS245 or equivalent). These
sighals do not allow direct control of the buffer. How-
ever, the addition of an XNOR gate provides both an
enable control signal and a signal to select the direc-
tion of the buffer. PDBEN and EBDIR are outputs
from the control state machine that indicate its cur-
rent state (see Figure 3-13 on page 70).

68 I OCtOber 1996

FUNCTIONAL DESCRIPTION

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

W5V o o | o o T 7
12kQ =12kQ | |
BIDIRECTIONAL
SIGNAL LINE /\/\/\/ o | |
20 O | |
p— 4
| | Tw
f 2z
OUTPUT | . =
SIGNAL LINE MA | | D
20 Q o
=0
| | ="
INPUT | |
SIGNAL LINE | * |
TRANSIENT A&
| PROTECTION |
CL-CD1284 1
L =]

CAUTION: Transient protection is not implemented inside the CL-CD1284 device, therefore
transient voltages may cause damage. Laboratory testing has shown that this type
of protection is not necessary under normal conditions. However, damage may
occur under harsh conditions or when subjected to unusual abuse. Also note, the
protection circuit shown here may cause a powered-up host to supply power to the
+5V (V) of the peripheral if it is not powered up. If this is a concern, then another
protection circuit must be designed.

Figure 3-12. Cable Connection

October 1996 | 69
DATA BOOK v3.0 FUNCTIONAL DESCRIPTION

i

CIRRUS LOGIC

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

——

-l

TO CL-CD1284

3

PDBEN ﬁ) >

EBDIR

Y

7
B A <—’—'—> TO CABLE
L _

74AS245

o]

DIR

Impedance matching and protection circuitry
(see Figure 3-12) as required for the 74AS245.

Figure 3-13. External Buffer Control

3.17 Hardware Configurations

The simplicity of the CPU interface to the
CL-CD1284 allows the device to be designed into
systems that employ popular microprocessors such
as the Intel 80x86 family (8086, 80286, 80386, and
so on), the Motorola® family (68000, 68010, 68020,
and so on), the National Semiconductor® 32x32
family (32CG16, 32332, 32532, 32GX32, and so
on), and the AMD® 29000.

3.17.1 Interfacing to an Intel®
Microprocessor-Based System

With very little extra logic, the CL-CD1284 can inter-
face to any system based on a processor in the Intel
80x86 family. Figure 3-14 shows a generalized view
of an I/O-mapped interface with an 80286-based
system. To provide the proper strobes and controls,
the IOR* and IOW* control strobes synthesize the
DS* and R/W* signals. DTACK* is used as an input
to wait-state-generation logic that holds the proces-
sor (if necessary) until the CL-CD1284 has com-
pleted the 1/O request.

70
FUNCTIONAL DESCRIPTION

3.17.2 Interfacing to a Motorola®

Microprocessor-Based System

Interfacing to a 68000 family device is relatively sim-
ple. Bus timing and the interface signal definitions
closely match those of the 68000 microprocessor,
which allows a direct connection in most cases. With
later versions (68020, 68030), some additional logic
is required to generate the DSACKO0* and DSACK1*
functions that replace the DTACK* on earlier
devices. The example in Figure 3-15 on page 72
shows a generalized interface to a 68020 device.
3.17.3 Interfacing to a National
Semiconductor® Microprocessor-
Based System

The connections between the CL-CD1284 and an
NS32000 (32G X320, 32CG16, and so on) embed-
ded controller are also relatively simple. As with the
Intel devices, cycles are controlled by the DS*, CS*,
and R/W* signals synthesized from the available
I/O-control signals. I/O-cycle extensions (wait
states) are generated by logic connected to the
DTACK* signal. All necessary controls are available
to prevent multiple read/write cycles in the
CL-CD1284 FIFOs when using memory-mapped
/0.

Figure 3-16 on page 73 depicts a simplified inter-
face example.

I OCtO ber 1996

DATA BOOK v3.0

CL-CD1284 ——

IEEE 1284-Compatible Parallel Interface Controller e —
——=— CIRRUS LOCGIC

80x86
SYSTEM CL-CD1284
»{ CS*
»| SVCACKR*
A[23:7] ADDRESS
ADDRESS »| DECODE »| svcackT
LOGIC
»| SVCACKM*
»1 SVCACKP*
A[6:0]
1 A[6:0]
DATA | 1 DB[15:0]
IOR*
Ds*
Iow*
»1 R/'W*
SVCREQR*
IRQ SVCREQT*
INPUTS
SVCREQM*
- SVCREQP*
DMA = DMAREQ*
CONTROL
»1 DMAACK*
WAIT-STATE
READY GENERATION - DTACK*
LOGIC -
Figure 3-14. Intel® 80x86 Family Interface
OCtOber 1996 __| 71

DATA BOOK v3.0 FUNCTIONAL DESCRIPTION

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

68020
SYSTEM CL-CD1284
AS* > cs*
ADDRESS - .
. . DECODE SVCACKR
LoGIC »| SVCACKT*
A[31:9]
ADDRESS »1 SYVCACKM*
»| SVCACKP*
A[8:2]
»| Al6:0]
DATA |« »| DB[15:0]
Ds* ; Ds*
R/W* |-= R/W*
SVCREQR*
- PRIORITY | .
Lzl | Encobing I SVCREQT
- SVCREQM*
SVCREQP*
DMA | DMAREQ*
CONTROL
»| DMAACK*
DSACK1* | TRANSFER
CONTROL |« DTACK*
DSACKO* |«
Figure 3-15. Motorola® 68020 Interface
72 __| OCtOber 1996

FUNCTIONAL DESCRIPTION DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

32000
SYSTEM CL-CD1284
DATA
D[15:0] |-egf————————pp-] TRANSCEIVER | gy .
L ATCH DB[15:0]
- SVCREQR*
INTERRUPT
INPUTS - SVCREQT*
- SVCREQM*
- SVCREQP*
A[6:0]
A[31:0] | ———-
IOINH* >
»| cs*
IODEC* |-
»1 SVCACKR*
Bwo | ADDRESS
- DECODE AND »1 SVCACKT*
BUS CYCLE
BW1 | CONTROL »| SVCACKM*
CONF* > »| SVCACKP*
BMT* > > Ds*
RDY* | - DTACK*
A
BCLK
DDIN* >c R/W*
DMA |« DMAREQ*
CONTROL
»| DMAACK*

Figure 3-16. National Semiconductor® 32000 Interface

October 1996 | 73
DATA BOOK v3.0 FUNCTIONAL DESCRIPTION

———.
———rR.
——r

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——== CIRRUS LOGIC

4. PROGRAMMING

4.1 Overview

As shown in the register summary tables in
Chapter 2, the CL-CD1284 local CPU interface is
made up of a large array of registers. These regis-
ters control all aspects of device behavior; some
affect overall chip operations, and others affect only
one channel. Fortunately, most of the registers are
only modified once, during initialization, and rarely
modified during normal operation. The purpose of
this chapter is to discuss these aspects, as well as
the methods of interacting with the CL-CD1284 for
channel-service needs.

4.2 |Initialization

To properly power-up a CL-CD1284, several proce-
dures must be completed. These include device ini-
tialization, programming global functions, and
setting channel-specific parameters. In most cases,
initialization routines are executed once; during the
overall system boot-up. The following sections dis-
cuss these steps in detail (see Figure 4-1 on
page 75 for a flow-chart step outline).

4.2.1 Device Reset

The procedures that perform chip reset are normally
executed after a power-up, system-wide reset. The
hardware reset control signal, RESET* causes the
CL-CD1284 to perform its own internal initialization.
If desired, the driver software can issue a full chip
reset before chip initialization begins. To accomplish
this, use the following steps (see Figure 4-1 for a
flow-chart step outline):

1. Wait for CCR (Channel Command register) to
contain 0x00.

The contents of the CCR must be ‘0’ before a com-
mand is issued. This is required to ensure that any
currently executing command has completed
before the new one is started. Since this is probably
the first command being written to the CL-CD1284
after power-on initialization, the CCR is likely to be
‘0°, but it is recommended to always check the CCR
before writing in a new command.

2. Setthe CAR (Channel Access register) to one of
the two serial channels (2 or 3).

This step is required when the parallel channel does
not respond to any value written to the CCR
address (this register does not exist in the parallel
channel).

3. Write hexadecimal 81 (x’81) to the Channel
Command Register (CCR).

This command causes the CL-CD1284 to perform
an all-channel and global reset. It causes the inter-
nal RISC processor to begin execution from its
power-up reset location. The results are the same
as if the RESET™ input is activated. All internal inter-
face registers are cleared, the FIFOs are flushed,
and all channels are disabled.

The full-chip reset command is a special-case CCR
operation. Normally, the commands issued to the
CCR affect only the channel selected by the CAR.
In this case, the setting of the CAR is insignificant,
but must be set to channel 2 or 3. Unlike other com-
mands issued to the CCR, the global reset com-
mand does not use the clearing of the CCR.
Instead, the GFRCR indicates that the command is
complete (see below).

4. Wait for the firmware revision code to be written
into the GFRCR.

Internal firmware uses this operation to flag comple-
tion of the reset procedure. After the reset is issued,
the GFRCR is one of the first registers cleared and
it is the last one set before normal runtime code
execution begins. The initialization routine must wait
for this register to become non-zero before it begins
any other programming of CL-CD1284 registers. If
the CPU is sufficiently fast, it could begin testing the
GFRCR before the MPU clears it. The assumption
could be made that the CL-CD1284 has completed
internal initialization when, in fact, it has not even
started. To avoid this error, the CPU should look for
the GFRCR to change to ‘0.’ It should then look to
the current revision code. Alternatively, the CPU
can clear the GFRCR just prior to issuing the global
reset command and then poll for the correct revision
code. This is useful in slow systems that cannot
guarantee that the CPU can check the register after
it is cleared or before it is loaded with the revision
code.

This procedure is also used as part of a diagnostic
test suite. The device completes internal initializa-
tion within 500 psec. A timer (software or hardware)
detects when the operation is not completed within
that time and cues if the device is functional.

74 I OCtOber 1996

PROGRAMMING

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

CLEAR
GFRCR

A

ISSUE RESET
COMMAND

A

* REVISION CODE FOR
REVISION E DEVICE = 25

FUTURE REVISIONS, IF
NECESSARY, INCREMENT
THIS BY ONE; FOR EXAMPLE
CONTINUE ’ ’
INIT PROCESS REVISION F WOULD BE 26.

Figure 4-1. Flow Diagram of CL-CD1284 Master Initialization Sequence

OCtOber 1996 L] 75

DATA BOOK v3.0 PROGRAMMING

———.
———rR.
——r

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——= CIRRUS LOGIC

4.2.2 Global Function Initialization

Once chip reset has been completed, the next step
is to set the Global Operating mode and timer pres-
cale. All other initialization occurs at the channel
level.

Set the Prescaler Period Register (PPR)

The PPR sets the master time ‘tick’ for the
CL-CD1284. It is a binary value that sets a constant
by which the system clock is divided (after a fixed
prescale of 512) to produce the internal clock for the
on-chip timers (This does not include baud rate gen-
erators). This clock is used for receiver FIFO time-
out generation and delay timing for the insert delay
command in the embedded transmit command set.
For example, to generate a timer clock of 1 ms, the
value is computed as:

(25MHZ

515)les = 48.828

Equation 4-1

The value 49 is loaded into the PPR. This value,
selects an approximate 1-kHz clock as the source
for the RTPR (Receiver Time-out Period registers)
of each channel. Those registers are loaded with an
appropriate value divisor that generate the desired
character time-out periods. This value, 49, is the rec-
ommended minimum value that is placed in the
PPR for a clock frequency of 25 MHz. Values that
generate a time period of less than 1 ms adversely
affect the performance of the MPU, and thus, overall
serial data performance.

4.2.3 Serial Channel Initialization

At this point, the basic operation of the CL-CD1284
serial channels are set up. The internal register
states are cleared and basic timer operations are
initialized. The next step is programming the operat-
ing modes of each channel. This includes setting the
values for the interrupt vectors, the receive and
transmit baud rates, nhumber of bits per character,
number of stop bits, parity, special characters, if any,
and so on. Each channel can have a completely
unique set of operating characteristics or they can
all be the same.

Serial channel initialization is application-depen-
dent. The operating modes of one channel have no
effect on the operation of others.

The following code, is a typical initialization
sequence for setting up a single serial channel:

9600 baud, send and receive

8 bits per character, 1 stop bit,No parity
Automatic In-Band (Xon/Xoff) flow control
Transparent flow control

Special character detect enabled

Eight character receive FIFO threshold
Receiver and transmitter enabled for
interrupt operation

Enable ISTRIP on incoming characters

76 I OCtOber 1996

PROGRAMMING

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

A clear way of showing this initialization sequence is by a ‘C’ program fragment; the code shown below, is

compatible with Borland® Turbo C™:

/* Init channel. Channel number is included in call. Register names and addresses are defined
in the header file (not shown). This routine does not include parallel channel initialization.

*/
init_channel (chan)

char chan

{
outportb (CAR, chan);
outportb (RTPR, 0x14);
outportb (TCOR, 0x01);
outportb (TBPR, 0x51);
outportb (RCOR, 0x01);
outportb (RBPR, 0x51);
outportb (COR1l, 0x03);
outportb (COR2, 0x40);
outportb (COR3, 0x38);
8 */
while (inportb (CCR)
7
outportb (CCR, 0x4E);
outportb (COR5, 0x80);
outportb (SRER, 0x14);
while (inportb (CCR)
7

outportb (CCR, 0xl1A);

4.3 Serial Poll Mode Examples

The CL-CD1284 provides a set of seven registers
dedicated to Poll-mode operation, described in
Chapter 3. This section shows one of many ways
that these registers are used to detect and service
requests from any of the channels receiver, trans-
mitter, or modem signal change functions.

The primary registers involved in polling are: SVRR,
RIR, TIR, MIR, and CAR. The supplementary regis-
ters are: RIVR, TIVR, and MIVR. Of the latter three
registers, only RIVR is actually used. RIVR provides
the service request status for ‘good’ data or excep-
tion data. The TIVR and MIVR provide redundant
information and are rarely used. Other registers
related to service requests (TDR, RDSR, MISR, and
so on) perform the same functions as in hardware-

October 1996
DATA BOOK v3.0

/* enable ISTRIP */

/* set channel number in CAR */

/* set channel time-out value (20ms) */

/* constants for 25 MHz clock - clock option*/
/*— baud rate period */

/* constants for 25 MHz clock - clock option*/
/*— baud rate period */

/* no parity, 1 stop bit, 8 bit chars */

/* auto. in-band flow control */

/* transp. flow-control, special char 1 & 2 detect, fifo thresh =

= 0)/* make sure that CCR is zero before issuing commands */

/* issue COR changed command for COR1l, 2, 3 */

/* enable receive and transmit interrupts */

= 0)/* make sure that CCR is zero before issuing commands */

/* issue receiver and transmitter enable command to CCR */

acknowledged service requests. The parallel chan-
nel uses a slightly different register manipulation
procedure and is shown separately. The top-level
polling routine is the same regardless of the type of
request serviced.

Once again, C code fragments describe the func-
tions. As with other coding examples, it is assumed
that register addresses are defined elsewhere, such
as in a header file. The routines cannot be consid-
ered complete. The routines cannot be considered
complete; some pieces are dependent on the sys-
tem software design and the code presented is only
an example. The pieces do, however, show methods
used to implement the poll mode service
request/service acknowledge sequence.

PROGRAMMING

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

4.3.1 Polling Routine Examples

4.3.1.1 Scanning Loop

/* Poll-mode code fragments routinely check for any servicing requests and branches to the
appropriate service routine. The code prioritizes service requests as receive, transmit,
modem and parallel, in that order. System design dictates the actual priorities required.
Note that the routine ignores the state of the DMA active bit. */

poll()
{
char status;

char rx_stat = tx_stat = md_stat = 0, par_stat = 0;

if (status = inportb(SVRR) & 0x0F) {/* Mask off DMA status */
switch (status) {
case 1: /* all values that include a receive request */
case 3:
case 5:
case 7:
case 0OxF:
rx_stat = service_rec();
return (rx_stat);
break;
case 2: /* all values that include transmit but not receive */
case 6:
case 0OxA:
case 0OxE:
tx_stat = service_txm();
return (tx_stat);
break;
case 4: /* modem service request */
case 0xC:
md_stat = service_mdm();

return (md_stat);

break;
case: 8: /* parallel port service request */
par_stat = service_par();

return (par_stat);
break;
default: /* can’t happen */

break;

}

Once the code above locates an active request posted in the SVRR, it calls the appropriate subroutine to
service the request. The service routines follow.

78 | October 1996
PROGRAMMING DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

4.3.1.2 Serial Receive Service

/* The receive service acknowledge cycle begins by reading the RIR. This register contains
the necessary information to switch the CL-CD1284 into the correct service acknowledge
context. The RIR is saved for use at the end of the routine and then copied into the CAR.
The act of copying the RIR into the CAR forces the context switch. The channel number
requesting service is extracted from the RIR. The RIVR register indicates whether the request
is for good data or exception data and is used to correctly handle the request. At the end
of the service, the upper two bits in the RIR are cleared causing the switch out of the
service acknowledge context. */

service_rec()
charserv_type, save_rir, save_car, channel, status, char;

int char_count, 1i;

save_rir = inportb(RIR);/* retrieve and save receive interrupt value */
channel = save_rir & 0x03;/* extract channel number from the RIR*/
save_car = inportb(CAR);/* save CAR for restore */

outportb (CAR, save_rir);/* switch CL-CD1284 to service ack. context */
serv_type = inportb(RIVR) & 0x07;/* read vector register; get type (good/exception)*/
switch (serv_type) {
case 3: /* good data service */
char_count = inportb (RDCR);/* get number of characters in FIFO */
for (i = 1; i <= char_count; i++) {/* - read that number of chars */

char = inportb(RDSR);/* read char from FIFO */

/* Code here would put the character in a buffer of some sort for each
* channel. That code would be dependent on system software design

* so it won’t be shown here. */

}
outportb (RIR, save_rir & 0x3f);/* terminate service ack. sequence */
outportb (CAR, save_car);/* restore original CAR* /
return(0);
break;

case 7: /* exception data service request */
status = inportb(RDSR);/* by definition, only one char; get status */
outportb (RIR, save_rir & 0x3f);/* terminate service ack. sequence */
outportb (CAR, save_car);/* restore original CAR */
return (status); /* just return the error type */

break;

OCtOber 1996 L] 79

DATA BOOK v3.0 PROGRAMMING

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

4.3.1.3 Serial Transmit Service

/* The transmit service acknowledge routine follows very nearly the same steps that the
receive service routine follows. This time, the TIR is used to force the switch to a transmit
service for the requesting channel. */

service_txm({)

{

char save_tir, save_car, channel;

int char_count, i;

save_tir = inportb(TIR);/* retrieve and save transmit interrupt value */
channel = save_tir & 0x03;/* extract channel number from the TIR*/
save_car = inportb(CAR);/* save CAR for restore */

outportb (CAR, save_tir);/* switch CL-CD1284 to service ack. context */

/* Buffer management code would set-up pointers to the next 12
* characters (maximum) to be sent on this channel. Again, buffer
* layout is system design dependent and won’t be shown here.

*/

for (i = 0; i1 < char_count; i++) {/* transmit FIFO can take 12 characters */

outportb (TDR, *next_char++);

/* it is assumed that char_count and next_char is set up by buffer code */

outportb(TIR, save_tir & 0x3f);/* terminate service ack. sequence */
outportb (CAR, save_car);/* restore original CAR */

return(0);

80 | October 1996
PROGRAMMING DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

———.
——rER.
—

4.3.1.4 Modem Service

——= CIRRUS LOGIC

/* Code to handle modem signal change service request can be simple or complex depending on
whether port control is handled directly in the service routine or simply noted with status
returned. The following routine services the request and returns the status of which signals
changed with the channel number OR’ed into the least-significant two bits; the main driver

software must perform the necessary functions.

As with the receive and transmit routines,

the Interrupt register, this time the MIR, is used to force the CL-CD1284 into the service

context. */

service_mdm{)
{

char save_mir, channel,

save_car, mdm_status;

save _mir = inportb(MIR);/* retrieve and save modem interrupt value */

channel = save_mir & 0x03;/* extract channel number from the MIR*/

save_car = inportb(CAR);/* save CAR for restore */

outportb (CAR,
mdm_status =
outportb (MIR,

outportb (CAR,

save_mir);/* switch CL-CD1284 to service ack.

inportb(MISR); /* get status of which modem signals changed */

save_mir & 0x3f)/* terminate the service ack.

save_car);/* restore CAR */

context */

sequence */

return (mdm_status | channel);

4.4 Hardware-Activated Service
Examples

In nearly all respects, the way that the CPU inter-
acts with the CL-CD1284 during hardware-
activated service acknowledge is the same as
software-activated methods. The main difference
is that the SVCACK™ input signals perform the con-
text switch automatically, relieving that duty from
the CPU. The result is the same: the CAR is set to
point to the correct channel and the device is
placed in the proper internal mode to service the
request.

When the SVCACK™* input is activated, a read
cycle is performed. The CL-CD1284 places the
contents of the appropriate Interrupt Vector regis-
ter (RIVR, TIVR, MIVR) of the channel requesting
service on the data bus. The CPU uses the infor-
mation provided to determine the type of service
and the ID number of the device being accessed in
the case ofdaisy-chained multiple-CL-CD1284s.

At the end of the service routine, the CPU writes a
dummy value to the EOSRR. This causes the
switch out of the service acknowledge context and

October 1996
DATA BOOK v3.0

restores the environment to what it was before the
service began. Again, the parallel port service is
slightly different and it is shown separately.

The following code fragments show the differences
between this type of service acknowledge and the
types shown above for the software-activated con-
text switch. Only the beginning and ending steps
are shown; the code between is very similar to the
previous examples. These routines can be exe-
cuted as the result of a hardware interrupt or by
software polling as in the previous examples. For
the purpose of this discussion, the method of arriv-
ing at the proper service routine is not important.

PROGRAMMING

e CL-CD1284

——

IEEE 1284-Compatible Parallel Interface Controller
CIRRUS LOGIC

4.4.1 Serial Receive Service

82

/* The receive service acknowledge cycle begins by executing a service acknowledge cycle,
which activates the SVCACKR* input. The data obtained as a result of this ‘read’ cycle is
the contents of the RIVR register of the channel making the service request. The service
routine decodes the vector in the least significant three bits to determine if the data is
‘good’ or ‘bad’ (exception). The context switch is done automatically when the SVCACKR* signal
is activated and the CAR does not need to be loaded. The routine reads the RICR to determine
the requesting channel number. If this is a multiple-CL-CD1284 system using daisy-chaining,
the routine extracts the chip ID from the upper five bits of the RIVR. */

service_rec()
{

char serv_type, vector, channel, status, char;

int char_count, i;

vector = inportb(SVCACKR);/* gen. ack and get vector (read LIVR) */
channel = inportb(RICR) >> 2;/* extract channel number from the RICR*/
serv_type = vector & 0x07;/* mask RIVR to get type (good/exception)*/
switch (serv_type) {
case 3: /* good data service */
char_count = inportb (RDCR);/* get number of characters in FIFO */
for (i = 1; i <= char_count; i++) {/* - read that number of chars */

char = inportb(RDSR);/* read char from FIFO */

/* Code here would put the character in a buffer of some sort for each
* channel. That code would be dependent on system software design
* so it won’t be shown here; this code just shows how to manipulate the

CL-CD1284 registers to implement the poll mode service acknowledge. */

}
break;
case 7: /* exception data service request */

status = inportb(RDSR);/* by definition, only one char; get status */

break;
}

outportb (EOSRR, 0x00); /* write dummy value to EOSRR to terminate */

| October 1996
PROGRAMMING DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

4.4.2 Serial Transmit Service

/* The transmit service acknowledge routine follows very nearly the same steps that the
receive service routine follows. The SVCACKT* input is activated to start the service cycle,
reading the contents of the TIVR, and the TICR is read to get the channel number. */

service_txm({)
char vector, channel;

int char_count, i;

vector = inportb(SVCACKT);/* retrieve and save transmit interrupt value */

channel = inportb(TICR) >> 2;/* extract channel number from the RICR*/

/* Buffer management code would set-up pointers to the next 12
* characters (maximum) to be sent on this channel. Again, buffer

* layout is system design dependent and won’t be shown here.

*/

for (i = 0; i1 < char_count; i++) {/* transmit FIFO can take 12 characters */

outportb (TDR, *next_char++);

/* it is assumed that char_count and next_char is set up by buffer code */

}
outportb (EOSRR, 0x00); /* write dummy value to EOSRR to terminate */

4.4.3 Modem Service

/* The following routine services the modem change service request. Context switch is set up
by activating the SVCACKM* input, reading the MIVR. The routine reads the MISR register to

determine which modem signal (s) changed. Channel status is an externally defined variable
that this routine updates. */

service_mdm{)

{

char vector, channel;

vector = inportb(SVCACKM);/* retrieve and save transmit interrupt value */

channel = inportb (MICR) >> 2;/* extract channel number from the RICR*/
mdm_status[channel] = inportb (MISR);/* get status of which modem signals changed */
outportb (EOSRR, 0x00); /* write dummy value to EOSRR to terminate */

OCtO ber 1996 L] 3

DATA BOOK v3.0 PROGRAMMING

e CL-CD1284

e — IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC

4.5 Parallel Channel Service Routines interrupt generation services. All other channel
operations are completely separate. Since the

In most respects, the parallel channel functions in - MPU is involved in the interrupt structure, aspects
the same way as the two serial channels, but the o7 jts behavior must be taken into account.

Poll mode operation is different. Its functions can
be performed in a couple of ways. The MPU is only
involved with the parallel channel in performing

NOTE: It may not be necessary to poll the PFSR if DMA
requests are enabled. With DMA requests enabled,
the DMAREQ bit (SVRR[7]) can be polled to deter-

HARDWARE RESET mine when a FIFO threshold is exceeded. If DMA
requests are disabled, the PFSR must be polled to
¥ determine when to move data to and from the FIFO.
If DMA requests are enabled, data must be read
SOFTWARE RESET through the DMABUF register; this requires a 16-bit
data bus.
Y
INITIALIZE DEVICE . ‘

POLL DEVICE AGAIN | POLL DEVICE AGAIN -~
Y .’
DMAREQ .°
SET TEST .
-—|SERVICE DMA REQUEST SVRR <00, X - 0OH
#
SRP SET FF FULL (receiving)
OR
Pipeline SET TEN EMPTY (transmiting)
PFSR
HR DATA
PPort SET OR
SiaCh HRTAG
DirCh ig
-«—| CHANGE DIRECTION S DataErr
o
- RETURN ID TO HOST 0\0“ NegCh SET
<« RESET PRINTER
Y
SERVICE NEGOTIATION SERVICE SERVICE SERVICE SERVICE
CHANGE SIGNAL ERROR ||APPROPRIATE||™ FiFo
CHANGE | |INTERRUPT|| HoOLDING
INTERRUPT REGISTER
Y Y Y Y
Figure 4-2. Polling Flow Chart
84] OCtOber 1996

PROGRAMMING DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

———.
——rER.
—

——= CIRRUS LOGIC

4.5.1 Software-Activated Service Examples

(Poll)

The scanning loop for Poll-mode operation is
shown in Section 4.3. Software activation of the
context switch is performed in the same manner,
but termination of the service is done in two ways.
The first method is similar to the serial channel
method and the second method can work well in
certain systems, but requires extra steps.

service_par()
{

char save_pir, save_car, livr_val;

The first method follows the same basic procedure
as the serial channels, but the termination
sequence requires only that the upper bit (PPlIreq)
of the PIR is cleared by the CPU. Since Fair Share
is not implemented on the parallel channel, there is
no ‘unfair’ bit in the PIR; the ‘busy’ status is main-
tained by the MPU differently and is not maintained
in the PIR.

The routine below shows one way of implementing
the poll-mode service activation using the first
method.

save_pir = inportb(PIR);/* retrieve and save parallel interrupt value */

save_car = inportb(CAR);/* save CAR for restore */

outportb (CAR, save_pir);/* switch CL-CD1284 to service ack. context */

livr_val = inportb(LIVR) & 0x07;
switch (livr_vwval) {
case 4:
service_par_chan () ;
break;
case 5:
service_pipeline();
break;
case 6:
service_par_chan () ;
service_pipeline();
break;
default:
break;

}

outportb(PIR, save_pir & 0x00);/* terminate service ack.

/* just the parallel channel state-machine request is active */

/* just the data path pipeline request is active */

/* both requests are active */

sequence by clearing bit 7 */

outportb (CAR, save_car);/* restore original CAR*/

return(0);

October 1996
DATA BOOK v3.0

PROGRAMMING

i

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——== CIRRUS LOGIC

It is not necessary for the CPU on the parallel
channel to actually copy the contents of the PIR
into the CAR. Since it is known that the parallel
channel is always channel 0, the CPU may switch
the context by simply writing a x’00 into the CAR
after first saving the previous state of the CAR, if
desired. At the end of the service, the interrupt
context can be returned by toggling the IntEn bit in

service_par()
{

char save_car, livr_val;

the PFCR within the data pipeline. Hardware in
that block of logic detects the toggle operation and
clears the PPireq bit itself. The CPU can restore
the CAR, if desired, and exit the routine. Just as it
would in the other poll-mode case, once the MPU
has detected the clearing of the parallel interrupt
source bits (PPort and Pipeline) and the PPlreq bit.
It cleans up the PIR and LIVR.

save_car = inportb(CAR);/* save CAR for restore (if desired) */

outportb (CAR, 0x00);

/* switch CL-CD1284 to service ack. context */

livr_val = inportb(LIVR) & 0x07;/* get the vector (Not from the PIVR) */

switch (livr_vwval) {

case 4:
service_par_chan () ;
break;

case 5:
service_pipeline();
break;

case 6:
service_par_chan () ;
service_pipeline();
break;

default:
break;

}

/* just the parallel channel state-machine request is active */

/* just the data path pipeline request is active */

/* both requests are active */

outportb (PFCR, inportb(PFCR & OxEF);/* clear IntEn (first step of ‘toggle’ operation */

outportb (PFCR, inportb(PFCR | 0x10);/* set IntEn (second step of ‘toggle’ operation */

outportb (CAR, save_car);/* restore original CAR (if desired) */

return(0);

86 I OCtOber 1996

PROGRAMMING

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

———.
——rER.
—

4.5.2 Hardware-Activated Service Examples

Hardware-activated context switching is nearly iden-
tical to the serial case; during the service acknowl-
edge cycle, the SVCACKP* input is active and the
CL-CD1284 drives the parallel channel vector on
the data bus. At the same time, the MPU pushes the
current state of the device on the context stack and
sets the context for channel 0. The vector comes
from the PIVR, which is a reflection of the LIVR. The
vector supplied indicates the source of the request
in the IT2-ITO bits. There is no equivalent to the
Interrupting Channel register (TICR, RICR, MICR)
since, by definition, the interrupt is from channel 0.
Once the context switch occurs, the CPU can pro-
ceed to service the source of the request.

4.6 Baud Rate Derivation

——= CIRRUS LOGIC

The CPU must decode the ITx bits to determine the
blocks that require service. Each section of the par-
allel channel has an Interrupt Status register to indi-
cate what conditions, if any, in that block require
service. These are the PFSR in the data path and
the PCISR in the channel control state machine.

At the end of the service routine, the CPU must per-
form the same dummy write operation to the
EOSRR as for the serial channels. This informs the
device that the parallel service is complete. The
write operation to the EOSRR generates a high-pri-
ority interrupt to the MPU to cause it to pop the con-
text stack and restores the device environment to
what it was at the start of the interrupt service.

/* This is a simple code example which shows a way to derive the proper values for the
RCOR/TCOR and RBPR/TBPR register pairs for any baud rate. Routine is called with the desired
baud rate and master clock; global variables cor and bpr are set by the routine. */

int brp, cor;

compute_baud(clock, baud rate)

double clock;
double baud_rate;
{
double cor_values[] = {8.0, 32.0, 128.0, 512.0, 2048.0, -1.0};
inti;
for (i = 0; cor_values[i] !'= -1; i++)
{
brp = (int) (((clock / baud_rate) / cor_values[i]) + 0.5);
if (brp < OxFF)
{
cor = 1i;
bpr = brp;
break;
}
}
return(0);
}
October 1996 ___|] 87

DATA BOOK v3.0

PROGRAMMING

———.
———rR.
——r

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

——= CIRRUS LOGIC

4.7 Baud Rate Tables

Table 4-1 through Table 4-5 indicate the values to
be loaded into the RCOR/RBPR and TCOR/TBPR
to set the designated baud rate when using five
standard frequency crystals. Table 4-1 uses a 25-
MHz frequency; Table 4-2 uses a 20.2752-MHz
frequency, which yields near-perfect bit rates.
Table 4-3 uses a 20-MHz frequency and shows
error rates that are larger although still well within
the limits set by the various standards covering
asynchronous communications. Table 4-4 also
uses another standard communications base fre-

quency (18.432 MHz) that yields divisors with
nearly zero errors overall. However, since this fre-
quency is below 20 MHz, performance at the
higher baud rates (76.8K and above) may be
slightly lower and rates above 76.8K are not rec-
ommended. The Table 4-5 shows divisors for the
lowest recommended operating frequency, 16
MHz.

NOTE: It is not necessary that both the receiver and
transmitter of a channel be programmed to the
same baud rate; the CL-CD1284 can send and
receive at different rates on the same channel.

Table 4-1. Baud Rate Constants — CLK = 25 MHz

Baud Rate R/TCOR? R/TBPR (Hex) Error
110 4 6F 0.02%
150 4 51 0.47%
300 3 A3 0.15%
600 3 51 0.47%
1200 2 A3 0.15%
2400 2 51 0.47%
4800 1 A3 0.15%
9600 1 51 0.47%
19200 0 A3 0.15%
38400 0 51 0.47%
56000 0 38 0.35%
57600 0 36 0.47%
64000 0 31 0.35%
76800 0 29 0.76%
115200 0 1B 0.47%
128000 0 18 1.70%
150000 0 15 0.80%

2 In this and the following tables, R/T is used as a register abbreviation indicating

Receive/Transmit, followed by the register acronym.

88 I OCtOber 1996

PROGRAMMING

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Table 4-2. Baud Rate Constants — CLK =20.2752 MHz
Baud Rate | RCORTCOR RB'?SS(')3PR Error
110 4 5A 0.00%
150 4 42 0.00%
300 3 84 0.00%
600 3 42 0.00%
1200 2 84 0.00%
2400 2 42 0.00%
4800 1 84 0.00%
9600 1 42 0.00%
19200 0 84 0.00%
38400 0 42 0.00%
56000 0 2D 0.57%
57600 0 2C 0.00%
64000 0 28 1.00%
76800 0 21 0.00%
115200 0 16 (Not recomm%r?gza at this CLK)
128000 0 14 (Not recommggéza at this CLK)
150000 0 " (Not recomm%r?gza at this CLK)
Table 4-3. Baud Rate Constants — CLK =20.00 MHz
Baud Rate RC?SS(?OR RBPR/TBPR Error
110 4 59 0.25%
150 4 41 0.16%
300 3 82 0.16%
600 3 41 0.16%
1200 2 82 0.16%
2400 2 441 0.16%
4800 1 82 0.16%
OCtOber 1996 __|]

DATA BOOK v3.0

PROGRAMMING

89

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

Table 4-3. Baud Rate Constants — CLK =20.00 MHz (cont.)

Baud Rate RC?SS(?OR RBPR/TBPR Error
9600 1 41 0.16%
19200 0 82 0.16%
38400 0 41 0.16%
56000 0 2D 0.79%
57600 0 2B 0.94%
64000 0 27 0.16%
76800 0 21 1.36%
115200 0 16 (Not recommgr?gza at this CLK)
128000 0 14 (Not recomm%r?gza at this CLK)

Table 4-4. Baud Rate Constants — CLK =18.432 MHz

Baud Rate | RCOR/TCOR RB'?SS(')3PR Error
110 4 52 0.22%
150 3 FO 0.00%
300 3 78 0.00%
600 2 FO 0.00%

1200 2 78 0.00%
1800 2 50 0.00%
2400 1 FO 0.00%
4800 1 78 0.00%
9600 0 FO 0.00%
19200 0 78 0.00%
38400 0 3C 0.00%
56000 0 29 0.35%
57600 0 28 0.00%
64000 0 24 0.00%
76800 0 1E 0.00%

PROGRAMMING DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Table 4-4. Baud Rate Constants — CLK = 18.432 MHz (cont.)

BaudRate | RCORTCOR | RBTR/TBPR Error
(Hex)
0.00%
115200 0 14 (Not recommended at this CLK)
0.00%
128000 0 12 (Not recommended at this CLK)

Table 4-5. Baud Rate Constants — CLK =16 MHz

Baud Rate RC?SQ(?OR RBPR/TBPR Error
110 4 47 0.03%
150 3 Do 0.16%
300 3 68 0.16%
600 2 Do 0.16%
1200 2 68 0.16%
1800 2 45 0.16%
2400 1 Do 0.16%
4800 1 68 0.16%
9600 0 Do 0.16%
19200 0 68 0.16%
38400 0 34 0.16%
56000 0 24 0.80%
57600 0 23 0.80%
64000 0 1F 0.80%
0.16%

76800 0 1A (Not recommended at this CLK)
2.080%

115200 0 11 (Not recommended at this CLK)

October 1996 |
DATA BOOK v3.0 PROGRAMMING

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

4.8 ASCII Code Tables

4.8.1 Hexadecimal — Character

00 | NUL | ot SOH 02 STX 03 ETX 04 EOT 05 ENQ | 06 | ACK | 07 BEL
08 BS 09 HT 0A NL 0B VT 0C NP oD CR OE SO OF Sl
10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 | SYN 17 | ETB
18 | CAN | 19 EM 1A | SUB | 1B [ESC 1C FS 1D GS 1E RS 1F us
20 SP 21 ! 22 “ 23 # 24 $ 25 % 26 & 27)
28 (29) 2A * 2B + 2C , 2D - 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F o]
50 P 51 Q 52 R 53 S 54 T 55 U 56 \ 57 w
58 X 59 Y 5A z 5B [5C \ 5D 1 5E A 5F _
60 ~ 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C I 6D m 6E n 6F 0
70 p 71 q 72 r 73 s 74 t 75 u 76 \Y 77 w
78 X 79 y 7A z 7B { 7C | 7D } 7E _ 7F | DEL

4.8.2 Decimal — Character

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL

8 BS 9 HT 10 NL 11 VT 12 13 13 CR 14 SO 15 Sl
16 DLE 17 DC1 18 DC2 19 DC3 | 20 DC4 | 21 NAK 22 | SYN 23 ETB
24 | CAN | 25 EM 26 | SUB | 27 | ESC | 28 FS 29 GS 30 RS 31 us
32 SP 33 ! 34 “ 35 # 36 $ 37 % 38 & 39)
40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 | 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 \ 87 w
88 X 89 Y 90 z 91 [92 \ 93] 94 A 95 _
96 ~ 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 I 109 m 110 n 111 0
112 p 113 q 114 r 115 s 116 t 117 u 118 \Y 119 w
120 X 121 y 122 z 123 { 124 | 125 } 126 _ 127 | DEL

92 C___|] OCtOber 1996

PROGRAMMING DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5. DETAILED REGISTER DESCRIPTIONS

This section presents a complete and detailed description of each register. Registers have two formats:
1) full eight bits, where the entire content defines a single function; 2) the register is a collection of bits,
grouped singly or in multiples, defining a function. In the second format, the descriptions divide the reg-
ister into its component parts and describe the bits individually. The order of register presentation corre-
sponds to the register summary tables in Chapter 2.

5.1 Global Registers

5.1.1 Channel Access Register

Register Name: CAR 8-Bit Hex Address: 68
Register Description: Channel Access Default Value: XX
Access: Read/Write

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

Poll Poll Poll Poll Poll 0 C1 co

The CAR provides access to individual channels within the CL-CD1284. The least-significant two bits of
the register select one of the four channels. Before any operation that affects a channel, this register must
be loaded so that channel registers are available to the host. Bit 2 must always be ‘0’. Bits 7:3 are not
used except during Poll-mode operation (see Section 4.3 for details).

C1 Cco Channel Selected
0 0 Channel 0
0 1 Not used
1 0 Channel 2
1 1 Channel 3

5.1.2 Global Firmware Revision Code Register

Register Name: GFRCR 8-Bit Hex Address: 4F
Register Description: Global Firmware Revision Code Default Value: 25
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bit0
Firmware Revision Code

The GFRCR serves two purposes in the CL-CD1284. First, it displays the revision number of the firmware
in the chip. When a revision to the CL-CD1284 is required, the revision number of the firmware is incre-
mented by one. The revision code is 24 (hex) for the Revision D device, and 25 (hex) for the Revision E
device.

Secondly, a system programmer can use this register to indicate when the internal processor completes
reset procedures. This is done by a power-on reset (by the RESET* input) or a software global reset (by
the reset command in the CCR). Immediately after the reset operation begins, the internal CPU clears
the register. When complete, and the CL-CD1284 is ready to accept host accesses, the register is loaded
with the revision code.

October 1996 | 93
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——
CIRRUS LOGIC
5.1.3 General-Purpose I/O Direction Register
Register Name: GPDIR 8-Bit Hex Address: 71
Register Description: General-Purpose I/0O Direction Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit 3 Bit2 Bit 1 Bito
Dir 7 Dir 6 Dir 5 Dir 4 Dir 3 Dir 2 Dir 1 Dir 0

5.1.4 General-Purpose I/O Register

Register Name: GPIO 8-Bit Hex Address: 70
Register Description: General-Purpose 1/0 Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

This pair of registers enables access and control of the general-purpose I/O port. The general-purpose
I/O port provides a byte-wide general purpose set of signals that are individually direction programmable.

The GPIO register accesses the data port on pins 53—60 (G[7:0]) with Data 0 accessing GP[0], etc. The
corresponding bit in the GPDIR register controls the direction of the associated signal; ‘1’ programs the
signal as output and ‘0’ programs it as input. When writing to the GPIO register, ‘1’s and ‘0’s are reflected
in their true states on the pins that are programmed as outputs. When reading from the GPIO register,
bits programmed as inputs reflect the true state of the signal condition on those bits; bits programmed as
output reflect the previously set state.

9 I OCtO ber 1996

DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.1.5 Modem Interrupting Channel Register

Register Name: MICR 8-Bit Hex Address: 46
Register Description: Modem Interrupting Channel Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X C1 co X X

The MICR, RISR, and TICR indicate the serial channel number that is currently being serviced by an
active acknowledge cycle (whether polled or interrupt). Bits 3:2 (C1 and CO0) are only valid during the con-
text of a channel service routine; at any other time, their state is undefined. Host system software uses
these registers to determine the number of the channel that originated the particular service request
(receive, transmit, or modem). The format of these registers is the same and the description is valid for
each. The upper four bits and lower two bits are user-defined and can be set to any value desired. When
the register is read, these bits are presented as defined by the user; C1 and CO are set by the CL-CD1284
to reflect the proper channel number.

Bit Description
74 User defined.
3:2 Channel X: When these bits are set to the values shown below, the channel number is defined.
C1 Co Channel Number
0 0 Channel 0
0 1 Undefined
1 0 Channel 2
1 1 Channel 3
1:0 User defined.
OCtOber 1996 | 95

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

5.1.6 Modem Interrupt Register

Register Name: MIR
Register Description: Modem Interrupt
Access: Read/Write

8-Bit Hex Address: 69
Default Value: 08

Bit7

Bité

Bit5

Bit4

Bit3

Bit2

Bit 1

Bito

Mdlreq

Mdbusy

Mdunfair

0

1

0

ch[1]

chio]

The MIR, PIR, and TIR are used during Poll-mode operation of the CL-CD1284. All three registers provide
the same type of information for each of the three service requests. The functions of RxIreq, TxIreq, and
MdIreq have identical meanings, as do the group Rxbusy, Txbusy, and Mdbusy and the group Rxunfair,
Txunfair, and Mdunfair. The least-significant two bits indicate the number of the channel requesting ser-
vice. Bits 4:2 are used internally by the CL-CD1284 to set the context of the service-acknowledge cycle.
See the description of Poll-mode operations in Chapter 3 for complete details.

Bit

Description

7

Rxlreq, Txlreq, and Mdlreq: These bits are set by the internal processor when service is required by a chan-
nel. The bits are a direct reflection of the inverse state of the SVCREQ* pins and they are the active-high out-
put of the latch that drives the SVCREQ* pins. The bits can be scanned by the host to detect an active service
request. These bits are cleared by the internal processor at the beginning of the service-acknowledge cycle
(hardware-service acknowledge) or by the host software when the Poll-mode cycle is terminated.

Rxbusy, Txbusy, and Mdbusy: These bits are set by the internal processor and they remain set until the end of
the service-acknowledge cycle is indicated by either a write to the EOSRR (hardware-service acknowledge),
or cleared by the host software when the Poll-mode cycle is terminated. These bits signal the current state of
the service-acknowledge cycle. When cleared, the internal processor knows that it can assert another service
request of this type.

Rxunfair, Txunfair, and Mdunfair: These bits are used by the internal processor to implement the Fair Share
service request function. If this bit is set, the CL-CD1284 does not assert another service request of this type
until the bit is cleared by a pulse on the external SVCACK* pin. The unfair bits are forced to ‘0", disabling the
Fair Share mechanism, by setting the Unfair bit in the PACR. These bits are not used in Poll mode.

4:2

These bits define the context of the current service-acknowledge cycle during Poll mode and are fixed by
hardware within the CL-CD1284. These bits must be replicated exactly when the register is copied to the CAR
and is activating a service-acknowledge cycle. See the discussion of Poll-mode operation in Section 3.3 for a
more detailed description.

1:0

ch[1:0]: These two bits encode the channel number of the requesting channel. During Poll-mode operation
when the RIR, TIR, and MIR are copied into the CAR to start the service routine, ch[1:0] set the channel num-
ber that is serviced.

9 I OCtO ber 1996

DETAILED REGISTER DESCRIPTIONS

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.1.7 Parallel Interrupt Register

Register Name: PIR 8-Bit Hex Address: 61
Register Description: Parallel Interrupt Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
PPIreq PPort Pipeline 0 0 0 0 0

The PIR is a modified version of the other interrupt registers (RIR, TIR, and MIR) that incorporates the
unique differences between interrupt structures of the two major blocks of the CL-CD1284. The Ireq bit
(bit 7) has the identical function as the Ireq bits in the TIR, RIR, and MIR.

Bit Description

7 PPIreq: The internal processor sets this bit to generate the external service request output. It is a direct
reflection of the inverse state of the SVCREQP* pin; it is the active-high output of the latch that drives
SVCREQP*. This bit can be scanned by the host to detect an active service request. The bit is cleared by the
internal logic at the beginning of the hardware service-acknowledge cycle or by toggling the IntEn bit
(PFCR[4]).

6:5 PPort and Pipeline: These two bits indicate which of the two functional blocks of the parallel port are
requesting service. PPort set indicates that the parallel channel control state machine is the cause of the
request; Pipeline set indicates that the data pipeline is requesting service. Both bits set indicates that both
blocks are requesting service simultaneously.

4:0 Reserved: These bits always return ‘0’ when read by the host. Do not modify.

5.1.8 Prescaler Period Register

Register Name: PPR 8-Bit Hex Address: TE
Register Description: Prescaler Period Default Value: FF
Access: Read/Write
Bit7 | Bité6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito
8-bit Binary Value

The PPR sets the divisor that generates the time period for CL-CD1284 timer operations. It can be set to
any value between 0 and 255 (x’FF). The PPR is clocked by the system clock prescaled (divided) by 512.

NOTE: This value does not have any effect on baud rate generation.

The time period generated by this register drives the receive timer and activates the ‘no new data’ and
‘receive data timeout’ interrupts. See the receiver operation discussion in Chapter 3 for a description of
receiver timer functions.

OCtO ber 1996 L] 7

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

5.1.9 Receive Interrupting Channel Register

8-Bit Hex Address: 44
Default Value: 00

Register Name: RICR
Register Description: Receive Interrupting Channel
Access: Read/Write

Bit7

Bité

Bit5

Bit4

Bit3

Bit2

Bit 1

Bito

X

X

X

X

C1

co

X

X

See Section 5.1.5 on page 95, the description of the MICR, for details on the RICR.

5.1.10 Receive Interrupt Register

8-Bit Hex Address: 6B
Default Value: 18

Register Name: RIR
Register Description: Receive Interrupt
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
RxlIreq Rxbusy Rxunfair 1 1 0 ch[1] ch[0]

See Section 5.1.6 on page 96, the description of the MIR, for details on the RIR.

5.1.11 Service Request Register

8-Bit Hex Address: 67
Default Value: 00

Register Name: SVRR
Register Description: Service Request
Access: Read only

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
DMAREQ ExtM ExtT ExtR SRP SRM SRT SRR

The SVRR reflects the inverse of the state of the service request pins (SVCREQR*, SVCREQT*, and
SVCREQM?®*). Its primary use is in polled systems, and it allows system software to determine what, if any,
service requests are pending.

Bit Description
7 DMA Request Status:‘1’ indicates request pending.
6 ExtM: Reflects the current state of the external SVCREQM* signal.
5 ExtT: Reflects the current state of the external SVCREQT* signal.
4 ExtR: Reflects the current state of the external SVCREQR* signal.
3 Service Request Parallel: ‘1’ indicates request pending.
2 Service Request Modem: 1’ indicates request pending.
1 Service Request Transmit: ‘1’ indicates request pending.
0 Service Request Receive: ‘1’ indicates request pending.

98 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

|

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller e —
——== CIRRUS LOGIC

5.1.12 Transmit Interrupting Channel Register

Register Name: TICR 8-Bit Hex Address: 45

Register Description: Transmit Interrupting Channel Default Value: 00

Access: Read/Write

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit 0
X X X X C1 co X X

5.1.13 Transmit Interrupt Register

See Section 5.1.5 on page 95, the description of the MICR, for details on the TICR.

8-Bit Hex Address: 6A
Default Value: 10

Register Name: TIR

Register Description: Transmit Interrupt
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
Txlreq Txbusy Txunfair 1 0 0 ch[1] ch[0]

October 1996
DATA BOOK v3.0

See Section 5.1.6 on page 96, the description of the MIR, for details on the TIR.

DETAILED REGISTER DESCRIPTIONS

99

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

5.2 Virtual Registers
The CL-CD1284 has two operational contexts:

o Normal: Allows host access to most registers and any channel
e Service-acknowledge: Allows host access to some registers specific to the channel requesting service.

This special set of registers is called Virtual because they are only available to host access and valid dur-
ing this service-acknowledge context. At all other times, their contents are undefined and must not be writ-
ten to by host software.

The use of Virtual registers and context switching allows the CL-CD1284 to maintain all channel-specific
information. To access the registers pertinent to the channel being serviced, it is not necessary for the
host to make any changes to the device registers.

The service-acknowledge context can be entered in two ways: 1) by activating one of the SVCACK* input
pins (hardware-activated); 2) by the host software when the contents of any one of TIR, RIR, MIR, or PIR
are copied into the CAR during a Poll-mode acknowledge cycle. Chapter 3 discusses the differences
between these two modes.

Virtual Registers — Serial

5.2.1 Modem Interrupt Status Register

Register Name: MISR 8-Bit Hex Address: 4C
Register Description: Modem Interrupt Status Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
DSRch CTSch Rlch CDch 0 0 0 0

The MISR provides the status regarding a modem service request. If the modem-signal change detec-
tions (zero-to-one or one-to-zero transition) are enabled in MCOR1 or MCOR2, the change causes a set-
vice request and the changed signal is flagged in this register.

Bit Description

7 Data Set Ready Change: An enabled transition on the Data Set Ready signal causes this bit to be set and a
modem service request posted.

6 Clear To Send Change: An enabled transition on the Clear To Send signal causes this bit to be set and a
modem service request posted.

5 Ring Indicator Change: An enabled transition on the Ring Indicator signal causes this bit to be set and a
modem service request posted.

4 Carrier Detect Change: An enabled transition on the Carrier Detect signal causes this bit to be set and a
modem service request posted.

3:0 These read-only bits always return ‘0’.

10 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.2.2 Modem Interrupt Vector Register

Register Name: MIVR 8-Bit Hex Address: 41
Register Description: Modem Interrupt Vector Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X IT2 IT1 ITO

The value in this register is placed on the data bus, DB[7:0], when SVCACKM* is activated in response
to an active SVCREQM*. See Section 5.4.6 on page 118 for more details on the LIVR.

IT2 Im™ ITO Description
0 0 No modem interrupts.
0 1 Group 1: Modem signal change service request.
0 0

Invalid.

—_
—_
—_

5.2.3 Parallel Interrupt Vector Register

Register Name: PIVR 8-Bit Hex Address: 40
Register Description: Parallel Interrupt Vector Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X IT2 IT1 ITO

The value in this register is placed on the data bus, DB[7:0], when SVCACKP* is activated in response to
an active SVCREQP*. See Section 5.4.6 on page 118 for more details on the LIVR.

IT2 Im™ ITO Description
0 0 0 No parallel interrupt source is active.
0 0 1 Group 1: Modem signal change service request.
0 1 0
° ° ° Invalid.
0 1 1
1 0 0 The parallel port state machine requests service.
1 0 1 The parallel port data pipeline requests service.
1 y 0 Both t_he parallel port state machine and the parallel port

data pipeline request service.

1 1 1 Invalid.

October 1996 | 101
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

———.
———e——rN.
————r
— .
——

——

CIRRUS LOGIC

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

5.2.4 Receive Data/Status Registers

Register Name: RDSR 8-Bit Hex Address: 62
Register Description: Receive Data Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
Received Character
Register Name: RDSR 8-Bit Hex Address: 62
Register Description: Receive Status Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
Timeout SC Det2 SC Det1 SC Det0 Break PE FE OE

The Receive Data/Status register serves two purposes. During a serial receive-service acknowledge for
good data, the RDSR provides access to the receive FIFO. The number of characters available in the
FIFO is indicated by the RDCR, and is described in Section 5.5. Any number of characters, up to the value
in the RDCR, can be read from the FIFO. All internal FIFO pointers are updated by the on-chip processor.

During a serial receive exception service acknowledge, the RDSR provides both the received character
and the status that caused the exception condition. By definition, a receive exception service request has
only one character available (multiple receive exceptions produce multiple service requests). The first
read from the RDSR provides the exception status, and the second read provides the character. It is not
necessary to read either of these values. If the service acknowledge is terminated without reading the
exception status and data from the RDSR, the internal processor updates the FIFO pointers as if the sta-
tus/data were read. The same is true when only the status is read. Overrun errors are an exception to this
(see table below).

Bit Description
7 Timeout: If the service request enable for timeout is set, this bit indicates that no data has been received
within the receive timeout period set by the RTPR after the last character was removed.
6:4 Special Character Detect: These three bits are encoded as follows:
SCDet2 SCDet1 SCDet0 Status

0 0 0 None detected.
0 0 1 Special character 1 matched.
0 1 0 Special character 2 matched.
0 1 1 Special character 3 matched.
1 0 0 Special character 4 matched.
1 0 1 Not used.
1 1 0 End-of-break detected.
1 1 1 Range detect.

NOTE: No special character matching is performed if either a parity (PE) or framing (FE) error
occur unless CMOE is enabled by COR5[5].

102

| October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Bit Description (cont.)

3 Break: Indicates that a break was detected.

2 Parity Error: Indicates that a character was received with parity other than that programmed in COR1.

1 Framing Error: Indicates that the character was received with a bad stop bit.

0 Overrun Error: This bit is set if new data is received, but there is no space available in the FIFO and Holding
register. In this case, the character data is lost, and the overrun flag is applied to the last good data received
before the overrun occurred. Thus, the character read on the subseguent read from the RDSR is good data
and should not be discarded.

OCtOber 1996 __| 1 03

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

e CL-CD1284

e — IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC

5.2.5 Receive Interrupt Vector Register

Register Name: RIVR 8-Bit Hex Address: 43
Register Description: Receive Interrupt Vector Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X IT2 IT1 ITO

The value in this register is placed on the data bus, DB[7:0], when SVCACKR* is activated in response
to an active SVCREQR?®*. See Section 5.4.6 on page 118 for more details on the LIVR.

IT2 Im™ ITO Description
0 0 0 No receive interrupt active.
0 0 1 .
5] 5 Invalid.
0 1 1 Group 3: Received good data service request.
1 0 0
° ° ° Invalid.
1 0
1 1 1 Group 3: Received exception data service request.

5.2.6 Transmit Data Register

Register Name: TDR 8-Bit Hex Address: 63
Register Description: Transmit Data Default Value: 00
Access: Write only
Bit7 | Bité6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito
Transmit Character

The transmit data register is the port for the host to write to the transmit FIFO. When a channel is being
serviced for a transmit service request, the host can write up to 12 characters to this register. The transmit
data register should only be written during the context of a transmit-service acknowledge. A write of data
to this location at any other time yields unpredictable results.

104 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284 ——

IEEE 1284-Compatible Parallel Interface Controller e —

——== CIRRUS LOGIC

5.2.7 Transmit Interrupt Vector Register

Register Name: TIVR 8-Bit Hex Address: 42
Register Description: Transmit Interrupt Vector Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X IT2 IT1 ITO

The value in this register is placed on the data bus, DB[7:0], when SVCACKT™* is activated in response to
an active SVCREQT”. See Section 5.4.6 on page 118 for more details on the LIVR.

IT2 Im™ ITO Description
0 0 0 No transmit interrupt active.
0 0 1 Invalid.
0 1 0 Group 2: Transmit data service request.
1 1 1
° ° ° Invalid.
1

Virtual Registers — All

5.2.8 End of Service Request Register

Register Name: EOSRR 8-Bit Hex Address: 60
Register Description: End of Service Request Default Value: XX
Access: Write only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X X X X

The EOSRR is a dummy location used to signal the end of a hardware service-acknowledge procedure
invoked by the activation of SVCACK*. The data pattern written is a ‘don’t care’ value. A write to this loca-
tion causes the CL-CD1284 to perform its internal switch out of the service-acknowledge context. This
register is only used during a hardware-activated service acknowledge and must not be written during
Poll-mode operation.

October 1996 | 105
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

— CL-CD1284
e — IEEE 1284-Compatible Parallel Interface Controller
CIRRUS LOGIC d !

5.3 Channel Registers

Each of the four channels has a set of registers that control aspects of its operation. In the following reg-
ister descriptions the register contents and offsets apply to any of the channels; the channel being
accessed at any given time is controlled by the CAR. This is true even during a service-acknowledge con-
text; the CAR points to the channel to be serviced, whether it was loaded by the host (during Poll-mode
operation) or by the CL-CD1284 itself (during a hardware-activated service acknowledge).

5.3.1 Channel Command Register

Register Name: CCR 8-Bit Hex Address: 05
Register Description: Channel Command Default Value: 00
Access: Read/Write

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
Res Chan COR Chg Send SC Chan Ctl D3 D2 D1 DO

The CCR issues commands directly to the on-chip processor to control or change some channel and, in
one case, global functions of the channel selected by the CAR. The upper four bits indicate which of four
command types is being issued and the lower four bits are parameters to those commands. No more than
one bit is ever set in the command type field. When the command is executed by the CL-CD1284, it zeros
out the CCR. Therefore, two consecutive commands must wait for the CCR to clear after the firstis issued,
before the second command is issued.

NOTE: The CCR is valid only for serial channels 2 and 3. Commands issued to the CCR location of the parallel
channel (channel 0) or channel 1 are ignored by the MPU and have no effect on device operation. If the host
needs to issue a full device reset, it must select either channel 2 or channel 3 before issuing the command.

10 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284 ——

IEEE 1284-Compatible Parallel Interface Controller e —

——== CIRRUS LOGIC

5.3.1.1 Format 1 — Reset Channel Command

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
Res Chan 0 0 0 0 0 FTF Type

When bit 7 is set, one of three types of reset operations are initiated, based on the value of the least-
significant two bits. Bit 0 sets the type of reset, either channel-only or full-chip, and bit 1 causes the FIFO
of the selected channel to be flushed.

The two types of reset selected by bit 0 cause very different results. When bit 0 is ‘0, the reset command
effects only the selected channel. Resetting a channel disables both the receiver and transmitter, and all
FIFOs are flushed (cleared). If bit 0 is ‘1’, a full-chip reset is initiated. This reset has the same results as
a hardware reset caused by activation of RESET*: all channels are disabled, all FIFOs are flushed, and
all control registers set to their power-on reset state.

The completion of the reset operation can be detected the same way as though a power-on or hardware
reset had occurred: the GFRCR changes from zero to the value of the firmware revision. Note that at the
start of the reset operation, the GFRCR is cleared, but it can take some time for this to occur. Host soft-
ware should wait for the GFRCR to go to zero, and then wait for it to go non-zero to indicate that the reset
operation is complete. The host can clear the GFRCR before issuing the reset command and then wait
for it to become non-zero.

The FTF (flush serial transmit FIFO) command, bit 1, causes the serial transmit FIFO of the selected
channel to be cleared and pointers reset to the empty state. Any data in the FIFO is lost.

Bit Description
7 This bit must always be *1’.
6:2 These bits must always be ‘0’.

These bits are encoded as:

FTF Type Function
0 0 Reset current channel.
10 0 i Full CL-CD1284 reset,
1 0 Flush serial transmit FIFO of current channel
1 1 Not used.
OCtOber 1996 __|] 1 07

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

e CL-CD1284

e — IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC

5.3.1.2 Format 2 — Channel Option Register Change Command

Bit7 Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
0 COR Chg 0 0 COR3 COR2 COR1 0

Bit 6 — combined with any bits 3:1 — informs the MPU that a change occurred in one of the Channel Option
registers, COR1, COR2, and/or CORS3, respectively. It is permissible to indicate that more than one COR
has changed.

This command exists so that changes in the CORs are noted by the MPU, allowing it to update its internal
working register, since it keeps copies of the CORs in its own shadow registers.

Bit Description
7 This bit must always be ‘0’.
6 This bit must always be *1’.
5:4 These bits must always be ‘0’.
3:1 These three bits are encoded as:
COR3 COR2 COR1 Encoding
0 0 0 Not used.
0 0 1 COR1 changed.
0 1 0 COR2 changed.
0 1 1 COR1 and COR2 changed.
1 0 0 CORS3 changed.
1 0 1 CORS3 and COR1 changed.
1 1 0 CORS3 and COR2 changed.
1 1 1 COR1, COR2, and CORS changed.
0 This bit must always be ‘0’.

108 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

———.
——rER.
—

5.3.1.3 Format 3 — Send Special Character Command

——= CIRRUS LOGIC

Bit7

Bité

Bit4

Bit3

Bit2 Bit 1

Bito

0

0 Send SC

0

0

SSPC2 SSPCH

SSPCo

This command causes one of the pre-programmed characters in the special character registers (SCHR1,
SCHR2, SCHR3, and SCHR4) to be sent preemptively (applies to the serial channels only). The character
sent is selected by the settings of bits 2 through 0. ‘Preemptively’ means that the special character is sent
immediately following the character in the Transmitter Holding register; it does not wait until the FIFO emp-
ties. Once the special character is sent, transmission of any characters remaining in the FIFO proceeds

normally.
Bit Description
76 Must be ‘0’.
5 Must be *1°.
4:3 Must be ‘0’.
2:0 These bits are encoded as:
SSPC2 SSPC1 SSPCO Encoding
0 0 0 Not used.
0 0 1 Send special character 1.
0 1 0 Send special character 2.
0 1 1 Send special character 3.
1 0 0 Send special character 4.
1 0 1
1 1 0 Not used.
1 1 1
OCtOber 1996 __| 1 09

DATA BOOK v3.0

DETAILED REGISTER DESCRIPTIONS

e CL-CD1284

e — IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC

5.3.1.4 Format 4 — Channel Control Command

Bit7 Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
0 0 0 Chan Citl XMT EN XMT DIS RCV EN RCV DIS

This command activates or deactivates the serial transmitter and/or receiver of the selected channel,
based on the values in bits 3 through 0. This command is issued when a channel is being started for the
first time. Once a channel is in use, it can be started and stopped using this command. It is more efficient
however, to use the appropriate SRER bit in the IER. Multiple control commands can be issued at the
same time; for example, both the transmitter and receiver can be enabled by simultaneously setting both
the XMT EN and RCV EN bits.

Issuing an enable/disable command does not affect any register programming of the selected channel. It
does however, affect the state of transmit flow-control. Issuing a disable or enable command to a channel
whose transmitter has been flow-controlled by a remote (see the TxIBE bit in COR2), restarts transmis-
sion and clears the TxFloff bit (CCSR[2]). This ability is provided so that the host can override remote-
generated flow control.

Bit Description
75 Must be ‘0.
4 Must be “1°.
3:0 Select channel enable/disable activity:
XMT EN XMT DIS RCV EN RCV DIS Encoding
0 0 0 1 Disable receiver.
0 0 1 0 Enable receiver.
0 1 0 0 Disable transmitter.
1 0 0 0 Enable transmitter.
0 1 0 0 Disable transmitter and receiver.
0 1 1 0 Disable transmitter; enable receiver.
1 0 0 1 Enable transmitter; disable receiver.
1 0 1 0 Enable transmitter and receiver.

110 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.3.2 Channel Control Status Register

Register Name: CCSR
Register Description: Channel Control Status
Access: Read only

8-Bit Hex Address: 0B
Default Value: 00

Bit7

Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

RxEN

RxFloff RxFlon 0 TxEN TxFloff TxFlon 0

The CCSR provides current receiver/transmitter status of the selected channel.

Bit Description

7 Receiver Enabled: This bit is set when the receiver is enabled and cleared when it is disabled.

6 Receiver Flow Off: This bit indicates that the receiver has requested the remote to stop transmitting through
the use of a send XOFF character by a send special character 2 command in the CCR. The bit is cleared
when a send special character 1 (XON) command is issued; the channel is either enabled or disabled, or the
channel is reset.

5 Receiver Flow On: When a send special character 1 (XON) command is issued by the CCR, this bit is set.
This bit is cleared when one of three events has occurred, 1) the first non-flow control character is received,
2) the receiver is either enabled or disabled, 3) or the channel is reset.

4 Reserved: This bit returns ‘0’ when read.

3 Transmitter Enabled: This bit is set when the transmitter is enabled and cleared when it is disabled.

2 Transmitter Flow Off: This bit indicates that the CL-CD1284 has been requested to stop transmission by the
remote (received in-band flow control character XOFF). The bit is cleared when the CL-CD1284 requests to
restart transmission (receives an XON character); the channel is either enabled or disabled, or the channel is
reset.

1 Transmitter Flow On: This bit is set when the CL-CD1284 requests to restart transmission (received an XON
character). It is reset when transmission begins, when the channel is either enabled or disabled, or when the
channel is reset.

0 Reserved: This bit returns ‘0’ when read.

OCtOber 1996 __| 1 1 1

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

5.4 Channel Registers — Parallel Pipeline

The following five Channel Option registers control many aspects of CL-CD1284 serial channel operation
and enable special character processing features. COR4 and CORS5 specifically enable the UNIX line dis-
cipline character handling functions.

5.4.1 Channel Option Register 1

Register Name: COR1 8-Bit Hex Address: 08
Register Description: Channel Option Register 1 Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
Parity ParM1 ParMO Ignore Stop1 Stop0 ChLA1 ChLO
Bit Description
7 Parity Type: This bit selects the type of parity that is generated and checked if parity is enabled. ‘1’ selects
odd parity and ‘0’ selects even parity.
6:5 Parity Mode 1 and Parity Mode 0: These bits define the parity operation for both the transmitter and
receiver. The encoding is:
ParM1 ParMoO Function
0 0 No parity.
0 1 Force parity (odd parity = force 1, even parity = force 0).
1 0 Normal parity.
1 1 Not used.
4 Ignore Parity: If this bit is set, the CL-CD1284 ignores the parity on all incoming characters, thus no receive

exception service requests are generated if the parity is in error. If the bit is cleared, parity is evaluated.

3:2 Stop Bit Length: These two bits set the length, in bit times, of the Stop bit for each character.
Stop1 Stop0 Number of Stop Bits
0 0 1
0 1 1.5
1 0 2
1 1 Not used.
1:0 Character Length: ChL1 and ChLO select the length of each character, in number of bits. The CL-CD1284
receives and transmits the same length character, on a given channel, in the range of five to eight bits.
ChL1 ChLO Character Length
0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits

112 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.4.2 Channel Option Register 2

Register Description: COR2
Register Description: Channel Option Register 2
Access: Read/Write

8-Bit Hex Address: 09
Default Value: 00

Bit7

Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

IXM

TxIBE ETC LLM RLM RtsAO CtsAE DsrAE

Bit

Description

Implied XON mode: This bit enables the automatic resumption of character transmission upon the reception
of any character. This bit only has meaning if the transmitter is in Automatic In-band Flow-control mode as
programmed by the TxIBE control bit. When this bit is reset and TxIBE is enabled, the reception of any char-
acter restarts character transmission.

Enable Automatic In-band Transmit Flow Control: This bit allows the CL-CD1284 to examine error-free
incoming characters looking for an XOFF character (as programmed by SCHR2), if the special character
match function is enabled (COR3[4]). If a match occurs, transmission ceases after the current characters in
the Transmitter Shift register and Transmitter Holding register are sent. Transmission resumes when an XON
character (or any character, depending on the value of the IXM bit) is received or if a channel enable com-
mand is issued by the CCR.

Embedded Transmit Command Enable: If the ETC bit is set, the CL-CD1284 examines characters in the
transmit FIFO. If an embedded command is detected, it is processed. See the embedded transmit command
description in Chapter 3 for details of valid commands.

Local Loopback Mode: This bit enables local loopback of the channel. This mode is generally used during
system diagnostics. If this bit is set, the transmitter is internally ‘looped’ back to the receiver. The TxD pin is
set to the marking state. Data sent is immediately received by the receiver. No data appears on the TxD pin;
data on the RxD pin is ignored.

Remote Loopback Mode: Remote loopback allows a remote system to test its serial data stream. If this
function is enabled, the CL-CD1284 internally connects its receiver to the transmitter. Any data received is
immediately echoed back. This mode is enabled by setting RLM, and disabled by clearing RLM.

Request To Send Automatic Output: The CL-CD1284 can automatically assert RTS when a channel is
enabled (by transmit/receive enable command in the CCR) and there is data in the FIFO. When the channel is
disabled or there is no more data to send (that is, in the FIFO or Holding and Shift registers), RTS* is negated.
Setting RtsAO enables the function.

Clear To Send Automatic Enable: This bit enables the CTS* input to control transmitter operation. If GtsAE
is set and CTS* is not asserted, character transmission does not proceed.

Data Set Ready Automatic Enable: This bit allows the DSR* input to control receiver operation. Setting
DsrAE enables the function. When enabled and DSR* is deasserted, the CL-CD1284 discards all received
characters.

October 1996

|
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

13

———.
———e——rN.
————r
— .
——

——

CIRRUS LOGIC

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

5.4.3 Channel Option Register 3

Register Name: COR3
Register Description: Channel Option Register 3
Access: Read/Write

8-Bit Hex Address: 0A
Default Value: 00

Bit7

Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

SCDRNG

SCD34 FCT SCD12 RxTh3 RxTh2 RxTh1 RxThO

NOTE: The threshold for the parallel channel (channel 0) are set by the PFTR.

Bit

Description

7

Special Character Detect Range: This bit enables range checking on received characters. If the character
falls between a lower range, set by the value stored in the SCRL register, and an upper range, set by the
value stored in the SCRH register — inclusive, a receive exception service request is posted with the status
indicating a range detect (RDSR bits SCDet2—-SCDet0=111).

Enable Special Character Detect on SCHR4 and SCHR3: This bit controls whether or not the CL-CD1284
performs a comparison on received characters against the values stored in SCHR4 and SCHR3. The com-
parison is enabled by this bit being ‘1°.

Flow Control Transparency: This bit enables/disables the transparent response to flow control characters
received by the CL-CD1284. If set, received XON and XOFF characters are not placed in the FIFO for the
host. If in-band flow control is enabled, the characters are acted upon. If this bit is not set, flow control charac-
ters are acted upon, placed in the receive FIFO, and the host is notified by a receive exception service
request.

Enable Special Character Detect on SCHR2 and SCHR1: This bit controls whether or not the CL-CD1284
compares received characters with the values stored in SCHR2 and SCHR1. ‘1’ enables compare. This bit
must be set to enable automatic in-band flow control.

3:.0

Serial Receive FIFO Threshold

RxTh3 RxTh2 RxTh1 RxThO | Receiver FIFO Threshold
0 0 0 0 Not used.
0 0 0 1 1 character
0 0 1 0 2 characters

11 characters

114

|
DETAILED REGISTER DESCRIPTIONS

October 1996
DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.4.4 Channel Option Register 4

8-Bit Hex Address: 1E
Default Value: 00

Register Name: COR4
Register Description: Channel Option Register 4
Access: Read/Write

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
IGNCR ICRNL INLCR IGNBRK —BRKINT PEH[2] PEH[1] PEHI[0]
Bit Description
75 Carriage Return (CR) and New Line (NL) Processing:These three bits define the way that the CL-CD1284
processes received CR and NL characters (x’0D and x’0A). The following table shows the actions performed:
IGNCR ICRNL INLCR | Action
0 0 0 No action.
0 0 1 Received NL changed to CR.
0 1 0 Received CR changed to NL.
0 1 1 Received CR changed to NL; NL changed to CR.
1 0 0 Received CR discarded.
1 0 1 Received CR discarded; NL changed to CR.
1 1 0 Received CR discarded.
1 1 1 Received CR discarded; NL changed to CR.
4:3 Break Processing: The CL-CD1284 can handle received break characters in three ways:
IGNBRK —BRKINT Break Action
Received break generates an exception service request.
0 0 End-of-Break also generates an exception service request if
EBD is enabled in CORb.
0 1 Received break treated as a good NULL character.
0 Not used.
1 1 Received break discarded.
OCtOber 1996 __| 1 15

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

i

——== CIRRUS LOGIC

Bit Description (cont.)

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

2:0 Parity (P), Framing (F), and Overrun (O) Error Special Processing: As with break characters, the
CL-CD1284 can treat error characters in several different ways, if enabled:

PEH[2] PEH[1] PEH[O] Action

0 0 0 Received P/F/O error characters treated as exception data.

0 0 1 Received P/F/O error characters treated as good data.

0 1 0 Received P/F/O error characters discarded.

0 1 1 Received P/F/O error characters replaced with good NULL
characters.
Received P/F/O error characters are replaced with the two
character sequence x’FF-NULL-character. Good x’FF char-

1 0 0 . ;
acters are replaced with the two character sequence x’FF-
x’FF.

1 0 1

1 0 Not used.

116

| October 1996
DETAILED REGISTER DESCRIPTIONS

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.4.5 Channel Option Register 5

Register Name:

Register Description: Channel Option Register 5
Access: Read/Write

COR5 8-Bit Hex Address: 1F

Default Value: 00

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
ISTRIP LNE CMOE 0 0 EBD ONLCR OCRNL
Bit Description
7 ISTRIP: This bit enables stripping of the most-significant bit (bit 7) on all received characters. ‘1’ enables the
function.
6 LNext Enable: When this bit is set, characters following an LNext character (as programmed by the LNC reg-
ister) are not processed as a special character.
5 Character Matching on Error: If this bit is set, character matching occurs on both good and error characters.
If the bit is cleared, matching occurs on good characters only.
4:3 These bits must always be ‘0’.
2 End of Break Detect: If this bit is set, the CL-CD1284 after detecting and reporting a line-break condition,
searches for the end of a break and reports it by an exception service request with the End of Break status in
the RDSR (see RDSR description Section 5.2.4 on page 102).
1:0 Carriage Return (CR) and New Line (NL) Processing — Transmit: These two bits define any actions taken on
characters in the transmit data stream.
ONLCR OCRNL Action
0 0 No action.
0 1 Transmit CR changed to NL.
1 0 Transmit NL changed to CRNL.
1 1 Transmit CR changed to NL; NL changed to CRNL.
OCtOber 1996 __| 1 17

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.4.6 Local Interrupt Vector Register

Register Name: LIVR 8-Bit Hex Address: 18
Register Description: Local Interrupt Vector Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X IT2 IT1 ITO

The LIVR is used only during hardware-activated service-acknowledge cycles. Host software loads
desired information into the most-significant five bits; the least-significant three bits are not used. When
the CL-CD1284 is setting up a service request, it overlays the five most-significant bits of the LIVR into
appropriate interrupt vector register (RIVR, TIVR, PIVR, and MIVR) and sets the least-significant three
bits as required for the service request vector type. (See RIVR, TIVR, PIVR, and MIVR descriptions).
Refer to Section 5.7.5 on page 130 for a more detailed description of this register.

5.4.7 LNext Character Register

Register Name: LNC 8-Bit Hex Address: 24
Register Description: LNext Character Default Value: 00
Access: Read/Write
Bit7 | Bité6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0
LNext Character

This register defines the LNext character. If the LNext function is enabled (COR5[6]), the CL-CD1284
examines received characters and compare them against this value. If a match occurs, this character and
the following are placed in the FIFO without any special processing. In effect, the LNext function causes
the CL-CD1284 to ignore characters with special meaning, such as flow-control characters. There are two
exceptions. If the character following the LNext character is either a break or an error character, LNext is
placed in the FIFO, and the following character are treated as it normally would be for these error condi-
tions.

11 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.5 Modem

Change Option Registers

The CL-CD1284 has two registers that control its response to changes on the modem input pins. It can
be programmed to respond to the low-to-high transition, the high-to-low transition or both. In addition, the
threshold at which the DTR signal is negated can be set by the DTRth3—DTRthO0 bits in MCOR1.

5.5.1 Modem Change Option Register 1

Register Name: MCOR1 8-Bit Hex Address: 15
Register Description: Modem Change Option Register 1 Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
DSRzd CTSzd Rlzd CDzd DTRth3 DTRth2 DTRth1 DTRthO
Bit Description
74 DSRzd, CTSzd, Rlzd and CDzd: Each of these bits controls its corresponding input pin. If the bit is set, the
function is enabled and transitions from one-to-zero (zeros detect) generate an SVCREQM* service request.
3:0 DTRth3 through DTRthO: These bits form a binary value to determine when the DTR output is negated
(based on the number of characters in the receive FIFO). When the FIFO holds more characters than this
value, DTR is negated, informing the remote to stop transmission. This value must be set to a value numeri-
cally larger than the value set for the receive FIFO threshold in CORS3.
DTRth3 | DTRth2 | DTRth1 | DTRthO | Number of Characters in FIFO
0 0 0 0 Automatic DTR mode disabled.
0 0 0 1 1 character
0 0 1 0 2 characters
1 0 1 1 11 characters
1 1 0 0 12 characters
1 1 0 1
1 1 1 0 Not used.
1 1 1 1
OCtOber 1996 __| 1 19

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

5.5.2 Modem Change Option Register 2

Register Name: MCOR2
Register Description: Modem Change Option Register 2
Access: Read/Write

8-Bit Hex Address: 16
Default Value: 00

Bit7 Bit6 Bit5 Bit4 Bit 3 Bit2 Bit 1 Bito
DSRod CTSod Rlod CDod 0 0 0 0
Bit Description
74 DSRod, CTSod, Rlod, CDod: Each of these bits controls its corresponding input pin. If the bit is set, the func-
tion is enabled and transitions from ‘0’-to-1’ (ones detect) generate an SVCREQM* service request.
3:0 These bits are not used and must be ‘0’.

5.5.3 Modem Signal Value Register 1

Register Name: MSVR1 8-Bit Hex Address: 6C
Register Description: Modem Signal Value Register 1 Default Value: XX
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
DSR CTS RI CD 0 0 0 RTS
5.5.4 Modem Signal Value Register 2
Register Name: MSVR2 8-Bit Hex Address: 6D
Register Description: Modem Signal Value Register 2 Default Value: XX
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
DSR CTS RI CD 0 0 DTR 0

MSVR1 and MSVR2 provide information regarding the state of the modem input pins (DSR*, CTS*, RI*,
and CD*) and allows control of the modem output pins (DTR* and RTS*). A write to any of the input bits
has no effect. With the exception of the least-significant two bits, the registers reflect identical data. The
two are provided as a convenience for control of the modem output pins. It is not necessary for host soft-
ware to keep a copy of the current state of either when controlling the other. The actual signal level on the
output is the inverse of the value placed in this register. For example, setting the DTR bit causes the DTR
output to become active-low. The state of the modem input pins is also the inverse of the value in the cor-
responding bit in the registers.

12 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.5.5 Receive Baud Rate Period Register

Register Name: RBPR 8-Bit Hex Address: 78
Register Description: Receive Baud Rate Period Default Value: 41
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bito
Binary Divisor Value

This register holds the baud rate divisor for the receiver. It is used in conjunction with the RCOR. This
provides the clock, which is divided by this value. The time period produced must equal the value for one
bit time of the receive data.

5.5.6 Receive Clock Option Register

Register Name: RCOR 8-Bit Hex Address: 7C
Register Description: Receive Clock Option Default Value: 01
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X ClkSel2 ClkSel1 ClkSel0

The RCOR selects the clock source, which drives the RBPR. The value in ClkSel2—ClkSel0 selects one
of five possible clocks generated from the master clock (CLK).

ClkSel2 ClkSell ClkSel0 Clock Selected
0 0 0 CIkO (CLK =+ 8)
0 0 1 Clk1 (CLK = 32)
0 1 0 Clk2 (CLK + 128)
0 1 1 Clk3 (CLK + 512)
1 0 0 Clk4 (CLK + 2048)
1 0 1
1 1 0 Not used.
1 1 1

October 1996 | 121
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

5.5.7 Received Data Count Register

Register Name: RDCR 8-Bit Hex Address: OE
Register Description: Received Data Count Default Value: 00
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
0 0 0 0 CT3 CT2 CT1 CTOo

The RDCR indicates the number of good characters currently in the serial received data FIFO. Host soft-
ware can use this value as a loop counter when taking characters out of the FIFO. The value in this reg-
ister is only valid during the context of a service request acknowledge. At other times, it may or may not
give a true indication of the number of characters in the FIFO.

Bit Description
74 These bits must always be ‘0’.
3:0 Character Count 3:0: The encoding for these bits is:
CT3 CT2 CT1 CT0 Number of characters in FIFO
0 0 0 Not used.
0 0 1 1 character
0 0 0 2 characters
1 0 1 1 11 characters
1 1 0 0 12 characters
1 1 0 1
1 1 1 0 Not used.
1 1 1 1
5.5.8 Receive Timeout Period Register
Register Name: RTPR 8-Bit Hex Address: 21
Register Description: Receive Timeout Period Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bit0
Binary Gount Value

The RTPR determines the time period used for the NNDT (no new data timeout) and the ‘no new data’
timeout. The timeout counter is loaded from this register whenever a new character is placed in — or the
last character is removed from — the receive FIFO. The counter decrements on each tick of the prescaler
counter (PPR). A service request is generated if the count reaches zero and:

e Either an NNDT if the FIFO is empty and the NNDT is enabled, or
o A Good Data service request is generated if there is data in the FIFO

In either case the timeout period has expired before the FIFO reaches the programmed threshold.

122 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.6 Special Character Registers

The four special character registers, SCHR1-SCHR4, contain the character patterns used for various
character matching and flow-control functions. Each 8-bit character is right justified, that is, comparison
occurs from right to left, and all bits are compared. Any unused bits must be ‘0’. SCHR1 and SCHR2 serve
the additional function of defining the XON and XOFF characters, respectively, used for in-band flow con-
trol.

5.6.1 Special Character Register 1

Register Name: SCHR1 8-Bit Hex Address: 1A
Register Description: Special Character Register 1 Default Value: 00
Access: Read/Write
Bit7 | Bité6 | Bit5 | Bit4 | Bit 3 Bit2 Bit 1 Bito
Special Character 1

SCHR1 defines the XON character.

5.6.2 Special Character Register 2

Register Name: SCHR2 8-Bit Hex Address: 1B
Register Description: Special Character Register 2 Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit 3 Bit2 Bit 1 Bito
Special Character 2

SCHR2 defines the XOFF character.

5.6.3 Special Character Register 3

Register Name: SCHR3 8-Bit Hex Address: 1C
Register Description: Special Character Register 3 Default Value: 00
Access: Read/Write

Bit7 | Bit6 | Bit5 | Bit4 | Bit 3 Bit2 Bit 1 Bito

Special Character 3

5.6.4 Special Character Register 4

Register Name: SCHR4 8-Bit Hex Address: 1D
Register Description: Special Character Register 4 Default Value: 00
Access: Read/Write

Bit7 | Bité6 | Bit5 | Bit4 | Bit 3 Bit2 Bit 1 Bito

Special Character 4

5.6.5 Received Character Range Detection

If enabled (by bit 7 of COR3), the CL-CD1284 checks received characters to see if they fall within a range
of values. SCRL and SCRH set the range and the checking occurs inclusive of the values programmed
into these registers. If a received character is determined to be within the range, a special character detect
exception service request is posted. When set to ‘111’, RDSR[6:4] indicate a range detect. Note that this
range checking is performed in addition to the normal special character detection on SCHR4-SCHR1.

October 1996 | 123
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284

—— IEEE 1284-Compatible Parallel Interface Controller

——== CIRRUS LOGIC

5.6.6 Special Character Range — High

Register Name: SCRH 8-Bit Hex Address: 23
Register Description: Special Character Range, high Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit 3
Character Range — high

Bit2 Bit 1 Bito

SCRH sets the upper inclusive value for range detection.

5.6.7 Special Character Range — Low

Register Name: SCRL 8-Bit Hex Address: 22
Register Description: Special Character Range, low Default Value: 00

Access: Read/Write
Bit 7 | Bit6 | Bit5 |

Bit4 | Bit 3 Bit 2 Bit 1 Bit 0
Character Range — low

SCRL sets the lower inclusive value for range detection.

124 | October 1996
DATA BOOK v3.0

DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.6.8 Serial Service Request Enable Register

Register Name: SRER 8-Bit Hex Address: 06
Register Description: Serial Service Request Enable Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
MdmChg 0 0 RxData 0 TxRdy TxEmpty NNDT

This register enables the conditions that cause the CL-CD1284, to post a service request by the SVRR
and the SVCREQ* output pins, and applies to the serial channels only. Each of the individual enable bits
control one type of service request.

Bit Description

7 Modem Change: This bit enables the Modem Change service request. When this bit is ‘1’, any selected
modem signal change conditions (as programmed by MCOR1 and MCOR2) cause a modem service request
to be posted.

6:5 These bits must always be ‘0’.

4 Receive Data Enable: This bit enables the posting of receive service requests when characters have been
received and either the FIFO reaches the programmed threshold (set by CORS3) or the receive timeout period
has expired.

3 This bit must always be ‘0’.

2:1 Transmitter Ready and Transmitter Empty: The transmitter can be enabled to post service requests on one

of two conditions: either the FIFO is empty or the Transmitter Shift register is empty.

TxRdy enables the service request on the condition that the FIFO is empty. In this case, there are still two
characters available for transmission before the transmitter underruns (one in the Shift register and one in the
Holding register).

TxEmpty enables the service request on the condition that the Shift register is empty. The transmitter under-
runs due to the latency experienced between the time the service request is posted and the time the host can
load the FIFO. Under normal operating conditions, TxEmpty is set and TxRdy reset when there is no more
data to transmit and the host requires notification that the last character was sent before it can disable the
transmitter.

0 No New Data Timeout Enable: This bit activates the optional exception service request when all data is
removed from the FIFO and no new data has arrived after a preprogrammed delay period set by the value in
the RTPR. The LIVR (or RIVR) indicates a receive exception in the IT2-ITO vector bits. There is no data asso-
ciated with this exception service request. RDSR[7] indicates that the service request is for an NNDT condi-
tion.

5.6.9 Transmit Baud Rate Period Register

Register Name: TBPR 8-Bit Hex Address: 72
Register Description: Transmit Baud Rate Period Default Value: 41
Access: Read/Write
Bit7 | Bité6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito
Binary Divisor Value

This register holds the baud rate divisor for the transmitter and is used in conjunction with the TCOR. This
provides the clock, which is divided by this value. The time period produced must equal the value for one
bit time of the transmit data.

October 1996 | 125
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.6.10 Transmit Clock Option Register

Register Name: TCOR 8-Bit Hex Address: 76
Register Description: Transmit Clock Option Default Value: 01
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
X X X X X ClkSel2 ClkSel1 ClkSel0

The TCOR selects the clock source which drives the TBPR. The value in ClkSel[2:0] selects one of five
possible clocks generated from the master clock (CLK).

ClkSel2 ClkSel1 ClkSel0 Clock Selected

0 0 0 Clk0 (CLK = 8)
Clk1 (CLK = 32)
Clk2 (CLK = 128)
(
(

Clk3 (CLK = 512)
Clk4 (CLK +2048)

Not used.

0 0
0 1
0 1
1 0
1 0
1 1
1 1

= o] =»]| o =] O] =

126 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.7 Channel Registers — Parallel Pipeline

5.7.1

Data Error Register

Register Name: DER
Register Description: Data Error
Access: Read only

8-Bit Hex Address: 33
Default Value: 00

Bit7

Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

DMAwrerr

DMArderr Bufwrerr Bufrderr HR1wrerr HR1rderr HR2wrerr HR2rderr

The bits in this read-only register indicate read/write errors involving the DMABUF register and the Data
Pipeline registers. The DataErr bit (PFSR[Q]) is the logical OR of these eight Error Status bits.

Reading this register has no effect on the error status. A write to this register clears all the bits, which
cannot be written by the user. Host software should clear this register (write x’00) after completing an error
service-acknowledge procedure. This bit is provided primarily as an aid to driver software development.
Data errors should never occur under normal circumstances.

This register is cleared during device reset.

Bit Description
7 DMA Write Error: This bit is set if the DMA control logic has written to the DMA buffer when it already con-
tains data. It indicates that an invalid DMA transfer cycle occurred (a DMAACK* without a corresponding
DMAREQ).
6 DMA Read Error: As with bit 7, this bit indicates that DMA logic has performed a read from the DMA buffer
when there was no data in it. It indicates that an invalid DMA transfer cycle occurred.
5 Buffer Write Error: This bit indicates that a system write to the DMA buffer occurred while it still contained
data.
4 Buffer Read Error: This bit indicates that a system read from the DMA buffer occurred while it was empty.
3 Holding Register 1 Write Error: This bit indicates that a system write to PFHR1 occurred while it still con-
tained data.
2 Holding Register 1 Read Error: This bit indicates that a system read from PFHR1 occurred while it was
empty.
1 Holding Register 2 Write Error: This bit indicates that a system write to PFHR2 occurred while it still con-
tained data.
0 Holding Register 2 Read Error: This bit indicates that a system read from PFHR2 occurred while it was
empty.
OCtOber 1996 __| 1 27

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

5.7.2 DMA Buffer Data Register — High

Register Name: DMABUFH
Register Description: DMA Buffer Data Register, high
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
15 14 13 12 11 10 9 8

8-Bit Hex Address: 30
Default Value: 00

5.7.3 DMA Buffer Data Register — Low

Register Name: DMABUFL
Register Description: DMA Buffer Data Register, low
Access: Read/Write

8-Bit Hex Address: 30
Default Value: 00

Bit7

Bité

Bit5

Bit4

Bit3

Bit2

Bit 1

Bito

7

6

5

4

3

2

1

0

This 16-bit data register is used to buffer DMA data transfers to and from the CL-CD1284. Under normal
operating conditions, this register is only accessed during a DMA data transfer cycle. If the DMAbufWe
(PFCRIJO0)) is set to ‘1’ and DMAdir (PFCRI[5]) is set to ‘1’, data may be transferred from the host to the
FIFO by directly writing to the DMABUF. The data automatically moves forward into the FIFO through the
Data Pipeline Holding registers. The user must ensure that the FIFO has sufficient free space to accept
the data before writing into the DMABUF.

The BYTESWAP pin determines the order of byte transfer from this register into the data pipeline. If
BYTESWAP is set to ‘1’, data transferred on DB[15:8] is the first byte transferred into the data pipeline
and DB[7:0] is transferred second. If BYTESWAP is set to ‘0’ this sequence is reversed. The same applies
during data read during DMA transfers: if BYTESWAP is set to ‘1’, data from the data pipeline moves to
the upper byte of DMABUF, the next byte moves into the lower byte. Again, if BYTESWAP is set to ‘0’, this
sequence is reversed.

These resisters can be read through DMA acknowledge or PIO cycles, however, the DMABUF registers
can only be read when the DMAREQ” signal is active. If DMAREQ* is inactive, the DMABUF registers will
be empty. DMAfull (HRSRJ[3]) indicates if the DMABUF register is empty when DMAREQ* is active.

12 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.7.4 Firmware Revision Code Holding Register Status Register

Register Name:

Register Description: Holding Register Status
Access: Read only

HRSR 8-Bit Hex Address: 34

Default Value: 04

Bit7

Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

HR1full

HR1tag HR2full HR2tag DMATfull DMAmpty DMAact Ctnot0

The HRSR is a read-only register that indicates current data pipeline status. This register is not directly

set to any parti

Bit

cular value by a device reset, but reflects the current state of bits in other registers.

Description

76

Holding Register 1 Full and Holding Register 1 Tagged: These two bits indicate status of PFHR1. Bit 7
indicates that the register contains data; bit 6 indicates that the data is tagged. Bits 7 and 6 can be set simul-
taneously.

5.4

Holding Register 2 Full and Holding Register 2 Tagged: These two bits indicate status of PFHR2. Bit 5
indicates that the register contains data; bit 4 indicates that the data is tagged. Bits 5 and 4 can be set simul-
taneously.

3:2

DMA Buffer Full and DMA Buffer Empty: These two bits indicate status of the DMA transfer buffer (DMA
buffer). Bit 3 indicates that the register contains data; bit 2 indicates that it is empty.

DMA Active: When this bit is set, it indicates that the DMA handshake is active and a DMA service has been
requested but is not yet complete (DMAREQ* active — waiting for DMAACK®).

Count Not Zero: This bit indicates that the RLE counter is not zero, thus run-length encoding/decoding is in
progress.

October 1996

|
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

129

e CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOGIC

5.7.5 Local Interrupt Vector Register

Register Name: LIVR 8-Bit Hex Address: 18
Register Description: Local Interrupt Vector Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit 3 Bit2 Bit 1 Bit0
User-Defined Bits IT2 IT1 ITO

This read/write register can be initialized to any desired value and, when read in the normal context (that
is, not a service acknowledge context), the same value will be returned. The upper 5 bits are copied into
the appropriate vector register (MIVR, PIVR, TIVR, or RIVR) when the corresponding SVCACK* signal is
activated and an SVCREQ* of the same type is active. During this hardware-activated service acknowl-

edge read cycle, the appropriate vector register (MIVR, PIVR, TIVR, or RIVR) is driven onto the data bus,
DBJ[7:0].

Bits Description

7:3 User-defined Interrupt Vector: Host software can use these five bits for any purpose appropriate to the
application. In some cases, these bits might define the rest of a complete interrupt response vector (Motorola-

type systems). In the case of daisy-chain systems made up of multiple CL-CD1284s, these bits define the
device number in the chain.

2:0 Interrupt Vector Type Code: These bits are read/writable in the normal context. These bits are ‘don’t cares’.

13 I OCtOber 1996

DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.7.6 Parallel Auxiliary Control Register

Register Name: PACR
Register Description: Parallel Auxiliary Control
Access: Read/Write

8-Bit Hex Address: 3F
Default Value: 00

Bit7

Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

ShriTen

ShrtStal StaleOff FIFOlock ClearTO 0 AsyncDMA Unfair

This register provides some special functions for the parallel data path and interrupt generation circuitry.
The upper two bits change the basic timing of the timers associated with the data pipeline. Bit 5 can dis-
able the stale data timer. Bit 0 overrides the Fair Share functions of the device (serial and parallel chan-

nels).

Bit

Description

ShriTen: This function shortens the Prescaler count cycle that generates the internal 10us (based on a 25-
MHz system clock) clock for the stale data counter. This bit is cleared by RESET". If set, the 10-us ‘ticks’ of
the counter are generated every two CLKs; the normal period is one ‘tick’ every 250 CLKs.

ShriStal: This function shortens the period of the stale data timer. The stale data timer includes a divide-by-
10 prescaler; setting this bit bypasses the prescaler function thus causing the stale data timer to count on
each 10-us clock ‘tick’.

If both ShrtTen and ShrtStal are set, the stale data timer counts on every other CLK.

StaleOff: If set, this bit masks off the Stale Status bit. The inverse of this bit is AND’ed with the stale state
condition of the parallel channel to produce the stale status and disables OneChar and Stale as interrupt
sources. StaleOff is provided primarily for test and development purposes if slow movement of data into the
parallel port causes Stale and OneChar to always appear true.

FIFOlock: The FIFOlock bit causes the FIFO to stop accepting data from the parallel channel state machine.
This action makes the FIFO appear full to the parallel port, thus causing it to enter the ‘busy’ state. This func-
tion is primarily intended for use in system testing to cause a timeout on the 1284 bus.

Setting this bit in ECP Forward mode may cause a stall condition event 35 because event 36 does not occur
until FIFOlock is cleared. The ECP mode host transfer recovery handshake sequence (from event 35 stall) is
supported and the byte transit discarded as required by the specification. This bit does not provide an effec-
tive means to flow control the host.

Clear Timeout: This bit is a reset bit for the timeout status latch logic. When toggled by software, the timeout
status in the PFSR is cleared; it may be left set to disable the Timeout status function. Note that if this bit is left
set, the OneChar interrupt condition will never become true because the OneChar interrupt logic uses the
timeout status to determine when the FIFO has become stale.

Reserved: Must be ‘0.’

AsyncDMA: AsyncDMA causes the device to synchronize the DMAACK* signal to the internal clock (rising
clock edge). This capability provides an asynchronous DMA interface for systems that cannot meet the set-up
times required by the synchronous DMA logic.

Refer to Chapter 6 for specific timing relationships between CLK and DMAACK* when AsyncDMA is enabled.

Unfair: This bit overrides the Fair Share function of the device. If this bit is set, the device posts service
requests even if the service request is already asserted by an external device. The override is in effect for
channels 2 and 3; Fair Share is not functional on the parallel service request.

For applications where the three serial channel service request outputs are wire-OR’ed together, set Unfair so
that an interrupt of one type does not prevent posting one of the other types (receive, transmit, and modem).

October 1996

|
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

131

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

——

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

5.7.7 Parallel Channel Reset Register

Register Name: PCRR
Register Description: Parallel Channel Reset
Access: Read/Write

8-Bit Hex Address: 6C
Default Value: 00

Bit7

Bité Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

0

0 0 0 0 0 0 PChReset

This register exists only in the Channel 0 register set and is in the equivalent address location as the
MSVR register of the serial channels.

Bit Description
7:1 Reserved: Must be ‘0’
0

PChReset: Setting this bit asserts the equivalent of a hardware power-on reset to the parallel channel, chan-
nel 0. If set by the host, it must be cleared to resume normal parallel channel operation. This hardware reset
affects only the parallel channel and has no affect on other functions of the device.

5.7.8 Parallel FIFO Control Register

Register Name: PFCR
Register Description: Parallel FIFO Control
Access: Read/Write

8-Bit Hex Address: 31
Default Value: 00

Bit7

Bité

Bit5

Bit4

Bit3

Bit2

Bit 1

Bito

FIFOres

DMAen

DMAdir

IntEn

RLEen

setTAG

ErrEn

DMAbufWe

This register controls overall function of the parallel FIFO. These functions include resetting (flushing) the
FIFO, enabling DMA transfers, enabling host interrupts, run-length encoding, and so on. The host sets
these bits according to the mode of operation required.

After hard reset (RESET* or a CCR command of x'81 in one of the two serial channels), this register is
cleared to all zeros.

Bit

Description

7

FIFO Reset: This bit must be set together with the correct value of DMAdir to properly initialize the data pipe-
line and FIFO registers for data transfer or when a new data transfer direction is desired. Any data remaining
in the FIFO is discarded. The FIFO remains in reset mode until this bit is cleared with a second register write
operation.

DMA Enable: This bit must be set for DMA requests to move data to or from the FIFO to be made. When
DMAen = 1, The PFQR quantity value is compared with the PFTR user-programmed threshold value. In
Receive mode, if the threshold is equalled or exceeded, DMAREQ* is asserted and causes DMA data trans-
fers of whole (2-byte) words from the FIFO by the data pipeline. In Transmit mode, if the amount of data in the
FIFO is equal to or less than the threshold, DMAREQ" is asserted causing DMA data transfers of whole
(2-byte) words to the FIFO by the data pipeline.

1 32 I OCtOber 1996

DETAILED REGISTER DESCRIPTIONS

DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Bit

Description (cont.)

DMA Direction: This bit sets the direction of transfer between the parallel FIFO and system memory. If
DMAdir = 1, the direction is transmit (system memory to the parallel FIFO); if it is ‘0’, the direction is receive.
The desired DMAdir value must be set together with FIFOres when initializing the FIFO logic for data transfer.
Once a DMAdir value is set and the FIFOres is complete, that DMAdir selection must be maintained during
any other changes to the control bits of the PFCR.

NOTE: This bit sets the direction of the channel, even when DMA is hot enabled. The proper direc-
tion must be set regardless of the DMAen bit.

Interrupt Enable: This is the master interrupt enable for the parallel channel. This bit must be set for any
interrupts generated by the data pipeline, parallel port, or error status. In Poll-mode operation, host software
toggles this bit to signal the completion of the service-acknowledge cycle. Toggling this bit updates the state
of SVCREQP* and the PIR according to the current state of PCISR, DERR, and PFSR. For this reason,
PCISR, DERR, and PFSR should be read and cleared at the end of the service routine to ensure that no
requests were skipped. This is because an edge-sensitive interrupt controller may not detect a request active
when the program returns from the service routine.

RLE Enable: The state of this bit enables RLE encoding/decoding for the direction defined by DMAdir. The
RLEen bit effects the flow of data through the data pipeline in the transmit direction. Data flow into the FIFO is
managed in such a way that PFHR1 and PFHR2 are kept full to permit evaluation of data sequences for pos-
sible compression. The effect is that following any data transfer while RLEen is set, the final 2 bytes written to
the DMABUF register are kept in PFHR1 and PFHR2. To allow these bytes to be moved into the FIFO or to
make room in PFHR1 for a tagged data transfer, RLEen must be ‘0’ and both DMAen and DMAbufWe must be
‘0.

Set TAG: This bit specifies that the next character written to the parallel channel by the PFHR1 register is to
be tagged as an ECP or EPP special character (for a detailed explanation of the special handling of these
characters, see Section 3.13). The setTAG bit is cleared by a write to PFHR1 thus, this bit must be set each
time a tagged character is to be written.

Error Interrupt Enable: This bit enables a non-zero DataErr status to cause an interrupt if IntEn is also set.

DMA Buffer Write Enable: This bit must be set to enable host writes to the DMABUF register. It also enables
the FIFO data pipeline to empty the DMABUF register when written to by the host system. In this case, the
system writes to the DMA buffer (without DMA transfers) providing a low-performance alternative to DMA
transfers.

5.7.9 Paralle

| FIFO Empty Pointer Register

Register Name: PFEP 8-Bit Hex Address: 39
Register Description: Parallel FIFO Empty Pointer Default Value: 00
Access: Read/Write
Bit 7 Bit6 Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bito
0 0 6-bit binary FIFO Pointer Value

This register holds the internal empty location pointer of the FIFO. It identifies the location in the FIFO

from which the

next byte of data transfers from the FIFO.

The PFEP is cleared by a device or FIFO reset.

October 1996

| 133
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

5.7.10 Parallel FIFO Fill Pointer Register

Register Name: PFFP 8-Bit Hex Address: 38
Register Description: Parallel FIFO Fill Pointer Default Value: 00
Access: Read/Write
Bit 7 Bit6 Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bito
0 0 6-bit binary FIFO Pointer Value

This register holds the internal fill location pointer of the FIFO. It identifies the location in the FIFO to
receive the next data byte from the pipeline.

The PFFP is cleared by a device or FIFO reset.

5.7.11 Parallel FIFO Holding Register 1

Register Name: PFHR1 8-Bit Hex Address: 35
Register Description: Parallel FIFO Holding Register 1 Default Value: 00
Access: Read/Write
Bit7 | Bité6 | Bit5 | Bit4 Bit 3 Bit2 Bit 1 Bit0
8-bit Character Data

5.7.12 Parallel FIFO Holding Register 2

Register Name: PFHR2 8-Bit Hex Address: 36
Register Description: Parallel FIFO Holding Register 2 Default Value: 00
Access: Read/Write
Bit7 | Bité6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0
8-bit Character Data

These two 1-byte registers provide a data pipeline between the FIFO and DMA buffer. Data always flows
into PFHR1 first, then to PFHR2, and finally, either to the FIFO or the DMABUF register. The flow is to the
FIFO if DMAdir is ‘1’ and, from the FIFO if DMAdir is ‘0’. The pipeline and the holding registers support
‘tagged’ data for complete support of ECP Parallel Port mode. Tagged data is either an address or a run-
length code.

If RLEen (PFCRI[3]) is set, in the receive direction, run-length codes are captured in the RLCR for decom-
pression of received data. ECP address codes are recognized and pass into the PFHR1-PFHR2 pipeline.
The presence of an ECP address interrupts DMA flow and causes an interrupt to the host so it can remove
the tagged data from the pipeline by reading either PFHR2 or PFHR1.

In the transmit direction, the host can introduce ECP address (tagged) data or run-length codes for pre-
compressed data by setting the SetTAG bit (PFCR[2]) and writing the byte to be tagged to PFHR1. For
each tagged data transfer, the SetTAG bit must be set prior to writing to PFHR1. To perform a tagged data
transfer, the automatic DMA function must be disabled prior to the transfer (set DMAen = 0). This can be
done at the same time that SetTAG is set to ‘1.

These registers are cleared by a device or FIFO reset and marked as empty in HRSR. Any tagged status
is also cleared.

134 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.7.13 Parallel FIFO Quantity Register

Register Name: PFQR
Register Description: Parallel FIFO Quantity
Access: Read/Write

Bit7 | Bit 6 |

8-Bit Hex Address: 3A
Default Value: 00

Bit5 Bit4 Bit 3 Btz |
Data or Space Available in FIFO — Max 0x40

Bit 1 | Bit 0

This register maintains the quantity (or count) of either data bytes or space available in the parallel FIFO.
In the receive direction (DMAdir = 0), PFQR counts data characters in the FIFO. In the transmit direction
(DMAdir = 1), PFQR counts space available in the FIFO for additional characters to transmit. FIFOres,
together with the value of DMAdir, initialize PFQR to either x’00 (receive) or x’40 (transmit).

In either case, the PFQR indicates only the quantity of data or space available in the FIFO, and does not
include the data pipeline registers.

5.7.14 Parallel FIFO Status Register

Register Name: PFSR
Register Description: Parallel FIFO Status
Access: Read only

8-Bit Hex Address: 32
Default Value: 40

Bit7

Bité

Bit5

Bit4

Bit3

Bit2

Bit 1

Bito

FFfull

FFempty

Timeout

HRtag

HRdata

Stale

OneChar

DataErr

This read-only register provides the current FIFO and data pipeline status. Host software should examine
these bits in response to pipeline interrupts or polling operations.

This register is not directly cleared by reset, but the individual bits reflect the status of other registers.

Bit Description

7 Parallel FIFO is Full: If this bit is set, it indicates that the parallel FIFO is full.

6 Parallel FIFO is Empty: If this bit is set, the parallel FIFO is empty.

5 Timeout: This bit is set when Stale goes from false to true. In the receive direction, Timeout is delayed until
the FIFO is empty and all DMA cycles are complete (PFHR2 may or may not be full). Timeout is a pipeline
interrupt condition and must be cleared manually by the CPU. This is done by toggling CIrTO (PACR([3]) or by
a FIFO reset in PFCR.

4 Holding Register Tag: This bit indicates that a tagged character is in either PFHR1, PFHR2, or both. If
enabled, this bit being set causes a host interrupt to be generated. The host should examine the HRSR to
determine the exact cause(s) of this bit being set.

3 Holding Register Data: If this bit is set, it indicates that either PFHR1, PFHR2, or both contain data.

2 Stale: This bit is set when the stale data timer expires (see the description of SDTPR). If a single byte
remains in the data pipeline when this bit is set, a host interrupt is generated, the OneChar bit is set, and new
data entering the FIFO does not move into PFHR1 until PFHR2 empties. If two or more bytes remain in the
pipeline when this bit is set, a host interrupt is not generated, however, a DMA request is generated if
enabled.

OCtOber 1996 __| 1 35

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Bit Description (cont.)

1 One Character: In the receive direction, this bit set indicates that the FIFO is empty and stale, and one char-
acter remains in PFHR2. This condition occurs if an odd number of bytes is transferred by the parallel inter-
face. Since DMA cycles only move even numbers of bytes (words) and odd transfers leave one byte remain-
ing, host software must remove this character outside of DMA transfer cycles.

0 Data Error: If this bit is set, it indicates that one or more of the bits in the DER are set.

5.7.15 Parallel FIFO Threshold Register

Register Name: PFTR 8-Bit Hex Address: 3B
Register Description: Parallel FIFO Threshold Default Value: 00
Access: Read/Write
Bit 7 Bit6 | Bit5 | Bit4 Bit3 | Btz | Bit1 | Bit0
0 DMA Transfer Threshold

This register sets the FIFO threshold for initiating DMA requests for data transfer. The value is expressed
in bytes. Whenever DMAen is true, regular comparisons are made between the PFQR and the PFTR. If
the value in the PFQR is greater than or equal to the threshold, the DMA request logic becomes active
and remains active until the FIFO is essentially filled or emptied. An odd character or space in the FIFO
can remain.

In the receive direction, the Holding register pipeline (PFHR1 and PFHR2) are kept filled, so that tagged
data (for example, ECP mode addresses) can be detected and passed to the host by an interrupt. For
example, if the FIFO and data pipeline are initialized for receive, and 40 hex bytes are placed into the FIFO
from the parallel port, the first two of those bytes automatically are placed in the Pipeline registers. If the
PFTR were programmed to x’40 bytes, x’42 bytes must arrive to trigger a DMA transfer.

PFTR is cleared by device reset; it is not cleared by FIFOres.

13 I OCtOber 1996

DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.7.16 Run Length Count Register

Register Name: RLCR 8-Bit Hex Address: 37
Register Description: Run Length Count Default Value: 00
Access: Read/Write
Bit 7 Bit6 | Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bito
0 7-bit Unsigned Binary Count

This register works with the Holding registers (PFHR1 and PFHR2) to perform run-length encoding and
decoding when RLEen is set (PFCR[3]). The parallel port must be in ECP mode; in other modes, run-
length encoding does not occur.

In the transmit direction, strings of three or more identical characters are recognized and compressed.
The running count of identical characters is kept in the RLCR. Once the sequence is broken by a different
character or the end of the transmit burst transfer, the count and a single copy of the duplicated character
are put in the FIFO.

In the receive direction, run-length codes can be received from the remote device. These codes are rec-
ognized ‘on the fly’ as data flows from the FIFO through the holding register pipeline. A run-length code
is diverted to the RLCR. The subsequent character from the FIFO is duplicated (held in PFHR1) while the
RLCR decrements. Once the RLCR reaches ‘0’, normal pipeline data movement resumes. If run-length
codes are being received by the parallel port but RLEen is not set, the codes enter PFHR1 and PFHR2
as tagged data and cause interrupts to the host. The host must read the tagged Holding register directly
to remove the character from the pipeline and clear the tag.

This register is cleared by a device or FIFO reset.

October 1996 | 137
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.7.17 Stale Data Timer Count Register

Register Name: SDTCR 8-Bit Hex Address: 3D
Register Description: Stale Data Timer Count Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bit0
8-bit Stale Data Timer Count

This register determines the period that signals stale data in the FIFO. The timer is used only in the
receive direction. Each time a new character is placed in the FIFO from the parallel port, the SDTCR is
reloaded from the SDTPR, and down-counting begins at the ‘tick’ rate. If the counter reaches ‘0’, the Stale
bit (PFSRI[2]) is set. If the amount of data available is greater than or equal to one word, a DMA request
is made to move all remaining whole words to the host with a DMA transfer. Once the DMA transfer is
complete, a single remaining character causes an interrupt to the host to remove the character by reading
PFHR2.

This register is cleared by a device or FIFO reset. Clearing it causes the Stale bit (PFSR[2]) to become
true.

5.7.18 Stale Data Timer Period Register

Register Name: SDTPR 8-Bit Hex Address: 3C
Register Description: Stale Data Timer Period Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bit0
8-bit Stale Data Timeout Value

This register provides a user-defined period value for use as the timeout value of the stale data timer (see
SDTCR).

With a 25-MHz CLK input to the device, the resolution of this timer is 0.1 ms (with a maximum value of
25.5 ms). The 25-MHz clock is divided by 250 to produce a 10-us intermediate clock for this timer. A fixed,
divide-by-ten prescaler produces 0.1-ms ‘ticks’ to the stale data timer. To ensure accuracy for small time-
out values, the prescaler is reset each time the stale data timer is reloaded. (A user selection of 0.1-ms
timeout results in a time delay between 0.09 and 0.1 ms.)

The SDTPR is cleared by a device reset.

13 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

|

CIRRUS LOGIC

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

5.8 Channel Registers — Parallel Port

EPP Address Register
8-Bit Hex Address: 25

5.8.1
Default Value: 00

Register Name: EAR
Register Description: EPP Address

Access: Read/Write
Bit 7 | Bit6

Bito

Bit2 Bit 1

Bit 4 | Bit 3

Bit5
8-bit Binary Value

This register is only used during EPP mode.
The CL-CD1284 deposits the value obtained during an EPP address write command in this register. The

CL-CD1284 provides this value in response to an EPP address read command.

|
DETAILED REGISTER DESCRIPTIONS

October 1996
DATA BOOK v3.0

139

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

5.8.2 Host Timeout Value Register

Register Name: HTVR 8-Bit Hex Address: 24
Register Description: Host Timeout Value Default Value: FF
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
HTVR[7] HTVRI[6] HTVRI5] HTVR[4] HTVRI[3] HTVR[2] HTVR[1] HTVRIO]

This register holds the 8-bit value used to set the Host timeout period. The HTVR is an unsigned, binary
value. The reset state of this register is ‘OxFF’.

A function missing in Revision C and earlier devices is an on-chip timer to indicate that the remote host
has not responded in a specified time period. The Host timeout is defined in the IEEE STD 1284 specifi-
cation as a period of one second.

Revision D and newer devices add a user-programmable timer to provide a timeout if the remote host
does not respond to specific parallel port transactions. The timer is started by the parallel port state
machine each time it starts a sequence requiring a host response. Activation of the timer is automatic and
an interrupt is generated to the local host CPU if the timer expires before the remote host responds.

NOTE: Users familiar with the IEEE specification note that the events that start the timer cause the peripheral
device to wait for a remote host-generated event. For example, during the negotiation sequence after event
2, the peripheral waits for event 3 — a host-generated event. If the host does not respond and moves the
hegotiation sequence to event 4 within one second, the peripheral enters the ‘host timeout’ condition.

The timer is a 14-bit counter clocked by the system clock (CLK) prescaled (divided) by 2048. Then the
8-bit HTVR (address offset 0x24) is programmed and compared with the most-significant 8 bits of the 14-
bit counter. Each time the parallel port executes an event requiring a host response, the 14-bit counter is
started (from 0x00). It counts up until either the expected event occurs or the count matches the value in
HTVR. If a match occurs, a timeout condition exists. The HTVR need only be loaded once, typically during
device initialization.

The value placed in HTVR yields an approximate one second count time, based on the value of the input
CLK. For example, if the system clock driving the device is 25 MHz, the HTVR should be loaded with
0xCO0. Equation 5-1 provides an example.

25MHz
2048

= 1220710 = 2FAF16 Equation 5-1

The computed value is rounded up to the next largest whole hex value, in this case ‘0x3000’. Load the
HTVR with the most-significant 8 bits of this value, left-shifted two places since HTVR is a 14-bit counter.
This results in a value of ‘'0xC0’. For 20 MHz, the value is computed to be ‘0x9C’; for 16 MHz, the value is
‘0x7C’; values for other clocks can be easily computed in the same manner. At reset, the HTVR defaults
to a value of ‘OxFF’; this prevents the extremely short timeouts that occur if the register is cleared at device
reset and is not initialized.

A timeout causes a negotiation status change interrupt. This status is displayed as ‘0x22’ in the NSR
(NSR[5] and the code for return to Compatibility mode — ‘0010’ — in the result code field). When Compat-
ibility mode is reentered, the port control state machine waits in a locked state until signals on the parallel
port return to normal Compatibility mode conditions.

For debug purposes, disable the host timeout timer by setting PCR[3:2] (HTmrTst[1:0]). In this case, no
timeouts occur and the link can hang indefinitely while waiting for a host-generated event.

14 | October 1996
DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

|

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller e —
——= CIRRUS LOGIC
5.8.3 Input Value Register
Register Name: IVR 8-Bit Hex Address: 2E
Register Description: Input Value Default Value: XX
Access: Read only
Bit7 Bit6 Bit5 Bit4 Bit 3 Bit2 Bit 1 Bito
0 0 0 0 A1284 ninit HstBsy HstClk
This register always shows the current state of the external handshake pins.
Bit Description
74 These bits are not used and return ‘0’ when read.
3 A1284
2 ninit (low active Init input)
1 HstBsy (host busy)
0 HstClk (host clock)
5.8.4 Manual Data Register
Register Name: MDR 8-Bit Hex Address: 21
Register Description: Manual Data Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 Bit 4 Bit3 | Bit2 Bit1 | Bito
8-bit Binary Data

the PD[7:0] signals.

October 1996

DETAILED REGISTER DESCRIPTIONS

DATA BOOK v3.0

This read/write register can read the state of the PD[7:0] signals in any mode. If the ManMd bit (PCR[7])
and the MMDir and ManOE bits (PCR[1:0]) are set, then the value written into this register is driven onto

141

i

——== CIRRUS LOGIC

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

5.8.5 Negotiation Enable Register

Register Name: NER
Register Description: Negotiation Enable
Access: Read/Write

8-Bit Hex Address: 28

Default Value: 00

Bit7

Bité Bit5 Bit4 Bit3

Bit2

Bit 1

Bito

0

RID 0 EPP RLE

ECP

RvB

RVN

Each bit set along with EICR (PCR[6]) allows the CL-CD1284 to engage in IEEE STD 1284 negotiations
and move into the corresponding protocol. It is assumed that the peripheral host software responds to a
request for slave ID and is able to send an ID string in any supported protocol. In response to an ID
request, the CL-CD1284 does not provide a method of storing and automatically sending an ID string.
Note that the EPP protocol does not have provision for slave ID requests.

Bit Description

7 Reserved: This read-only bit is always ‘0’.

6 Request Slave ID

5 Reserved: This bit must always be ‘0.

4 EPP Mode Enable

3 Run Length Encoding in ECP Mode Enable

2 ECP Mode Enable

1 Reverse Byte Mode Enable

0 Reverse Nibble Mode Enable

142 C___|] OCtOber 1996

DETAILED REGISTER DESCRIPTIONS

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.8.6 Negotiation Status Register

Register Name: NSR 8-Bit Hex Address: 29
Register Description: Negotiation Status Default Value: 00
Access: Read/Write
Bit 7 Bit6 Bit5 Bit 4 Bit3 | Btz | Bit1 | Bito
NegOK NegFl HostTO ImedTerm 4-bit Negotiation Result Code

The results of negotiation attempts are stored in this register.

Bit Description

7 Negotiation OK: The state of this bit indicates that the negotiation was successful.

6 Negotiation Failed: The state of this bit indicates that the negotiation failed. The result code indicates which
mode was attempted

5 Host Timeout: This bit indicates that a host timeout occurred on the parallel channel. The accompanying 4-bit
result code indicates that the link has returned to Compatibility mode (x02). See the description of HTVR in
Section 5.8.2 on page 140.

4 Immediate Termination: This bit indicates that the A1284 signal has unexpectedly gone inactive as a result
of an immediate termination from the host and the interface and has reentered Compatibility mode. The 4-bit
negotiation result code should indicate which mode was terminated.

3:0 The lower 4 bits of this register contain a result code that shows the current mode. The following table shows

the encoding of the result code.

0 0 0 0 Compatible mode — no negotiation.

0 0 0 1 Failed negotiation.

0 0 1 0 Compatible mode — termination of a 1284 mode.
0 0 1 1

0 1 0 0 Reserved.

0 1 0 1

0 1 1 0 EPP mode.

0 1 1 1 Reserved.

1 0 0 0 Reverse Nibble mode.

1 0 0 1 Reverse Nibble mode — ID request.

1 0 1 0 Reverse Byte mode.

1 0 1 1 Reverse Byte mode — ID request.

1 1 0 0 ECP mode without RLE.

1 1 0 1 ECP mode without RLE — ID request.
1 1 1 0 ECP mode with RLE.

1 1 1 1 ECP mode with RLE — ID request.

Any change in the mode of the parallel port is reported to the peripheral host by interrupt if the NegCh bit
(PCIER[5)) is set; host software then reads the NSR to determine the current status and condition. Once
the host has read the NSR status resulting from the current negotiation, it should clear the register in prep-
aration for additional negotiation cycles. The NSR can be cleared by writing any value.

October 1996

| 143
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

5.8.7 Ones Detect Register

Register Name: ODR
Register Description: Ones Detect
Access: Read/Write

8-Bit Hex Address: 2D
Default Value: 00

Bit7

Bité

Bit5

Bit4

Bit3

Bit2

Bit 1

Bito

0

0

0

0

A1284

ninit

HstBsy

HstClk

Setting the bits in this register enables the CL-CD1284 to generate an interrupt — if SigCh (PCIER[4]) is
set —when the selected signal changes from low-to-high (rising edge). Bits 7:4 are reserved and must be
written as zeros; they return zero when read. The settings in this register have no effect (that is, a SigCh
interrupt is not generated) unless the device is in Manual mode.

5.8.8 Output Value Register

Register Name: OVR
Register Description: Output Value

8-Bit Hex Address: 2B
Default Value: 48

Access: Write only

Bit7

Bité

Bit5

Bit4

Bit3

Bit2

Bit 1

Bito

PerBsy

PerClk

AkDaRq

xFlag

nDatAv

0

0

0

This register controls output signals. In Manual mode, all signals are controlled by these register settings.
In Compatibility and EPP modes, PerBsy and PerCIk are controlled by the internal parallel port state
machine, while AkDaRq, xFlag, and nDatAv are controlled by this register. In ECP mode, the settings in
this register have no effect.

Bit Description
76 Peripheral Busy and Peripheral Clock: User-controlled in Manual mode only.
5 Acknowledge Data Request: In Compatible mode, this signal is the PError (Peripheral Error) signal.

In EPP mode, this signal is auxiliary and is a user-defined signal (USER 1).

4 XFlag: In Compatible mode, this signal is the SELCT (Select) signal.
In EPP mode, this signal is auxiliary and is a user-defined signal (USER 2).

3 Negative-true Data Available: In Compatible mode, this signal is the nFault (negative-true fault) signal.
In EPP mode, this signal is auxiliary and is a user-defined signal (USER 3).

2:0 Reserved: These bits must be written as ‘0’.

144 I OCtOber 1996

DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

——

5.8.9 Parallel Channel Interrupt Enable Register

Register Name: PCIER 8-Bit Hex Address: 22
Register Description: Parallel Channel Interrupt Enable Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit21 Bit Bit
0 TimEn NegCh SigCh EPPAW DirCh IDReq nINIT
5.8.10 Parallel Channel Interrupt Status Register
Register Name: PCISR 8-Bit Hex Address: 23
Register Description: Parallel Channel Interrupt Status Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
0 TimOvr NegCh SigCh EPPAW DirCh IDReq nINIT

PCIER and PCISR provide control and status of interrupts generated by the parallel channel control state
machine. They have the same bit definitions. Each bit in the PCIER enables the interrupt of the same type
in the PCISR. A write of any value to the PCISR in response to an interrupt request causes it to clear and
the interrupt request is removed.

Bit Description

7 This bit must always be ‘0’

6 Timer Enable and Timer Over: These two bits are for factory test purposes only and should never be written.

5 Negotiation Change: The state of this bit indicates that a change occurred in the negotiation status of the
port. The NSR indicates the new status of the parallel port.

4 Signal Change Enable: This enable instructs the parallel port to generate an interrupt when any of the sig-
nals specified by the ZDR or ODR change state as programmed. This interrupt is only generated during Man-
ual mode, however, it cannot be cleared by terminating Manual mode.

3 EPPAW: The state of this bit indicates that the remote master has written an EPP address to the CL-CD1284.
The new EPP address value is placed in the EAR.

2 Direction Change: This bit indicates that the host-side parallel port changed the direction of the interface.
Generally, this is in response to a request made by the CL-CD1284 through the RevRq bit (SCR[0]). DirCh
indicates that the direction was reversed through the defined protocol and the CL-CD1284 can now send data
to the master.

1 ID Request: The state of this bit indicates that the host has requested that the CL-CD1284 send its ID data
string. The peripheral host sends the appropriate ID string (this is application dependent).

0 nINIT: This interrupt is generated when an nINIT pulse is received while in Compatibility mode. The interrupt
occurs on the leading edge of the nINIT pulse.

OCtOber 1996 __| 1 45

DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

———.
———e——rN.
————r
— .
——

——

CIRRUS LOGIC

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

5.8.11 Parallel Configuration Register

Register Name: PCR
Register Description: Parallel Configuration

8-Bit Hex Address: 20
Default Value: 00

Access: R/IW
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
ManMd E1284 ETxfr lg_SEL HTmrTst[1] HTmrTst[0] MMDir ManOE

This register controls the overall configuration of the parallel port, each of which is described in IEEE 1284

format below.

Bit

Description

75

Mode Control: These three bits control the type of transfer desired and whether or not it is enabled to do so.

The ManMd bit selects Manual mode, which allows the user direct control over all parallel data and parallel
port control signals. MMDir controls the direction of the MDR (Manual Data register), and ManOE is the out-
put enable when MMDir= 1 (output mode).

E1284 allows the parallel port to engage in IEEE 1284 negotiations; ETxfr enables data transfers. The ETxfr
enable is only used for data transfers. EPP address read and write functions do not require that the ETxfr bit
be set.

ManMd E1284

0 0

Etxfr Mode

Compatibility mode; transfers disabled.

Compatibility mode; transfers enabled.

IEEE 1284 negotiation; transfers disabled.

0
0
0
0

IEEE 1284 negotiation; transfers enabled.

1 X Manual mode.

Ig_SEL: This bit prevents the CL-CD1284 from considering the state of the SLCTIN* input when deciding
whether or not to accept Compatibility mode forward data transfers.

When Ig_SEL is reset, SLCTIN* must be active (low) to receive data on the parallel port in response to a
STROBE* input. If Ig_SEL is set, SLCTIN* is not considered and data is accepted regardless of its state. The
lg_SEL bit should be set/reset together with the E1284 bit.

Host Timer Test Control [1:0]: These two bits control the clock rate of the host timeout timer and are
intended primarily for manufacturing test purposes. As such, normal user-level programming should leave
these bits cleared (‘0’). When these bits are set to ‘17, the timer is completely disabled — useful for factory
debug purposes.

1:0

Manual Mode Control: These two bits provide direction and output enable manual control over the parallel
port.

MMDir ManOE Mode

0 0 Reverse direction.

Reverse direction.

Forward direction disabled.

Forward direction enabled.

146

| October 1996
DETAILED REGISTER DESCRIPTIONS

DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

CIRRUS LOGIC

————
5.8.12 Special Command Register
Register Name: SCR 8-Bit Hex Address: 2A
Register Description: Special Command Default Value: 00
Access: R/IW
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
0 0 0 TestMux ClrPs SetPs EPIrq RevRq

This register provides the peripheral host processor to issue special commands to the channel control
state-machine. In response, the state-machine will perform the indicated IEEE STD 1284-defined
handshake on the parallel interface.

Bit

Description

75

These read-only bits are always ‘0’.

4

TestMux: When this bit is set, the state of the state machine is multiplexed onto the GPIO pins for debugging
purposes.
GPIO is not possible when this bit is set.

3:2

Clear Pause and Set Pause: These commands implement an error pause in Compatibility mode. Usually,
errors are presented to the host parallel port by the peripheral during the active BUSY period of a data
transfer. SetPs remains set until ClrPs is set, at which time both clear.

In most cases, the slave host also sets RevRq at the same time when SetPs is set to:

1) Lockup Compatibility mode with BUSY high, and
2) Request a reverse transfer if the master requests that an additional status be sent in the reverse direction

EPP Interrupt Request: This command causes the state machine to generate the EPP interrupt sequence.
This bit clears on the initiation of the Intr (PerCIk) pulse on the parallel port interface.

Reverse Request: This command requests that the host parallel port initiate the defined interface reversal
handshake as defined by the IEEE STD 1284 specification. The command bit clears to indicate completion
after the command executes on the interface. For Reverse Nibble and Reverse Byte modes, this occurs after
negotiation is complete; in ECP mode, it occurs after the Reverse Request signal on the parallel port interface
goes low.

In ECP mode, nPeriphRequest (nFault) is driven low to request that the host-side parallel port reverse the
direction of the interface.

When this bit is set upon termination of Compatibility mode, the CL-CD1284 can indicate that reverse data is
available (through the nDataAv signal) immediately upon recognition of a Reverse Nibble or Reverse Byte
negotiation. To obtain this behavior, this bit should be initialized to ‘1’ and set to 1’ upon termination of Com-
patibility mode.

October 1996

147
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.8.13 Short Pulse Register

Register Name: SPR 8-Bit Hex Address: 26
Register Description: Short Pulse Default Value: 00
Access: Read/Write
Bit7 | Bit6 | Bit5 | Bit4 | Bit 3 Bit2 Bit 1 Bit0
8-bit Binary Value

This register performs two functions,

o It sets the duration of the short pulse used by the IEEE 1284 protocols for all modes other than Compatibility;
o In Compatibility mode, it sets the duration of the ACK* pulse.

For non-compatible modes, SPR must be set to n — 2, where n is the number of CLKs in a 500-ns pulse.
The peripheral host initializes this register with the appropriate value to generate a 500-ns pulse width
based on the operating frequency of the device. In Compatibility mode, SPR should be set to the needed
length of the ACK* pulse. This is provided to enable the device to interface to slow masters that require
an ACK* pulse longer than the maximum specified in the IEEE STD 1284 specification. The table below
shows some examples of the necessary binary value for various system clock frequencies to set the 500-
ns pulse width.

Clock Resultant Pulse Width
(MHz) SPR Value (ns)
16 8 500
20 10 500
25 13 520
14 I OCtObE?’ 1996

DETAILED REGISTER DESCRIPTIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

5.9 Pin Control Registers

The parallel port has five outputs and four inputs. The pin assignments are the same as those defined in
the IEEE STD 1284 specification. The definition of the pins depends on the current negotiated mode;
these are detailed in the following descriptions.

5.9.1 Signal Status Register

Register Name: SSR 8-Bit Hex Address: 2F
Register Description: Signal Status Default Value: 00
Access: Read/Write
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito
0 0 0 0 A1284 ninit HstBsy HstClk

The bits in this register show the results of changes specified in the ODR and ZDR. Normally, the host
reads this register in response to a signal change interrupt generated by the CL-CD1284. This register is
active and valid only in Manual mode. Bits 7:4 return zeros when read. A write of any value to the register
clears it.

5.9.2 Zeros Detect Register

Register Name: ZDR 8-Bit Hex Address: 2C
Register Description: Zeros Detect Default Value: 00
Access: Read/Write

0 | 0 | 0 | 0 | A1284 | ninit | HstBsy | HstClk

Setting the bits in this register enables the CL-CD1284 to generate an interrupt — if the SigCh bit
(PCIER[4]) is set — when the selected signal changes from high-to-low (falling edge). Bits 7:4 are reserved
and must be written as ‘0’; they return ‘0’ when read. The settings in this register have no effect (that is,
the SigCh interrupt is not generated) unless the device is in Manual mode.

October 1996 | 149
DATA BOOK v3.0 DETAILED REGISTER DESCRIPTIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Before beginning any new design with this device, please contact Cirrus Logic for the latest errata
information. See the back cover of this document for sales office locations and phone numbers. This

data book applies to CL-CD1284 Revision E or newer device.

6. ELECTRICAL SPECIFICATIONS

6.1 Absolute Maximum Ratings

SUPPIY VOIAGE (V0] - veemerrerrmee et ettt et e e e e es e s e s +7.0 V (volts)
Input voltages, with resPect t0 groUNd............ooiiiiii i -05Vito Ve +05V
Operating teMPEIATUIE (T A) .-« rrreererir et et e er e e e e e e er e e e en e s e e eeeen e e snee e 0°C to 70°C
S (e 1o T (=T 4] 0= 2 LU (USSR -65°C to 150°C
POWEE QISSIPALION ...ttt ettt e s bbbt e e bbb e 0.25 W (watt)

NOTE: Stresses above those listed under Absolute Maximum Ratings can cause permanent damage to the device.
This is a stress rating only, and functional operation of the device at these or any conditions above those
indicated in the recommended operating conditions is not implied. Exposure to absolute maximum rating
conditions for extended periods can affect device reliability.

6.2 Recommended Operating Conditions

SUPPIY VOIAGE (V0] -+ vvee vttt ittt ettt ettt ettt eh e eh e eh ettt ettt e eenne s 5V+5%
Operating free air ambient teMPErature ..o e 0°C < Tp < 70°C
R =T 0 e T TP 25 MHz

6.3 DC Electrical Characteristics

ESD Mil-Sta-883D
(Human body model) 100 pF. 1.5k, + 2kV Method 3015.7

ESD

(Machine model) 200 pF, 0 Q, =200 V EIAJ IC-121

/O£ 100 mA, Ve =5V
Temperature = 25°C and JEDECGC number 17

70°C
Latch-up

Vegramp 5Vio 9V
Temperature = 25°C and JEDECGC number 17
70°C

Hysteresis 200 mV

15 | October 1996
ELECTRICAL SPECIFICATIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

(@ Veg =5V £5%, T = 0°C to 70°C)

Symbol Parameter MIN MAX Units Test Conditions

Vi Input low voltage -0.5 0.8 \

ViH Input high voltage 2.0 Vee v a

VoL Output low voltage 0.4 \ loL =2.4 mA b
Vou Output high voltage 2.4 \ loy = -400 pA
I Input leakage current -10 10 uA 0<V|N<Vee
I cl?j’trae rE)tus tristate leakage _10 10 LA 0 < Vour < Voo
loc gg’:’c‘udrg:‘t output leak- 10 10 uA 0 <Vour < Veo
lcc Power supply current 60 mA CLK =25 MHz
CiN Input capacitance 10 pF

Cout Output capacitance 10 pF

& V| is 2.7 V minimum on RESET*, CLK, and DMAACK*.

b Vg for open-drain signals is 0.5 V @ 8 mA sinking because these sighals can be wire-OR’ed in some systems and can have
multiple pull-up resistors that increase the load on the output.

The signals specific to the parallel port meet all requirements of the IEEE STD 1284 specification, except
for input signal protection (-2.0 to + 7.0 V); external circuitry is required to meet this specification.

Symmetrical input/output drive: £14 mA
Controlled voltage slew rate: 0.4 V/us

Input hysteresis: 0.8 V

NOTE: While the CL-CD1284 is a highly dependable device, there are a few guidelines to ensure that the maximum
possible level of overall system reliability is achieved. First, design the PC board to provide maximum iso-
lation of noise. A four-layer board is preferable, but a two-layer board will work if proper power and ground
distribution is implemented. In either case, decoupling capacitors mounted close to the CL-CD1284 are
strongly recommended. Noise typically occurs when either the CL-CD1284 data bus drivers come out of
tristate to drive the bus during a read, or when an external bus buffer turns on during a write cycle. This
noise, a rapid rate-of-change of supply current, causes ‘ground bounce’in the power-distribution traces. This
ground bounce, a rise in the voltage of the ground pins, effectively raises the input logic thresholds of all
devices in the vicinity, resulting in the possibility of a ‘1’ being interpreted as a ‘0’.

To reduce the possibility of ground-bounce affecting the operation of the CL-CD1284, Cirrus Logic has spec-
ified the input-high voltage (V,4) of the CLK and RESET" pins at 2.7 V, instead of the TTL-standard 2.0 V.
This eliminates any sensitivity to ground bounce, even in extremely noisy systems.

Although 2.7 V is higher than the industry-standard 2.4-V output (Von) specified for TTL, there are several
simple ways to meet this specification:

1) Use any of the available advanced-CMOS logic families (FACT, ACL, etc.). These CMOS output buffers will
pull-up close to V¢ when not heavily loaded. In addition, AS and ALS TTL can be used if the output of the
TTL device is only driving one or two CMOS loads.

2) As noted in the Texas Instruments ALS/AS Logic Data Book (1986 — pages 4-18 and 4-19), the Vg output
of these families exceeds 3.0 V at low-current loading. Other manufacturers publish similar data. Cirrus Logic
recommends the use of one of these two options for the CLK input to ensure fast, clean edges.

Note that RESET* can, if desired, be pulled up passively with < 1-kQ resistor.

OCtOber 1996 L] 1 51

DATA BOOK v3.0 ELECTRICAL SPECIFICATIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

CIRRUS LOGIC

6.4 AC Characteristics
6.4.1 Asynchronous Timing

Refer to the Figures 6-1 through 6-7 for the reference numbers in the following table.
Table 6-1. Asynchronous Timing Reference Parameters

JLT:SS.— Figure Parameter MIN MAX Unit
ty 6-1 RESET* low pulse width 10 ToLk
to 6-3 Address setup time to CS* or DS* 10 ns
t3 6-3 R/W* setup time to CS* or DS* 10 ns
ty 6-3 Address hold time after CS* 0 ns
t5 6-3 R/W* hold time after CS* 0 ns
ts 6-3 DTACK* low to read data valid 10 ns
ty 6-3 DTACK* low from CS* or DS? 2Tk 4Tok+30 ns
tg 6-3 Data Bus tristate after CS* or DS* high 0 30 ns
tg 6-3 CS* or DGRANT* high from DTACK* low 0 ns
t10 6-3 DTACK* inactive from CS* or DGRANT* and DS* high 40 ns
t14 6-3 DS* high pulse width 10 ns
t12 6-4 Write data valid from CS* and DS* low 1ToLk ns
ti3 6-4 Write data hold time after DS* high 0 ns
t14 6-2 Clock period (TCLK)1’ 3 40.0 1000 ns
t15 6-2 Clock low time' 0.3 Tgk 0.7 Tok ns
t1e 6-2 | Clock high time' 0.3 Toik 0.7 ToLk ns
t17 6-5 Propagation delay, DGRANT* and DS* to DPASS* 35 ns
t1g 6-5 Setup time, SVCACK* to DS* and DGRANT* 10 ns
t1g 6-6a Setup time, DMAACK* to rising edge of CLK 10 ns
tog 6-6a Hold time, read data after rising edge of CLK 10 30 ns
toq 6-7a Setup time, write data to rising edge of CLK 0 ns
too 6-3 DTACK* active pull-up time* see note 4 ns
tog 6-6a Data valid after falling edge of CLK (DMA read) 25 ns
tos 2675: ggltdljt;\T:,Ceé\fléAREQ* after DMAACK"* falling edge, 10 1 CLK + 15 ns

152 | October 1996
ELECTRICAL SPECIFICATIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

Table 6-1. Asynchronous Timing Reference Parameters (cont.)

Timing Figure Parameter MIN MAX Unit
Number
The following timing numbers are for the back-to-back asynchronous DMA timing diagrams.
tos 6-6b Hold time, DMAACK* active (DMA read/write) 3CLK
tog 6-6b rDetng;/, data valid after falling edge DMAACK* (DMA 0.5 CLK + 20 15CLK + 25 ns
y Hold time, data valid after rising edge DMAACK*
toy 6-6b (DMA read) 10 30 ns
6-6b N « .
tog 6-7b Inactive time, DMAACK* (DMA read/write) 10 ns
6-6b Hold time, DMAREQ" rising edge after
tog 67b | DMAACK* falling edge (DMA read/write) 10 1CLK+15 ns
t3o 6-7b Hold time, DMAACK* active (DMA write) 25 CLK
tgq 6-7b De_Iay, data valid after falling edge DMAACK* (DMA 15 CLK
write)
t3o 6-7b Hold time, data valid (DMA write) 3 CLK+ 10 ns
NOTES:

1) Timing numbers for RESET* and CLK in the table above are valid for both asynchronous and synchronous spec-
ifications. The device operates on any clock with a 40—60 duty cycle or better.

2) On host-1/0 cycles immediately following SVCACK™ cycles and writes to EOSRR, DTACK™ is delayed by 20
CLKs (1 us @ 20 MHz, 800 ns @ 25 MHz). On systems that do not use DTACK* to signal the end of the I/O
cycle, wait states or some other form of delay generation must be used to assure that the CL-CD1284 is not
accessed until after this time period.

3) AsTCLK increases, device petformance decreases. A minimum clock frequency of 25 MHz is required to ensure
performance as specified. The recommended maximum TCLK is 1000 ns.

4) DTACK* sources cutrrent (drives ‘high’) until the voltage on the DTACK* line is approximately 1.5 V; then DTACK*
goes to the ‘open-drain’ (high-impedance) state.

October 1996 | 153
DATA BOOK v3.0 ELECTRICAL SPECIFICATIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller
CIRRUS LOGIC P !

i

——

Vee

CLK

Y

RESET*

Figure 6-1. Reset Timing

NOTE: For synchronous systems, it is necessary to determine the clock cycle number so that interface circuitry can
stay in lock-step with the device. CLK numbers can be determined if RESET" is released within the range
t.—ty; 15 is defined as 10-ns minimum after the rising edge of the clock; t, is defined as 5-ns minimum before
the next rising edge of the clock. If these conditions are met, the cycle starting after the second rising edge

is C1. See the synchronous timing diagrams for additional information. Clock numbers are not important in
asynchronous systems.

-~ t, ——————>

< ti6 tis — >

CLK \I

Figure 6-2. Clock Timing

154

| October 1996
ELECTRICAL SPECIFICATIONS DATA BOOK v3.0

———.

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller e ——
’ ! =—=CIRRUS LOGIC
%) - —> 1
A[6:0] X

— 1 [—
\ X

cs* \ /
< 14
DS* \ /
—» g [— tg [-—
DB[15:0] < \'
/
e
DTACK* \
\
[——— t7 —_— [—— t10 t22 [—

Figure 6-3. Asynchronous Read Cycle Timing

| 155
ELECTRICAL SPECIFICATIONS

October 1996
DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

—= CIRRUS LOGIC
ta - s B 1
A[6:0] X
—> iy [e— —» {5 |[e—
R/W* / X
cs*
\
\ [\
DS*
\ /
\ /
——— ti, — —» 143
DB[15:0] <’
DTACK*
\
-~ t;, ———— < 19 trr <

Figure 6-4. Asynchronous Write Cycle Timing

156 | October 1996
DATA BOOK v3.0

ELECTRICAL SPECIFICATIONS

|

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

——== CIRRUS LOGIC

A[6:0] X

R/wW* / \\ X

SVCACK*

SVCREQ*
— t18 [—
DS*
DGRANT* \ / \
—» 1y [e— — ts -
DB[15:0] < \>
/|
-~ g ———>
DTACK*
\ /
<—t7—> <—t10—>t22<—
DPASS*

— Y7 [

Figure 6-5. Asynchronous Service Acknowledge Cycle Timing

October 1996 | 157
DATA BOOK v3.0 ELECTRICAL SPECIFICATIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

DMAACK* MAY CHANGE /

DMAREQ*

DB[15:0]

NOTES:
1) The DMA handshake operates in asynchronous mode only if the AsyncDMA bit is set in PACR.

2) If DMAACK" is released after point ‘a, but before point ‘b’ (two rising CLK edges after the falling edge of DMAACK?),
DB[15:0] is released at tyg following the rising edge of CLK. If DMAACK* is held past this edge, it controls the release of
DB[15:0]; the data bus remains active until DMAACK* becomes inactive (point ‘c’).

L

Figure 6-6a is still valid, however, Figure 6-6b illustrates more robust timing.

Figure 6-6a. Asynchronous DMA Read Cycle Timing

g W W W W W W W W

DMAACK* SYNCHRONIZED —» tyg
HERE

DMAREQ* j - -
DMAACK*
\\ SEE NOTE / \. SEENOTE /

7
f———— t26 ﬂ
DB[15:0] VALID VALID >

N\

trg

-l L
-

Y

NOTE: The falling edge of DMAACK?* is synchronized internally with the rising edge of the clock when asynchronous timing
is selected by PACR[1]. The data valid time can vary by as much as one full CLK cycle depending on when
DMAACK?™ falling edge occurs in relation to the CLK rising edge. The minimum DMAACK* active time must be met
to ensure that the data has become valid before the rising edge of DMAACK*. The DMAACK* can be extended to
any length, which extends the data valid hold time accordingly. If 5 is not met and DMAACK™ is deasserted in less
than to5 (MIN), then the data bus tristates 1,7 after the third rising clock edge following the assertion of DMAACK™.

Figure 6-6b. Asynchronous DMA Read Cycle Timing (Two Back-to-Back DMA Reads)

15 | October 1996
ELECTRICAL SPECIFICATIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller
7 / ===CIRRUS LOGIC

i

T\ [\

—» tig [

DMAACK*

\ \ / MAY CHANGE /

— ty

DMAREQ* i

—> iy
DB[15:0] VALID

NOTE: Figure 6-7a is still valid, however, Figure 6-7b illustrates more robust timing.

Figure 6-7a. Asynchronous DMA Write Cycle Timing

" DMAACK* SYNCHRONIZED DATA SAMPLED
DMAACK* LATCHED HERE HERE

°LK‘\/_\/_\/T\l/\/_l/_\/\l/\

DMAACK* SYNCHRONIZED — >ty
HERE DATA SAMPLED
*
DMAREQ —\ A
tog t30
DMAACK* \~ t30 ol —
\ | seenote f N\ /
3o t31 t
- - [t L 32 o

-ty ————>

A
<
=
5]
¥\

VALID

DB[15:0]

NOTE: The data is sampled on the third rising edge of CLK following the assertion of DMAACK?®*. If DMAACK* is held
active for more than three CLK cycles then the next DMA write cycle will simply be delayed, but the data will still
be sampled on the third rising CLK edge following the assertion of DMAACK®™. If DMAACK™ is active for< 3 CLKs,
the n the data is still sampled on the third rising CLK edge following the assertion of DMAACK* (provided that
DMAACK?* is active long enough for the device to lastch it. Due to this somewhat synchronous behavior, care must
be taken to guarantee that the data is valid at this CLK edge. Do not assume that the data will be sampled on the

deassertion of DMAACK*.
Figure 6-7b. Asynchronous DMA Write Cycle Timing (Two Back-to-Back DMA Writes)

OCtOber 1996 L] 1 59

DATA BOOK v3.0 ELECTRICAL SPECIFICATIONS

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

———.
———e——rN.
————r
— .
——

——== CIRRUS LOGIC

6.3.1 Synchronous Timing

Use the following table as a reference to timing parameters of figures in this section.

Table 6-2. Synchronous Timing Reference Parameters

JLT:SS.— Figure Parameter MIN | MAX | Unit
tq 6-8 Setup time, CS* and DS* to C1 rising edge 15 ns
to 6-8 Setup time, R/W* to C1 rising edge 15 ns
t3 6-8 Setup time, address valid to C1 rising edge 20 ns
ty 6-8 C2 rising edge to data valid 60 ns
ts 6-8 DTACK* low from C3 rising edge? 30 ns
ts 6-8 CS* and DS* trailing edge to data bus high-impedance 30 ns
t7 6-8 CS* and DS* inactive between host accesses 10 ns
tg 6-8 Hold time, R/W* after C3 rising edge 20 ns
tg 6-8 Hold time, address valid after C3 rising edge 0 ns
t10 6-9 Setup time, write data valid to C2 rising edge 0 ns
t14 6-10 Setup time, DS* and DGRANT* to C1 rising edge 30 ns
tio 6-10 Setup time, SVCACK* to DS* and DGRANT* 10 ns
ti3 6-9 Hold time, write data valid after C3 rising edge 0 ns
t14 6-10 Propagation delay, DS* and DGRANT* to DPASS* 35 ns
ts o171 | Faling edge DMAREQ" after rising edge CLK (DMA write/read) 25 | ns
te 6-11 Hold time, rising edge DMAREQ* after falling edge DMAACK* 20 ns

6-12 (DMA write/read)
t17 6-11 Setup time, data valid before rising edge C3 (DMA write) 5 ns
t1g g]; Setup time, falling edge DMAACK* to falling edge C1 (DMA write/read) 10 ns
toq 6-8 DTACK* active pull-up time P
too 6-11 Hold time, data valid after rising edge C3 (DMA write) 5
tog 6-12 Hold time, data valid after rising edge C1 (DMA read) 10 30
tog 6-12 Data valid after falling edge C1 (DMA read) 25
tog 6-12 Inactive time, DMAACK* (DMA read) 10

8 On host I/O cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK* are delayed by 20 CLKs (1 ms @
20 MHz, 800 ns @ 25 MHz). On systems that do not use DTACK* to signal the end of the 1/O cycle, wait states or some other
form of delay generation must be used to assure that the CL-CD 1284 is not accessed until after this time period.

b DTACK* sources current (drives *high’) until the voltage on the DTACK* line is approximately 1.5 V; then DTACK* enters the
‘open-drain’ (high-impedance) state.

16 | October 1996
ELECTRICAL SPECIFICATIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

c1 c2 c3
- [A N A
t1 — t7 l——
DS*, CS*
’ j / \
/ \
2 — ts -
R/W* \
13 [—— Lag t9 —
A[6:0]
-~ ot —] - g
DBI[15:0]
—> i tyq [e—
DTACK*
Figure 6-8. Synchronous Read Cycle Timing
OCtObE?’ 1996 __|] 1 61

DATA BOOK v3.0 ELECTRICAL SPECIFICATIONS

———.

CLK __/

DS*, CS*

CIRRUS LOGIC

—
——

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

7

A[6:0]

4‘1
1]

R/W*
j i3

DB[15:0]

to

N
"

N

to

DTACK*

Figure 6-9. Synchronous Write Cycle Timing

162 | October 1996
DATA BOOK v3.0

ELECTRICAL SPECIFICATIONS

———.

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller e —
——=— CIRRUS LOCGIC
ci c2 c3
—» 112 r—
SVCACK* \ /
SVCREQ*
- 44
DPASS* /
—{ 1y [€— — t7 [—
DS*
DGRANT* \ / \
— 12 [—— — t8 |——
RW* / \
-~ t, — - tg
DB[15:0]
— ts o
DTACK* &

Figure 6-10. Synchronous Service Acknowledge Cycle Timing

| 163
ELECTRICAL SPECIFICATIONS

October 1996
DATA BOOK v3.0

|

— CL-CD1284
e — IEEE 1284-Compatible Parallel Interface Controller
—== CIRRUS LOGIC
DATA SAMPLED
HERE
C C1 Cc2 \ C3 C1 Cc2 C3 C
ck \ \ l/ \ h_/ \ \/ \ V \ \
— ts N DATA SAMPLED
DMAREQ*
tig [=,
DMAACK* / seenore f \ / sewvoe [
t17 ty o7 |t
d N N
DB[15:0] \ VALID Ps { VALID r—

NOTE: The data is sampled on the second rising edge of CLK following the assertion of DMAACK™, as
long as setup time (t1g) is met. If DMAACK™ is held active for more than 2.5 CLK cycles, then

the next DMA cycle is simply delayed; the data is still sampled on the second rising CLK edge
following the assertion of DMAACK™.

Figure 6-11. Synchronous DMA Write Cycle Timing (Two Back-to-Back 3-Cycle DMA Writes)

164 | October 1996
ELECTRICAL SPECIFICATIONS DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

c ct c2 c3 ct c2 c3 c
ck\ J \ J’ . /o f \ J’
> tis
7™ te
DMAREQ*
> < tyg
tig e— tos .
DMAACK* SEE NOTE / LT \\ SEE NOTE / . /
- t24 - \\‘~ -l t23 -
DB[15:0] < vaLp [>>—< VALID - >>—

NOTE: The data is driven (to4) after the first falling edge of CLK following the assertion of DMAACK?,
as long as setup time (tyg) is met. If DMAACK?™ is held active for more than 2.5 CLK cycles
after C1 falling edge, then the next DMA cycle is simply delayed, but the data is still driven
(to4) after the first falling CLK edge following the next assertion of DMAACK™.

Figure 6-12. Synchronous DMA Read Cycle Timing (Two Back-to-Back 3-Cycle DMA Reads)

OCtO ber 1996 L]

165
DATA BOOK v3.0 ELECTRICAL SPECIFICATIONS

———.
———e——rN.
————r
— .
——

7. PACKAGE DIMENSIONS

CIRRUS LOGIC

A

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

22.95 (0.904)

Y

23.45 (0.923)

19.90 (0.783)

20.10 (0.791)

| J

13.90
14.10

(0.547)
(0.555)

/

. Pin 1 Indicator

CL-CD1284

100-Pin PQFP (JEDEC)

=]
T

T 0.65
T (0.0256)
F—1 BSC

NOTES:

16.95 (0.667)
17.45 (0.687)

|

1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.

1.60 (0.063) REF

2) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.

166 | October 1996
PACKAGE DIMENSIONS

DATA BOOK v3.0

|

CIRRUS LOGIC

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

8. ORDERING INFORMATION

The order number for the CL-CD1284 is:

CL - CD1284 — 10QC — E
T—Revision*

Cirrus Logic Inc. J
Product Line: Temperature Range:
Communications, Data C = Commercial

— Package Type:
Q = Quad Flat Pack (In plastic package)

Part Number
Internal Reference Number —

 Contact Cirrus Logic Inc. for up-to-date information on revisions.

| 167
ORDERING INFORMATION

October 1996
DATA BOOK v3.0

i

——== CIRRUS LOGIC

1)

2)

3)

4)

9)

168

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

APPENDIX A

Commonly Asked Questions

Using the SPR to Change Acknowledge Pulse Width in Compatible Mode

Some older hosts may require an acknowledge pulse width longer than the default 500 ns in Compatible
mode. The SPR can be used to change the pulse width in Compatible mode, but it will also affect the transfer
rate in the other modes. If the ACK* pulse width is extended 1 ps, the transfer rates in other modes is slowed
also. This should not be a concern as IEEE 1284-compliant hosts work with an ACK* pulse width of 500 ns
as specified in the IEEE 1284 specification (page 30). While non-IEEE 1284-compliant hosts cannot support
any of the advanced modes. In other words, if the host supports IEEE 1284 advanced modes (for example
ECP), then it also supports an ACK* pulse width of 500 ns in Compatible mode. If the host is not IEEE 1284-
compliant, then it does not support any of the advanced modes and therefore the SPR is only used for com-
patibility mode.

BUSY/ACK* Timing Variations

The SPR cannot be used to support the Ack-while-Busy timing. If the SPR value is changed to extend the
ACK* pulse width, then the BUSY signal is extended as well. This means that the CL-CD1284 only supports
the Compatible mode timing, Ack-in-Busy, as specified on pages 28-30 of the IEEE 1284 specification.
Please read Section 6.3 “Compatibility Mode” starting on page 28. Based on this description of Compatibility
mode, it is our belief that the Ack-in-Busy timing on the peripheral-side interoperates with all existing hosts,
including those that monitor BUSY but not ACK*.

Device ID

At this time, Cirrus Logic has no more information about device ID other than that is listed on page 52 of the
IEEE 1284 specification. Contact Larry Stein, Chair of the IEEE 1284.3 working group, at Far Point Commu-
nications (Fax: (805) 726-4438) for more information. Far Point Communications also sells IEEE 1284-
compliant ISA add-in boards for the PC. This board can be useful for testing CL-CD1284 applications.

Reversing the Channel with Data Remaining in the FIFO

The software must handle the situation where the host switches the direction of the parallel interface from
reverse to forward while data remains in the reverse FIFO. If this occurs then the CL-CD1284 produces a
change of direction interrupt. When software detects this interrupt, it must read the value in the PFQR (Par-
allel FIFO Quantity register) and use this value to determine the bytes remaining in the FIFO. The software
buffer pointer(s) must then be adjusted by that amount so that the data in the FIFO can be resent when the
direction is reversed again. After the pointers are adjusted, the FIFO must be flushed (cleared) and the direc-
tion of the FIFO must be changed to forward so that data may be received from the host.

RLE Data Count

Software can access the RLCR to obtain the current count for RLE data.

| October 1996
APPENDIX A DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

APPENDIX B

UART to RS232 and IR Port Interface Motherboard Example Schematic

10 OHM ,
oW T 1
10 mF_:'_ 0.1mF 0.1 mF;; 10 mF
8 12 NOTES:
(1) This circuit has not yet been
VA+ VDTEXTCLK 19 built and debugged.
5 (2) Choice of LED, power consumption,
< AGND XTALIN| 17 and physical positioning will affect R value.
7 é 3.6864 MHz
BPV23NF PINC XTALOUT| 18
=z .
6
PINA RESET| 11
TSHA5502 , »
. ¥ &\ CS8130 Rrxp|!3
— 47 mF FORM/BSY | 16
_V'_5.2W(2)1 D L4
LED1C -
D/C| 15
HED2C PWRDN | 10
CLKFR|2
TGND1 TGND2 DGND
¢ &
0.33mF A
T <
T
1
5 v 14 RS-232/IR
I CIA- cc EN |—
. SELECT
033mF == 2|cia+ shpn |15
4 25
CIB- C2+
033mF L 4 MAX562 [LossmF
i (o] Ce- E"’ CL-CD1284
DSR 23| R1IN R1OUT | 6 -
¢ <1s 22| R2IN {>° R20UT |7
DB9 8 e cTS
SERIAL 2 RXD 21| R3IN {>c R30UT | 8 RXD
DCD 20 R40OUT | 9
CONNECTOR R4IN > beD
(COM PORT) RI 19 | R5IN S RSOUT | 10 al
DTR 18| T10UT 9 TAIN | 11 oTR
* RTs 17| T20UT o] T2IN | 12 RTS
; TXD 16| T30UT °Q T3IN | 13 D
SG
5
?7 v. |26
v+ | 28
GND
J727 0.68 mF 0.33mF
October 1996 169

DATA BOOK v3.0 APPENDIX B

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

BIT INDEX
Numerics DirCh 145
) . DMA Transfer Threshold 136
4-bit Negotiation Result Code 143 DMAact 129

8-bit Stale Data Timeout Value 138
8-bit Stale Data Timer Count 138

A DMAen 132
DMAfull 129

A1284 141 DMAmpty 129

AkDaRq 144 DMArderr 127

AsyncDMA 131 DMAREQ 98

B DMAwrerr 127
DSR 120

Break 102 DsrAE 113

-BRKINT 49, 115 DSRch 100

Bufrderr 127 DSRod 120

Bufwrerr 127 DSRzd 119
DTR 120

c DTRth[3:0] 119

C1[:0] 93

CD 120 E

CDch 100 E1284 65, 146

CDod 120 EBD 117

CDzd 119 ECP 142

ch[1:0] 96, 98, 99 EPIrg 66

Chan Ctl 106, 110 EPP 142

Character Range 124 EPPAW 145

ChL[1:0] 112 ErrEn 132

ClearTO 131 ETC 113

ClkSel[2:0]121, 126 ETxfr 63, 65, 146

ClIrPs 66, 147 ExtM 98

CMOE 45, 117 ExtR 98

COR Chg 106, 108 ExtT 98

COR[3:1] 108

CT[3:0] 122 F

Ctnot0 129 FCT 45,114

CTS 120 FE 102

CtsAE 113 FFempty 135

CTSch 100 FFfull 135

CTSod 120 FIFOlock 65, 131

CTSzd 119 FIFOres 132

D Firmware Revision Code 93
FTF 107

D[3:0] 106

Data or Space Available in FIFO — Max 0x40 135 H

Data[7:0] 94 HostTO 143

DataErr 135 HR1full 129

Dir[7:0] 94 HR1rderr 127

1 7]

BIT INDEX

DMAbufWe 60, 132
DMAdir 60, 132

DATA BOOK v3.0

October 1996

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

———.
——rER.
—

HR1tag 129
HR1wrerr 127
HR2full 129
HR2rderr 127
HR2tag 129
HR2wrerr 127
HRdata 135
HRtag 135
HstBsy 141
HstClk 141
HTmrTst[1:0] 146
HTVR[7:0] 140

ICRNL 49, 115
IDReq 145

g SEL 146
IGNBRK 49, 115
IGNCR 49, 115
Ignore 112
ImedTerm 143
INLCR 49, 115
IntEn 132
ISTRIP 50, 117
IXM 45,113

L

LLM 113
LNE 117
LNext Character 118

ManMd 64, 146
ManOE 146
Mdbusy 96
Mdireq 96
MdmChg 125
Mdunfair 96
MMDir 64, 146

N

nDatAv 144
NegCh 145
NegFL 65

NegFl 143
NegOK 65, 143
nINIT 145

ninit 141

NNDT 125

NUL NUL 54
NUL x’01—-x’3F 55
NUL x’'82 x’xx 54

NUL x’'83 55

0

OCRNL 54, 117
OE 102
OneChar 61, 135
ONLCR 54, 117

P

Parity 112
ParM[1:0] 112
PChReset 132
PE 102
PEH[2:0] 49, 115
PerBsy 144
PerClk 144
Pipeline 97
Poll 93

PPlreq 97
PPort 97

R

RCV DIS 110
RCV EN 110
Res Chan 106
RevRq 66

RI 120

Rlch 100

RID 142

Rlod 120

Rlzd 119

RLE 142
RLEen 60, 132
RLM 113

RTS 120
RtsAO 46, 113
RVB 142

RVN 142
Rxbusy 98
RxData 125
RxEN 111
RxFloff 45, 111
RxFlon 45,111
RxlIreq 98
RxTh[3:0] 114
Rxunfair 98

S

SC Det[2:0] 102
SCD1245,114
SCD34 50, 114
SCDRNG 114

OCtO ber 1996 L]

DATA BOOK v3.0

BIT INDEX

——= CIRRUS LOGIC

171

e CL-CD1284

e — IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC

Send SC 106, 109 Txbusy 99
SetPs 66 TxEmpty 125
setTAG 132 TxEN 111
ShriStal 131 TXFloff 45
ShrtTen 131 TxFloff 111
SigCh 145 TxFlon 45, 111
Special Character 1 123 TxIBE 113
Special Character 2 123 TxlIreq 99
Special Character 3 123 TxRdy 125
Special Character 4 123 Txunfair 99
SRM 98 Type 107
SRP 98

SRR 98 u

SRT 98 Unfair 131
SSPC[2:0] 109

Stale 135 X

StaleOff 131 xFlag 144
Stop[1:0] 112 XMT DIS 110
T XMT EN 110
TBPR 43

TCOR 43

Timeout 62, 102, 135
Transmit Character 104

172 | October 1996
BIT INDEX DATA BOOK v3.0

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

i

——== CIRRUS LOGIC

INDEX
A DS* 12
A_1284 12 DSR *44, 120
: DSR2* 12
AB[6:0] 12 '
abbreviations 10 DSR3* 12
DTACK* 12

acronyms 10
AkDaRqg 12
asynchronous serial data protocol 39

DTR threshold 46
DTR* 44, 119-120

DTR2* 12
B DTR3* 12
baud rate E
derivation 87
generation 59 EBDIR 12
ECP mode 60

tables 88
bit engines 40
BYTESWAP 12, 60

electrical specifications 150
embedded transmit commands (ETC) 54

endian 27
C EPP mode 64, 67
CCLK 12 F
GD* 120 failed negotiation 65
CLK 12 Fair Share 32
CLK/2 12

fairness override 34
FIFO threshold 39
flow control 44

common service acknowledge 33
Compatibility mode 146
compressed-data sequences 61
context 38 G
context switch 27

conventions 10 general-purpose I/O port 67

CPU interface 70 global function initialization 76
CS* 12 GND 12
CTS* 44,120 GP[7:0] 12
CTS2* 12 H
CTS3* 12
hardware-activated service examples 81
D host timeout timer 146
daisy-chaining 32 HstBsy 12
DB[15:0] 12 HstClk 12

detailed register descriptions 93 I
device reset 74

DGRANT* 12 ID request 66
diagnostic facilities 59 IEEE 1284 negotiation 146
DMA IEEE Standards Department 59
buffer 60 IEEE STD 1284 59
interface 26 Implied XON mode 45
transfers 60 in-band flow control 44
DMAACK* 12 initialization 74
DMAREQ* 12 interface 60
DPASS* 12
October 1996 __|] 1 73

DATA BOOK v3.0 INDEX

i

——== CIRRUS LOGIC

interrupts 28
DirCh 38
EPPAW 35
IDReq 38
NegCh 35
invalid termination 65
IVR 64

-

line break 41

line discipline 49

Local Loopback mode 59
loopback testing 59

Manual mode 146
modem service 81, 83
modes
Combatibility 146
ECP 60
EPP 64, 67
Implied XON 45
Local Loopback 59
Manual 64, 146
Remote Loopback 59
Reverse-Byte 66
Reverse-Nibble 66
Serial Poll, examples 77
multi-channel processing unit (MPU) 24

N

nDatAv 12
ninit 12
no new data time-out (NNDT) 41

o

odd-byte transfers 27

CL-CD1284
IEEE 1284-Compatible Parallel Interface Controller

pins
descriptions 13
diagram 11
list 12

polling 31

protocol timing 67

R

R/W* 12

read cycles 26

receive direction 60

receiving compressed data 61

register summary 16

register usage 20

registers

Channel — Parallel

COR1 112
COR2 113
CORS3 114
COR4 115
COR5 117
DER 18, 22,127
DMABUF 128
DMABUF (high) 18, 22
DMABUF (low) 18,22
EAR 19,23, 139
HRSR 18, 22,129
HTVR 19,22, 140
IVR 19,23, 141
LIVR 18,22, 30,118,130
LNC 118
MDR 19, 23, 141
NER 19, 23, 142
NSR 19, 23, 143
ODR 19,23,144
OVR 19,23,144
PACR 18,22,131
PCIER 19, 23, 145

ouTEN 12 i
out-of-band flow control 44, 46 PCRR 18, 22, 132
P PFCR 18, 22,132
i i PFEP 18, 22,133
parallel channel service routines 84 PFFP 18,22, 134
parallel port PEHR 134
FIFO 60 PFHR1 18,22
PD[7:0] 12 PFHR2 18,22
PDBEN 12 PFQR 18,22, 135
PerBsy 12 PFSR 18,22,135
PerClk 12 PFTR 18,22, 136
RLCR 18, 22,137
SCR 19, 23,147
1 74 __| October 1996
INDEX DATA BOOK v3.0

CL-CD1284

IEEE 1284-Compatible Parallel Interface Controller

i

SDTCR 18,22,138
SDTPR 18, 22,138
SPR 19, 23,148
SSR 19,23, 64
ZDR 19,23, 64
Channel — Setrial
CCR 17,21,106,110
CCSR 17,21, 44,111
COR1 17,21
COR2 17,21
COR3 17,21
COR4 17,21
CORS5 17,21
LIVR 17,21
LNC 17,21
MCOR1 17,21
MCOR2 17,21
MSVR1 17,21
MSVR2 17,21
RBPR 17,21
RCOR 17,21
RDCR 17,21, 40
RTPR 17,21
SCHR1 17,21
SCHR2 17,21
SCHR3 17,21
SCHR4 17,21
SCRH 17,21
SCRL 17,21
SRER 17,21
TBPR 17,21
TCOR 17,21
detailed descriptions 93, 149
Global
CAR 16, 20,93
GFRCR 16, 20, 93
GPDIR 16,20, 94
GPIO 16,20,94
MICR 16, 20, 95
MIR 16, 20, 96
PIR 16, 20,97
PPR 16, 20,97
RICR 16, 20, 98
RIR 16, 20, 98
SVRR 16, 20, 31, 98
TICR 16, 20,99
TIR 16,20, 99
Modem Change Option
MCOR1 119
MCOR2 120
MSVR1 120
MSVR2 120

RBPR 121
RCOR 121
RDCR 122
RTPR 122
Parallel Port
NSR 65
PCR 146
SCR 66, 147
Pin Control
SSR 149
ZDR 149
Special Character
SCHR1 123
SCHR2 123
SCHR3 123
SCHR4 123
SCRH 124
SCRL 124
SRER 125
TBPR 125
TCOR 126
Virtual — All
EOSRR 17, 21, 105
Virtual — Serial
MISR 16, 20, 100
MIVR 16, 20, 101
PIVR 16, 20, 101
RDSR 41,102
RDSR (data) 16, 20
RDSR (status) 16, 20
RIVR 16,20, 104
TDR 16, 20, 104
TIVR 16, 20, 105
Remote Loopback mode 59
RESET* 12,43
RI* 120
RLE (run-length-encoding) 61
RTS* 44,120
RTS2* 12
RTS3* 12
RxD 59
RXD2 12
RXD3 12
RxFloff 44
RxFlon 44

S

scanning loop 78

SCHR1 44

SCHR2 44

Serial Poll mode 77

serial receive service 79, 82

OCtO ber 1996 L]

DATA BOOK v3.0

INDEX

——== CIRRUS LOGIC

175

e CL-CD1284

e — IEEE 1284-Compatible Parallel Interface Controller
——== CIRRUS LOCGIC

serial transmit service 80, 83 TxD 59
service-request/acknowledge 27 TXD2 12
SLCTIN* 146 TXD3 12
special characters 49

stale data timer 61 U

start bit 39 units of measure used 10
stop bit 39

STROBE™ 146 w

SVCACK™ 29 write cycles 26
SVCACKM* 12

SVCACKP* 12 X

SVCACKR* 12,29

SVCACKT* 12,29 f(')aFgFli
SVCREQM* 12, 98, 101, 119-120 YON 44

SVCREQP* 12, 101

SVCREQR* 12,98

SVCREQT* 12,98

SVRR

synchronous timing reference parameters 152, 160

-

timer 41, 43
Transmitter Holding register 39
Transmitter Shift register 39

176 | October 1996
INDEX DATA BOOK v3.0

